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Abstract
The palaeoenvironments of the upper Palaeozoic succession in the eastern foot slopes of the Northern Galala Plateau, west 
of the Gulf of Suez, Egypt, are interpreted based on a detailed study of the sequence-stratigraphic framework, sedimentary 
facies and trace fossils. The upper Carboniferous–lower Permian Aheimer Formation has been studied in its type section 
exposed in Wadi Aheimer. Three unconformities bound four 3rd-order depositional sequences, including the upper Car-
boniferous DS NG 1, and the lower Permian DS NG 2‒4. These sequences are correlated with their counterparts on the 
North African and Arabian plates. The sedimentary facies characteristics indicate palaeoenvironments ranging from fluvial, 
estuarine, intertidal, shallow subtidal, shoreface to offshore transitional settings. The abundant and diverse ichno-assemblages 
are composed of horizontal, vertical and sub-vertical traces. At least 26 ichnotaxa have been identified, representing suites 
of the Glossifungites, proximal Cruziana, and proximal-archetypal Cruziana ichnofacies. Ichnofabric analysis revealed 
three distinct ichnofabrics: Tisoa, Schaubcylindrichnus and Zoophycos ichnofabrics. The trace and body fossil distribution 
and trophic structure of some of the recorded faunal assemblages confirm relatively stable and low-stress shallow-marine 
environments. In contrast, the trophic structure of some other assemblages indicates the influence of particular environmen-
tal parameters, including substrate consistency, bathymetry, water energy, productivity, rate of sedimentation, salinity and 
oxygen availability. The integrated results indicate that the sequences were formed during an interval dominated by differ-
ent perturbations that resulted in a wide spectrum of depositional features. Moreover, evidence for Carboniferous–Permian 
glaciation is tentatively established in North Egypt but require further investigations.
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Introduction

Of the upper Palaeozoic of NE Egypt, the Permo-Carbonif-
erous rocks occur on both sides of the Gulf of Suez, includ-
ing the Northern Galala Plateau (NGP), Wadi Araba, the 
Southern Galala Plateau and west-central Sinai (Said 1962, 
1971; Abdallah and Adindani 1963; Omara 1965; Issawi 
and Jux 1982; Kora 1984, 1998; Bandel and Kuss 1987; 

Klitzsch 1990; Klitzsch et  al. 1990; Darwish 1992; El-
Barkooky 1994; Issawi et al. 1999; Afify et al. 2023). As a 
consequence, different lithostratigraphic schemes have been 
proposed to describe the Permo-Carboniferous deposits in 
NE Egypt (Table 1) and the correlations of these successions 
in that region remain a debatable issue.

Carboniferous‒Permian rocks crop out in the eastern 
foot slopes of the NGP, west of the Gulf of Suez, Egypt 
(Fig. 1a‒c), forming a remarkable narrow strip of dark-col-
oured sediments. These strata represent the oldest rock units 
in this region, underlying different horizons of the Permo‒
Triassic, Jurassic and lower Cretaceous sandstones (e.g., 
Said 1962, 1990; Abdallah and Adindani 1963; Issawi et al. 
1999). Stratigraphical, sedimentological and palaeontologi-
cal studies of these upper Palaeozoic deposits have been 
undertaken for over a hundred years (Schweinfurth 1885; 
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Nakkady 1955; Kostandi 1959; Abdallah and Adindani 
1963; Issawi and Jux 1982; Bandel and Kuss 1987; Kora and 
Mansour 1992; El-Barkooky 1994; Kora 1998). The succes-
sions record fluvial to marginal-marine depositional systems 
(e.g., Bandel and Kuss 1987) that developed on the south-
western margin of the Palaeo-Tethys Ocean (Fig. 1d) (Sco-
tese 2013). In general, siliciclastic deposits dominate these 
successions, intercalated with minor carbonates (Abdallah 
and Adindani 1963; Bandel and Kuss 1987). Deposition was 
controlled mainly by relative sea-level fluctuations combined 
with high terrigenous influx (e.g., Bandel and Kuss 1987).

Carboniferous‒Permian deposits of the eastern side 
of the NGP contain a sporadic and moderately to poorly-
preserved macro-invertebrate fauna, including brachiopods, 
bivalves, crinoids, rugose corals and bryozoans (Abdallah 
and Adindani 1963; Herbig and Kuss 1988; Kora and Man-
sour 1992; Kora 1998). In addition, these sediments yield 
a variety of microfaunal (foraminifera and conodonts) and 
floral associations (Omara and Vangerow 1965; Said and 
Eissa 1969; Bandel and Kuss 1987; Lejal-Nicol 1990), stud-
ied mostly from taxonomic and palaeobiogeographic points 
of view.

The Carboniferous‒Permian sediments of the east-
ern side of the NGP are highly burrowed (Abdallah and 
Adindani 1963; Bandel and Kuss 1987; Kora and Mansour 
1992; El-Barkooky 1994), representing relatively diverse 
ichno-assemblages. However, no study has yet focused on 
the analysis of the trace fossils in this area, which in turn 
has led to a generalized lack of detailed facies analysis 
along with palaeoenvironmental interpretations. Therefore, 
the present study aims to (1) interpret the environmental 

conditions that prevailed during deposition of the Carbon-
iferous‒Permian succession exposed in the eastern side of 
the NGP based on description of its sequence-stratigraphic 
framework, litho- and ichno- facies, and (2) discuss the vari-
ous factors controlling the occurrence and distribution of the 
identified trace fossils. The present work is based on the suc-
cession exposed in the Wadi Aheimer area (29°30′38.52"N, 
32°23′51.46"E), about 19 km SSE of Ain Sukhna and about 
6 km NW of Bir Abu Darag along the Suez-Gharib road, in 
the northern Eastern Desert of Egypt (Fig. 1b, c).

Geological setting

During Palaeozoic times, North Africa was located on 
the southern margin of the Palaeo-Tethys Ocean (Fig. 1d; 
Guiraud et al. 2001, 2005; Scotese 2013). The assembly of 
Pangaea in the Late Palaeozoic was completed by the closing 
of Palaeo-Tethys along with the complex collision of Gond-
wana with Laurussia. During this growth of the superconti-
nent, several factors affected facies development across this 
continental shelf comprising rifting, basin sagging, compres-
sive tectonics and sea-level fluctuations (Guiraud et al. 2005; 
Craig et al. 2008).

In North Africa, including Egypt, the Early Carbonifer-
ous witnessed a global rise in sea level, invading eastern 
Libya (e.g., Guiraud et al. 2001, 2005; Carr 2002). In the 
northern part of the Western Desert of Egypt, in contrast, 
a shallow-marine siliciclastic platform developed (e.g., 
Keeley 1989), passing eastwards into a mixed siliciclastic-
carbonates platform (i.e., the Um Bogma Formation in 

Table 1   Different lithostratigraphic schemes used for the upper Palaeozoic‒Triassic sedimentary succession in both sides of the Gulf of Suez 
(GOS) region
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Fig. 1   Geographical and geological framework of the study area. a 
Present-day key map shows Syrian Arc and location of the Northern 
Galala Plateau. b Location of the study area. c Simplified geologi-
cal map of the study area (after Abdallah and Adindani 1963) with 

indication of the measured section. d Palaeogeographic map shows 
position of the study area during the Late Pennsylvanian time (after 
Scotese 2013)
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west-central Sinai) (Table 1; Kora 1984, 1998). A simi-
lar mixed siliciclastic-carbonate platform was developed 
along the northernmost margin of Algeria, Tunisia and 
Morocco (Guiraud et al. 2005; Craig et al. 2008). The lat-
est Early Carboniferous registered some tectonic instabil-
ity, recorded by unconformities in Egypt and Libya (Wen-
nekers et al. 1996; Guiraud and Bosworth 1999), as well 
as in north-western Africa (Fabre 1988; Craig et al. 2008). 
During the early Westphalian, the marine conditions were 
restricted to north-eastern Egypt (both sides of the Gulf 
of Suez) and Cyrenaica (Guiraud et al. 2001, 2005; Craig 
et al. 2008). Sea level rose during the late Westphalian‒
Stephanian and a mixed carbonate siliciclastic platform 
fringed the North African-Arabian margin, including 
the western side of the Gulf of Suez (Issawi et al. 1999; 
Guiraud et al. 2001, 2005).

Over large areas in the Near East and North Africa, 
including the study area, a major unconformity marks the 
Carboniferous/Permian transition (Gvirtzman and Weiss-
brod 1984; Wennekers et al. 1996; Kora 1998; Guiraud et al. 
2001, 2005; Craig et al. 2008), a consequence of uplift dur-
ing the main phase of the Hercynian Orogeny. During the 
Early Permian, rift basins formed along the northern margins 
of Africa were filled by thick continental (Morocco–Alge-
ria), mixed (Egypt), or marine sediments (S Tunisia–NW 
Libya) (Guiraud et al. 2005; Craig et al. 2008). These rifting 
events increased through the Permian (Guiraud et al. 2005), 
whereas subsidence affected the eastern Mediterranean mar-
gin in conjunction with the opening of the Neo-Tethys Ocean 
(e.g., Stampfli and Borel 2002).

The opening of the Atlantic Ocean in Triassic to Early 
Cretaceous times led to important extensional phases in 
North Africa (Craig et al. 2008 and references therein). Dur-
ing the Late Cretaceous and in conjunction with the onset 
of rifting in the northern North Atlantic and the collision 
between the African and European plates, a compressional 
regime (i.e., Alpine compression) dominated North Africa, 
including Egypt, and resulted in further folding, thrust-
ing, intra-plate inversion and uplift (Maurin and Guiraud 
1993; Guiraud et al. 2001, 2005; Craig et al. 2008). During 
Oligo‒Miocene times, the north-eastern corner of Africa 
was affected by a major rifting phase that led to the develop-
ment of the Red Sea, Gulf of Suez and Gulf of Aqaba rift 
systems (Meshref 1990; Patton et al. 1994; Guiraud et al. 
2001, 2005).

The sedimentary succession of the NGP consists of upper 
Palaeozoic to lower Cretaceous siliciclastics and upper Cre-
taceous‒Palaeogene carbonates (Said 1962; Abdallah and 
Adindani 1963; Bandel and Kuss 1987; Kuss et al. 2000). 
The thickness of this succession gradually decreases towards 
the south, confirming deposition during marine transgres-
sions that came mainly from the north (Klitzsch 1990; 
Klitzsch et al. 1990; Kuss and Bachmann 1996; Kora 1998).

The NGP rises significantly above the lowland of Wadi 
Araba in the south and gently slopes towards Wadi Ghewibba 
in the north (Fig. 1b). In general, the Northern and Southern 
Galala plateaus are NE–SW oriented, representing a major 
branch of the Syrian Arc structure in the northern part of the 
Eastern Desert of Egypt (e.g., Said 1962). This arc consists 
of a belt of complex uplifts and domal anticlines that can be 
traced from Syria to the central part of the Western Desert 
of Egypt, passing through northern Sinai and the northern 
Eastern Desert (Fig. 1a) (Said 1962; Meshref 1990; Shahar 
1994). Folding and/or uplift of the Syrian Arc were active 
during the Late Cretaceous (post-Cenomanian times) and 
extended into Early Palaeogene (Meshref 1990; Moustafa 
2002, 2013; Höntzsch et al. 2011), associated with the clo-
sure of the Neo-Tethys Ocean (Lüning et al. 1998; Stampfli 
et al. 2001). Furthermore, upper Palaeozoic rocks of the 
eastern side of the NGP are folded and faulted against the 
Cretaceous‒Eocene succession, forming several horsts and 
grabens (Fig. 1c) (e.g., Said 1962; Abdallah and Adindani 
1963).

Material and methods

In the measured Carboniferous‒Permian succession, strati-
graphical, sedimentological and palaeontological data were 
gathered through detailed field descriptions of each bed. 
Sedimentary textures, sedimentary structures, nature of bed-
ding and bedding contacts, faunal and/or floral content, and 
the lateral variability for each bed have been documented 
along an area of about 750 m to the northwest and to the 
southeast of Wadi Aheimer. A total of 123 rock samples have 
been collected from each characteristic facies. Ichnological 
field observations were concentrated on the identification 
of ichnogenera and document their distribution along the 
exposed succession. The size of the trace fossils and their 
physical interrelationships (e.g., interpenetrating, interca-
lated or isolated occurrences) were noted. Careful investi-
gation has also been made to the ichnological aspects that 
allow the ichnofabric characterisation, such as trace fossil 
assemblage, tiering, cross-cutting relationships and the Ich-
nofabric Index. In addition, representative rock samples (27 
samples) containing some of these trace fossils have been 
collected for detailed investigations. They were marked with 
arrows to indicate in-situ orientations within the bed and 
photographed.

In the laboratory, standard thin-sections of 57 rock sam-
ples were examined for their petrography. In addition, a total 
of 11 moderately to badly-preserved brachiopod specimens 
were treated with a dilute hydrogen peroxide solution to 
remove adhering matrix for identification. Furthermore, 
some moderately preserved plant remains in five rock sam-
ples were identified. All rock and fossil samples are housed 
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in the collections of the Department of Geology, Faculty of 
Science, Alexandria University. Numbers of rock samples 
are prefixed by WA for the Wadi Aheimer section.

Stratigraphy

Lithostratigraphy

Wadi Aheimer exposes the stratotype section of the upper 
Palaeozoic Aheimer Formation (Abdallah and Adindani 
1963). This formation is exclusively recorded in outcrops 
from the NGP in the western side of the Gulf of Suez region 
(Tables 1, 2). In the study area, the Aheimer Formation is 
overlain unconformably either by the Permo‒Triassic red 
beds of the Qiseib Formation or by the lower Cretaceous 
pebbly sandstones of the Malha Formation (Said 1962; 
Abdallah and Adindani 1963). Southward, the Aheimer 
Formation has been considered to overlie conformably or to 
interfinger with the Abu Darag Formation (Awad and Said 
1966; Klitzsch 1990) or with the Rod El Hamal Formation 
(Said 1971). In fact, these three formations are characterised 
by unexposed bases. Therefore, the exact superposition of 
these formations is uncertain.

The Aheimer Formation consists of sandstones and silt-
stones alternating with fossiliferous shale and dolomite 
beds, commonly in repetitive cycles (Figs. 2, 3). It attains 
a thickness of about 250 m. Noteworthy is the great change 
in thickness of this formation from place to place within 
short distances. The studied succession is herein subdi-
vided into four informal rock units, from oldest: unit I, II, 
III and IV (Figs. 3, 4a). These units are correlated with 
some lithostratigraphic schemes that have been proposed to 
describe the upper Palaeozoic deposits in the eastern side of 
the NGP (Table 2).

Table 2   Correlation of rock units of the Aheimer Formation recognized in the measured type section with those defined in some selected previ-
ous studies

Abdallah and Adindani 
(1963)

Abd El-Azeam (1990) Kora and Mansour (1992) El-Barkooky (1994) Present work

Transitional strata Unit IV (early Permian) Sequence IV (early‒late 
Permian)

3- The upper unit: sand-
stone, shale and silts (early 
Permian)

Unit III (early Permian) Upper member (early 
Permian)

Sequence III (early‒late 
Permian)

Unit IV (early Permian)

2- The middle unit: 
limestone-sandstone (early 
Permian)

Unit II (early Permian) Middle member (early 
Permian)

Sequence II (early Permian) Unit III (early Permian)
Unit I (late Carboniferous) Unit II (early Permian)

1- The lower unit: Lopho-
phyllidium-bearing shale 
series (late Carbo.)

Lower member (late Car-
boniferous)

Sequence I (late Carbonifer-
ous)

Unit I (the Tisoa-bearing 
unit) (late Carbonifer-
ous)

Fig. 2   Legend of symbols used for sedimentological and ichnological 
structures and macrofossils
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Unit I

This unit consists of intercalated shale, clayey and/or dolo-
mitic siltstone, sandstone and sandy dolomite (Figs. 3, 4b). It 
represents the oldest unit exposed in the study area, attaining 
a thickness of about 40 m. Southward, near Bir Abu Darag, 
it reaches a thickness of about 60 m (e.g., Abdallah and 
Adindani 1963). The basal 32 m of this unit is composed 
of dark grey shale (organic-rich in parts), intercalated with 
reddish brown ferruginous hard siltstone, sandstone and 
sandy dolomite interbeds (Fig. 4b). The thickness of each 
bed ranges from about 0.1 to 0.5 m, increasing upward, with 
sharp contacts. Up-section (between 32 and 40 m), varie-
gated fissile shale dominates, alternating with laminated, 
wave-rippled, thin-bedded siltstones and fine-grained sand-
stones (Figs. 3, 4c).

Unit I is the richest fossil-bearing horizon encountered 
in the study area. Sediments are highly burrowed (Fig. 3), 
represented by simple vertical and deep burrows (see ‘Ich-
nological analysis’ below). In addition, poorly-preserved 
crinoid columnals, bivalves, small gastropods, brachio-
pods (Antiquatonia sp., Rhynchopora sp.; Fig. 4h, j) and 
bryozoans occur (Fig. 3). Furthermore, intervals enriched 
in microfauna are also recorded. Agglutinated foraminifera 
are the most common microfaunal element, followed by 
microgranular forms. Ostracod and conodont elements, in 
contrast, play only a minor role. Based on different macro- 
and microfossil assemblages, several studies support a Late 
Pennsylvanian (Westphalian‒Stephanian) age for this unit 
(Omara and Vangerow 1965; Said and Eissa 1969; Herbig 
and Kuss 1988; Klitzsch 1990; Kora 1998; present study). 
Unit I is correlated with the lower Lophophyllidium-bearing 
shale of Abdallah and Adindani (1963), the lower part of 
unit I of Abd El-Azeam (1990), the lower member of Kora 
and Mansour (1992) and sequence I of El-Barkooky (1994) 
(Table 2).

It is worthy of mention that the lower Lophophyllid-
ium-bearing shale unit was introduced by Abdallah and 
Adindani (1963) in an area about 8 km to the SW of the 
Wadi Aheimer succession based on the apparently abundant 
horn coral Lophophyllidium. However, our field observa-
tions of this unit at the area west of the Gulf of Suez in 
the Wadi Aheimer and Abu Darag areas (for about 30 km 
SE of the Wadi Aheimer succession) reveal that the occur-
rence of this rugose coral is remarkably scarce. Therefore, 
the pertinence of this nomenclature is debatable. Instead, the 
characteristic feature throughout this unit is the high abun-
dance of elongate vertical burrows of the Tisoa ichnotaxon 

(see ‘Ichnological analysis’ below). Therefore, we inclined 
to designate this unit as “the Tisoa-bearing unit” to char-
acterise the latest Carboniferous sediments and mark the 
Carboniferous/Permian boundary particularly in the study 
type section of the Aheimer Formation.

Unit II

Unit II (about 50 m thick) is dominated by cross-bedded 
sandstones and siltstones, unconformably overlying unit I 
(Figs. 3, 4c). The base of this unit is characterised by a lens 
of massive sandstone (about 0.5 m thick) and underlies a thin 
light grey hard laminated kaolinitic siltstone layer (about 
1.0 m thick). Above (41.5‒58 m) is yellow, thick, moder-
ately cemented, tabular and trough cross-bedded pebbly 
sandstone (Fig. 4c), containing clasts up to 7 cm long near 
the base. Pebbles vary in size laterally and are mostly com-
posed of mono- and polycrystalline quartz. In addition, the 
amount of pebbles gradually decreases in the upper part of 
this unit. Between 58 and 60 m, sandstone sediments become 
finer and grade to siltstone with plant remains (Fig. 4d). This 
siltstone layer is followed by a reddish yellow, moderately 
cemented, tabular and trough cross-bedded, medium- to fine-
grained sandstone bed (60‒80 m). The uppermost part of 
unit II (80‒90 m) consists of sandstone, siltstone and shale 
interbeds (Fig. 3).

Noteworthy is the complete absence of marine macro- 
and microfossils in unit II. However, some plant remains 
(Calamites sp.) and rare trace fossils are recorded (Figs. 3, 
4d). Calamites lived during the Carboniferous and Permian 
periods (e.g., Rafferty 2011). Based on the sharp strati-
graphic discontinuity with the underlying unit I (Figs. 3, 4c; 
see ‘Sequence stratigraphy’ below), an Early Permian age 
could be suggested to unit II. This unit is correlated with 
the lower part of the middle limestone-sandstone of Abdal-
lah and Adindani (1963), the upper part of unit I of Abd 
El-Azeam (1990), the lower part of the middle member of 
Kora and Mansour (1992) and the lower part of sequence II 
of El-Barkooky (1994) (Table 2).

Unit III

This unit attains a thickness of about 82  m (interval 
between 90 and 172 m; Fig. 3), and consists of yellow-
ish white to reddish sandstone, light grey to white partly 
kaolinitic siltstone and variegated shale interbeds (Figs. 3, 
4e). This succession is intercalated with two to three thin 
brownish ferruginous hard highly fractured and fossilifer-
ous sandy dolomite beds that increase in number near the 
top of the unit (up to seven ledges; Fig. 4l). Sandstone 
layers are partly rippled laminated (Fig. 4e), fractured, 
hummocky cross-bedded, fine- to medium-grained, highly 
burrowed and dolomitic in parts (Fig. 3). The thickness of 

Fig. 3   Composite lithological log and sedimentary structures (Sed. 
str.), macro- and trace fossils, and facies distribution of the upper Car-
boniferous‒lower Permian Aheimer Formation. For a key to symbols 
used see Fig. 2

◂
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some beds in this unit varies greatly. Some ferruginous 
truncation surfaces also occur, representing erosive or 
omission surfaces that can be traced laterally.

Shale layers in the lower part of unit III, between 115 
and 119 m, contain some plant remains (Figs. 3, 4f). The 
identified samples include Ginkgo-like fossil leaves that can 
be traced back to the Early Permian (e.g., Florin 1949). In 
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addition, dolomite layers are fossiliferous with some thin-
shelled brachiopods (e.g., Composita sp., Dielasma sp., 
Linoproductus sp., Rhipidomella sp.; Fig. 4g, i), crinoid 
fragments, bryozoans (Fig. 4k) and fusulinid foraminifer, 
confirming likewise an Early Permian age (cf. Kora and 
Mansour 1992; Kora 1998). Furthermore, sandstone beds 
are highly burrowed with abundant trace fossils (Fig. 3; see 
‘Ichnological analysis’ below). This unit is correlated with 
the upper part of the middle limestone-sandstone of Abdal-
lah and Adindani (1963), unit II of Abd El-Azeam (1990), 
the upper part of the middle member of Kora and Mansour 
(1992) and the upper part of sequence II of El-Barkooky 
(1994) (Table 2).

Unit IV

This unit is mainly composed of sandstone, siltstone 
and shale, attaining a thickness of about 78 m (interval 
between 172 and 250 m; Fig. 3). The lower part of this 
unit (172‒210 m) consists of yellowish, fine- to medium-
grained, planar to trough cross-bedded sandstones (Fig. 3), 
having remarkable bulging steep slopes (Fig. 4m) and later-
ally extending throughout the study area. The upper part 
(interval between 210 and 250 m) consists of shales, cross-
bedded sandstones, and siltstones. In addition, some dolo-
mitic sandstone lenses are sporadically recorded (Fig. 3). 
The basal dark grey shale (210‒218 m) overlies the lower 
bulging sand body (Fig. 3) and is non-fossiliferous, organic 
rich and gypsiferous. Above are very thin interbeds of red 
siltstone and very fine sandstone. The upper part of shale 
(about 32 m thick) is sandier and exhibits ripples and len-
ticular bedding. In the topmost part of unit IV, sandstone 
sediments yield rare brachiopod imprints and trace fossils 
(Fig. 3).

In Wadi Araba, about 60 km to the south of the study area, 
Lejal-Nicol (1990) described a typical Permian flora from 
deposits of the upper member of the Aheimer Formation. In 
addition, early Permian fossil algae have been recorded from 

these sediments (Omran and Khalifa 1988). Furthermore, 
overlying the Aheimer Formation, the lower multi-coloured 
clastic part of the Qiseib Formation (Abdallab and Adindani 
1963) contains fossil tree trunks and other plant remains, 
documenting an Early Permian age (see Klitzsch 1990). In 
view of the rare occurrence of trace and macrofossils and 
based on the stratigraphic continuity with the underlying 
unit III, an Early Permian age could be extrapolated to 
include also unit IV of the studied Aheimer Formation. This 
unit is correlated with the upper sandstone, shale and silts 
of Abdallah and Adindani (1963), unit III of Abd El-Azeam 
(1990), the upper member of Kora and Mansour (1992) and 
sequence III of El-Barkooky (1994) (Table 2).

Sequence stratigraphy

Three well defined unconformities have been recognized 
within the study succession. These surfaces define four 3rd-
order depositional sequences that are named according to the 
area of definition (depositional sequence Northern Galala, 
DS NG 1‒4; Fig. 5). The sequence-stratigraphic stacking 
patterns of facies, key surfaces and systems tracts have been 
recognized by several criteria based on the works of Ernst 
et al. (1996), Coe (2003), Embry (2009), Catuneanu et al. 
(2011) and Catuneanu (2017, 2019).

Depositional sequence NG 1

DS NG 1 is of Late Carboniferous age and comprises the 
complete unit I (the Tisoa-bearing unit) of the Aheimer 
Formation (Fig. 5a). Deposits consist of repetitive cycles 
of highly burrowed shale, siltstone, sandstone, and sandy 
dolomite interbeds, confirming the occurrence of an aggrad-
ing shelf (Van Wagoner et al. 1990) that is characterised by 
a shallowing and coarsening-upward vertical stacking pat-
tern of facies (Figs. 5a, b, 6a). The recorded aggradational 
parasequence sets that are truncated by a sequence bound-
ary document the occurrence of an early highstand systems 
tract (HST) (Catuneanu 2006). In view of the exposure, only 
the HST of this sequence is present (Fig. 5a). The sequence 
boundary capping DS NG 1, SB1, is described in the next 
section.

Depositional sequence NG 2

DS NG 2 comprises the basal lower Permian sediments 
of the studied succession. It includes the entire unit II and 
the lower part of unit III (Fig. 5a), attaining a thickness of 
about 80 m. The lower part of this sequence consists of 
cross-bedded pebbly sandstones and kaolinitic siltstone 
and is followed by mudstone and sandstone with fossilif-
erous dolomite interbeds (Fig. 5a, b). The basal sequence 
boundary of DS NG 2, SB1, is represented by the erosional 

Fig. 4   Some field aspects of the studied section. a At Wadi Aheimer, 
the upper Carboniferous‒lower Permian succession is subdivided 
into four stratigraphic units (I‒IV). Note the effect of faulting on 
these units. b Unit I is characterised by organic-rich shale, siltstone 
and sandstone with sandy dolomite interbeds. c The upper Carbon-
iferous unit I is unconformably capped by the lower Permian unit 
II. Pebbly sandstone (inset) is common in the basal part of unit II. 
d Calamites sp. (arrows) in the lower part of unit II (at 58‒60 m in 
Fig.  3). e Rippled sandstone (inset), siltstone and shale interbeds in 
unit III (at 110‒118  m in Fig.  3). f The Ginkgo-like fossil leaves 
(arrows) in unit III (at 110‒118  m in Fig.  3). g Linoproductus sp., 
unit III. h Antiquatonia sp., unit I. i Rhipidomella sp., unit III. j Clus-
ter of Rhynchopora sp., unit I. k Part of a sheet‐like bryozoan colony 
(arrow), unit III. l Seven dolomite ledges (1‒7) occur in the upper 
part of unit III, between 135 and 165 m in Fig.  3. m Cross-bedded 
bulging sandstone in unit IV of the studied Wadi Aheimer succession 
(at 172‒210 m in Fig. 3). Scale bars = 1.0 cm
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contact of pebbly and coarse-grained sandstone strata atop 
the aggradational parasequences sets of DS NG 1 (Fig. 5b). 
The following lowstand systems tract (LST) consists of flu-
vial multi-storey channel facies associated with four fining-
upward units of a high to low energy fluvial system (Figs. 5a, 
b, 6b). These sediments are considered as an incised valley 
fill based on its erosional base and rapid lateral thickness 
changes (Catuneanu et al. 2011). Quartz pebbles in the lower 
part of this LST may indicate transport within the flooded 
valley. The transgressive systems tract (TST) starts with a 
thin lag deposit of pebbly sandstone, representing a trans-
gressive ravinement surface (Nummedal and Swift 1987) 
that is defined as an erosional surface resulting from wave 
scouring (i.e., wave ravinement surfaces) (Swift 1975) or 
tidal scouring (tidal ravinement surface) (Allen and Posa-
mentier 1993) during transgression (Fig. 6c). This ts sur-
face is followed by a retrogradational stacking pattern of 
deepening-upward cycles of marine facies (Figs. 5a, 6c). 
The highly fossiliferous dolomite layer characterises the 
maximum flooding surface (mfs) that is also confirmed by 
the occurrence of fining-upward cycles below and coars-
ening-upward cycles above (Fig. 6c). The HST consists of 
five coarsening-upward cycles of mudstone and sandstone 
interbeds (Fig. 6d).

Depositional sequence NG 3

DS NG 3 is represented by the upper part of unit III of the 
Aheimer Formation (about 50 m thick; Fig. 5a). It con-
sists of sandstone, shale, mudstone, fossiliferous dolomitic 
sandstone and fossiliferous sandy dolomite interbeds. The 
basal sequence boundary SB2 is marked by karstification, 
palaeosols and extensive omission surface (Fig. 5c). Along 
this surface, marine strata of the topmost part of DS NG 2 
are truncated by a thin (2‒3 m thick) fining-upward cycle 
of unfossiliferous sandstone and mudstone of fluvial origin, 
representing part of the LST (Figs. 5c, 6e). In contrast to 
the first sequence boundary (SB1), SB2 is almost flat with 
low relief and non-conglomeratic (Fig. 5c), supporting the 
absence of an incised valley here.

The following TST is characterised by seven fining-
upward marine cycles of highly burrowed and fossiliferous 
dolomitic sandstone, fossiliferous sandy dolomite and shale 
(Fig. 5a) deposited mostly in shoreface environments. Thus, 
the surface between the LST and TST represents a marine 
flooding surface (i.e., ts), recording a deepening event. It 
may be considered as a transgressive ravinement surface 
(cf. Nummedal and Swift 1987). Laterally, the transgres-
sive surface (ts) of DS NG 3 is amalgamated with SB2 due 
to the lack of accommodation space during deposition of the 
LST (Fig. 6f). The lower part of this TST is characterised 
by the predominance of siliciclastic facies whereas carbon-
ate deposits become increasingly common in the upper part 
(Fig. 5a).

The mfs of DS NG 3 is represented by the seventh dolo-
mite layer (Fig. 5a). Based on the presence of an open-
marine macrofauna and trace fossils, this carbonate layer 
represents the deepest part of this sequence and indicates 
the maximum transgression of the shoreline. This layer can 
clearly be distinguished and easily correlated across the 
study area. The HST consists of four cycles of fossiliferous 
sandy dolomite and heterolithic cross-bedded sandstone/
mudstone facies that are followed by hummocky cross-strat-
ified sandstone facies and ripple laminated sandstone/silt-
stone facies, confirming a shallowing-upward trend towards 
the end of the HST (Fig. 5a, d).

Depositional sequence NG 4

This depositional sequence attains a thickness of about 78 m, 
and comprises the entire unit IV (Fig. 5a). The recorded 
HST of DS NG 3 is truncated by the fluvial sandstone of 
DS NG 4, forming an extensive omission surface and rep-
resenting the third sequence boundary (SB3) (Fig. 5d). The 
lower part of this sequence consists mainly of tabular and 
trough cross-bedded sandstones that are composed of clean 
sands (Figs. 4h, 5a). The stacking pattern of facies in this 
interval shows a fining-upward of the LST that resulted from 
braided streams (Fig. 6g). This stacking pattern of facies 
containing the highest energy fluvial systems is comparable 
to the lowstand topset of a downstream-controlled sequence 
(Catuneanu et al. 2011; Catuneanu 2019). The LST deposits 
are overlain by gypsiferous and organic-rich shale and red 
siltstone interbeds (about 8 m thick), representing deposi-
tion in restricted estuarine conditions. Therefore, the base of 
these estuarine facies is selected to define the transgressive 
surface (ts) of this sequence (Figs. 5a, 6g).

The upper part of this sequence consists of shale, silt-
stone and sandstone interbeds and is characterised by flat 
and rippled lamination, ripples and lenticular bedding. The 
stacking pattern of facies in this part shows an aggrading to 
a retrograding pattern, which might be the result of a general 

Fig. 5   Sequence-stratigraphical interpretation of the Aheimer For-
mation and photos of the outcrop. a Stratigraphical log of the Wadi 
Aheimer section with sequence stratigraphic interpretation. b The 
first sequence boundary (SB1) between DS NG 1 and 2. Note the 
change from the aggradational stacking pattern of deposits of the 
HST in DS NG 1 to the LST fluvial facies in the basal part of DS 
NG 2. Arrow marks the first fining-upward cycle overlying the SB1. c 
The second sequence boundary (SB2) between the HST of DS NG 2 
and the LST of DS NG 3. Arrow marks the coarsening-upward cycle 
underlying the SB2. Palaeosol characterises the topmost part of the 
HST of DS NG 2. d The coarsening-upward cycles in the HST of 
DS NG 3. Note the omission surface (inset) characterising the third 
sequence boundary (SB3)
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transgressive phase. These TST facies mostly reflect upper 
to middle shoreface depositional settings.

Regionally, the four recorded upper Carboniferous‒lower 
Permian sequences in the studied section are considered as 
a part of the first-order mega-sequence of the Arabian plate 
(AP5) of Sharland et al. (2001). The lower boundary of this 
AP5 sequence is marked by the 'Hercynian unconformity' 
or the 'pre-Unayzah unconformity' (Sharland et al. 2001). 
The recorded sequences can also be correlated with the late 
Carboniferous second-order sequence of the Algerian Saha-
ran Platform (Fekirine and Abdallah 1998), and with the 
upper part of the Carboniferous (NA4) and the lower part of 
the Permian (NA5) second-order sequence of North Africa 
(Carr 2002). The sequence boundary (SB5) between NA4 
and NA5 represents the Carboniferous/Permian Hercynian 
Unconformity (Carr 2002).

Microfacies analysis

Microfacies analysis of the upper Carboniferous–lower Per-
mian Aheimer Formation is based on investigation of rock 
thin-sections, supplemented by field observations of some 
features such as lithology, bedding, sedimentary structures 
and trace and body fossil content. Detailed petrographic 
analysis of the studied upper Palaeozoic succession has 
revealed a predominance of siliciclastic, with few carbon-
ate (mainly dolomite) facies (Table 3). In siliciclastic facies, 
bioclasts are rare or nearly absent. In contrast, bioclasts are 
common in carbonate facies and are represented by crinoids, 
echinoids, brachiopods, bryozoans, benthic foraminifera and 
algae (Table 3; Figs. 7, 8, 9).

Facies analysis reveals 11 (micro-) facies types 
(FT1–FT11). All these facies types (nine siliciclastic and 
two carbonate) are described and interpreted. Based on simi-
lar attributes, the recorded 11 facies types are grouped into 
four different facies associations (FA1–FA4), representing a 
wide spectrum of depositional environments. They include: 
(FA1) intertidal to shallow subtidal facies association, (FA2) 

fluvial channel fill/overbank facies association, (FA3) upper 
shoreface to offshore transition facies association, and (FA4) 
interdistributary bay and/or restricted estuarine facies asso-
ciation (Table 3).

Ichnological analysis

Trace fossil assemblages

Trace fossils occur throughout the studied stratigraphic suc-
cession. They are highly abundant in units I and III (Fig. 3). 
The recorded ichnofossil assemblages are composed of hori-
zontal, vertical, and sub-vertical traces attributable to the 
activity of a variety of crustaceans, polychaetes, bivalves and 
arthropods. At least 26 ichnotaxa, belonging to 23 ichno-
genera, have been identified (Table 4; Figs. 10, 11, 12, 13). 
Stratigraphically, nine ichnotaxa (34.6%) were exclusively 
reported from the upper Carboniferous sediments (i.e., unit 
I), 12 (46.2%) from the lower Permian unit III, two (7.7%) 
from the lower Permian unit III and IV, two (7.7%) from 
unit I and III (i.e., upper Carboniferous‒lower Permian), 
whereas a single ichnotaxon (3.8%) was reported from the 
upper Carboniferous‒lower Permian sediments of unit I, II 
and III. These traces belong to five ethological categories, 
including domichnia, fodinichnia, cubichnia, pascichnia and 
repichnion (Table 4).

The mud-dominated sediments of unit I are highly bur-
rowed. Burrows recorded include vertical and sub-vertical 
dwelling structures of inferred suspension-feeding organisms 
(e.g., Arenicolites isp., Diplocraterion parallelum, Thalas-
sinoides suevicus, Tisoa siphonalis) and deposit feeders such 
as Neoeione moniliformis, Neonereites multiserialis, Pal-
aeophycus isp., Planolites isp., Th. suevicus and Treptichnus 
isp. (Table 4; Figs. 10, 11, 12, 13). Some horizontal traces, 
including Lockeia siliquaria, Lockeia isp. and Ptychoplasma 
cf. excelsum are also recorded (Figs. 10e, h, i, 11a, g). Most 
of the abundant vertical and sub-vertical burrows are long 
and narrow with sharp to irregular walls, passively filled, 
and usually paired (Fig 12g‒i, Fig. 13a‒c). It is remarkable 
that the tops of the abundant U-burrows of Tisoa usually 
start from the upper surfaces of five siltstone layers recog-
nised in unit I (Figs. 12i, 13b). These burrows may penetrate 
strata up to 1.5 m depth and thus they could be considered as 
the longest vertical burrows recorded in this study.

Up-section, a distinctly different ichnocoenosis is 
recorded within the sandstone-dominated intervals of 
unit II. It is represented by the monospecific occurrence 
of a low-density population of Planolites isp. (Fig. 3). 
In contrast to the underlying strata, unit III is dominated 
by a characteristic burrowing structure (Fig. 3). Based 
on the distribution of trace fossils, unit III can be subdi-
vided into two parts. In the lower one (between 90 and 

Fig. 6   Sequence-stratigraphical framework of the section studied. a 
Coarsening-upward cycles in an aggradational stacking pattern of the 
HST in DS NG 1. b Part of the lowstand systems tract of DS NG 2 
with the upper three fining-upward cycles. c The transgressive surface 
(ts), maximum flooding surface (mfs) and transgressive systems tract 
(TST) of DS NG 2. Note the fining-upward cycle characterising the 
TST and the occurrence of a pebbly sandstone layer (inset) coincid-
ing with the recorded ts. d Sandstone, siltstone and shale interbeds 
in the HST of DS NG 2. Note the coarsening-upward cycles charac-
terising this systems tract. e The truncation surface marks the second 
sequence boundary (SB2) between the HST and LST of DS NG 2 and 
3, respectively. f Truncation of DS NG 2 by fluvial sediments of the 
LST of DS NG 3. Note that the transgressive surface (ts) is laterally 
amalgamated with the second sequence boundary (SB2). g Panoramic 
view of DS NG 4 showing the transgressive surface (ts) between the 
LST and TST. Both systems tracts show fining-upward cycles
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132 m; Fig. 3), the ichno-assemblage comprises abun-
dant Arenituba isp., Palaeophycus isp., Planolites isp., 
Schaubcylindrichnus freyi, Skolithos isp., Treptichnus 
isp., Zoophycos isp. and rare Helminthopsis isp. (Figs. 10, 
11, 12, 13). This suite of trace fossils reflects the activ-
ity of organisms mainly with deposit-feeding and grazing 
behaviours (Table 4). In comparison to the lower part, the 
upper part of unit III (between 132 and 172 m; Fig. 3) is 
characterised by an abundant and diverse ichno-assem-
blage produced primarily by deposit-feeding organisms in 
addition to suspension feeders and grazers. It is composed 
of Circulichnis isp., Cruziana isp., Gordia aff. marina, 
Palaeophycus isp., Phycodes aff. palmatus, Protovirgu-
laria isp., Rhizocorallium isp., Rusophycus cf. carbon-
arius, Skolithos linearis, Thalassinoides paradoxicus and 
Zoophycos isp. (Figs. 10, 11, 12, 13). In particular, Zoo-
phycos appears to be the most common traces in this unit 
and occurs repeatedly at six different levels within the 
upper part of unit III (Figs. 3, 13d‒f).

Apparently, the trace fossil assemblage of unit III changes 
laterally changed to a relatively moderate diversity in a sec-
tion about 500 m to the southeast of the measured succes-
sion. It consists of the fodinichnia Palaeophycus isp., Plano-
lites isp., Rhizocorallum isp., Thalassinoides suevicus and 
Zoophycos isp. (Table 4; Figs. 10, 11, 12, 13). On the other 
hand, the sandstone-dominated interval in the topmost part 
of unit IV is characterised by a rare occurrence of trace fos-
sils. They are represented by traces produced primarily by 
deposit-feeding organisms, including Rhizocorallum isp. and 
Zoophycos isp. (Fig. 3).

In general, the aforementioned trace fossils of the 
Aheimer Formation are exceptionally diverse, abundant, and 
well preserved. In addition, due to invertebrate macrofossils, 
namely brachiopods, corals with fragmentary crinoid stems 
are uncommon and poorly-preserved in the Permo‒Carbon-
iferous strata of the Wadi Aheimer type section. Thus, the 
ichnological record of the Aheimer Formation is a signifi-
cant contribution for more complete palaeoecological and 
palaeoenvironmental reconstructions of the study succession 
(see below).

Ichnofabric characterisation

According to trace fossil assemblage, tiering, cross-cutting 
relationships and Ichnofabric Index, the following ichnofab-
rics could be identified (Fig. 14).

Tisoa ichnofabric (Fig. 14a)

This ichnofabric occurs in the upper Carboniferous unit I 
(Fig. 3). It is characterised by dark grey shales, intercalated 
with reddish brown ferruginous hard siltstone, sandstone and 
sandy dolomite interbeds. Five colonization surfaces have Ta
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Fig. 7   Facies types (FT1‒FT3). a‒c FT1, heterolithic shale, siltstone 
and fine-grained sandstone. a Highly ferruginous laminated shale, 
WA42. b Siltstone dominated by silt-sized quartz grains and iron 
oxide cement, WA36. c Siliceous quartz arenitic sandstone, moder-
ately to well-sorted, closely-packed grains, with silica overgrowths, 
WA17. d FT2, crinoidal dolomite showing longitudinal section and 
axial canal of crinoid fragments embedded in coarse crystals of dolo-

mite rhombs with dark inclusions of iron oxide. Note the single crys-
tal extinction for the crinoid fragment, WA44. e, f FT3, fine to pebbly 
cross-bedded sandstone. e Silicious quartz arenite with mono- and 
polycrystalline grains, WA61. f Siliceous quartz arenite showing fine, 
angular to subangular, closely-packed grains with pebbles and iron 
oxide cement, WA66. All photographs cross-polarized light (XPL), 
except for a, which plane polarized light (PPL). Scale bars = 0.5 mm
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Fig. 8   Facies types (FT4‒FT6). a FT4, kaolinitic siltstone dominated 
by silt-sized quartz grains and some iron oxide grains with layers of 
kaolinitic clay, WA69. b, c FT5, fossiliferous dolomitic sandstone/
siltstone with some bioclasts embedded in a very fine to medium-
grained, subangular to subrounded, closely-packed quartz arenite 
cemented by brownish micro- to coarse crystals of dolomite, WA105. 
d‒f FT6, fossiliferous sandy dolomite showing some bioclasts as lon-

gitudinal and axial sections of crinoid fragments with single crystal 
extinction (cr), echinoids (ec), and fusulinid foraminifera (fr) embed-
ded in coarse crystals of dolomite rhombs with dark inclusions of 
iron oxide. Fine to coarse quartz grains are also found, WA78, 78 and 
79, respectively. All photographs XPL, except for a and f, which PPL. 
Scale bars = 0.5 mm



	 Facies (2023) 69:8

1 3

8  Page 18 of 40

been recognized, indicating discontinuity surfaces, from 
which the abundant simple, vertical, U-shaped burrows of 
Tisoa penetrate the underlying strata. It has a sharply defined 
burrow margin and passive fill. The thin beds are exten-
sively burrowed with an ichnofabric index (sensu Droser and 

Bottjer 1986) of 3 to 4 (10‒60%). This ichnofabric includes 
an assemblage composed of diverse ichnofossils. Tisoa 
siphonalis is the most abundant ichnotaxon and accounts 
for most of the bioturbation in this ichnofabric (Fig. 14a). 
Some subordinate ichnotaxa are also recorded. The deepest 
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tier in the sediment was occupied by the ichnogenus Tisoa, 
whereas Arenicolites, Planolites, Palaeophycus, Lockeia and 
Ptychoplasma represent the shallow-tier trace fossils. Tisoa-
dominated ichnofabrics have been recorded in the middle 
Bathonian of the Russian platform (Desai et al. 2021) and 
the upper Jurassic Fensfjord, Sognefjord (Kimmeridgian) 
and Ula formations (Kimmeridgian‒Tithonian) in the Nor-
wegian Sea (Knaust 2019).

Schaubcylindrichnus ichnofabric (Fig. 14b)

This ichnofabric characterises the lower part of unit III 
(lower Permian) (Fig. 3). Its host rocks are mostly sand-
stone, shale, mudstone, fossiliferous dolomitic sandstone and 
fossiliferous sandy dolomite interbeds. This ichnofabric is 
characterised by a sparse to low bioturbation intensity (ich-
nofabric index ranges from 2 to 3). Schaubcylindrichnus is 
the most abundant ichnofossil with subordinate Arenituba, 
Palaeophycus, Planolites, Skolithos, Zoophycos and rare 
Helminthopsis (Fig. 14b). Most of these ichnofossils repre-
sent a shallow-tier activity (tiers 1–3; sensu Hasiotis 2012). 
No colonization surfaces have been recognized. Schaubcy-
lindrichnus-dominated ichnofabrics have been recorded in 
the lower‒upper Jurassic of Norway (Knaust 2017), the Pal-
aeogene Grumantbyen Formation of Norway (Øygard 2016) 
and the Miocene Taliao Formation of north-eastern Taiwan 
(Löwemark and Hong 2006).

Zoophycos ichnofabric (Fig. 14c)

It characterises the upper part of unit III of the Aheimer For-
mation. This ichnofabric is associated with sandstone, shale, 
mudstone, fossiliferous dolomitic sandstone and fossilifer-
ous sandy dolomite interbeds (Fig. 3). Bioturbation inten-
sity is moderate (ichnofabric index ranges from 3 to 4) and 
diversity of the trace fossil association is moderate to high. 
No colonization surfaces have been recognized. Zoophycos 
appears to be the most common trace in this ichnofabric, 
associated with several other ichnotaxa (Fig. 14c). Generally, 

the ichnofossils in this ichnofabric, with higher abundance 
and moderate diversity, are mainly composed of trails on the 
bedding plane and a few fodinichnia near the bedding plane, 
locally crosscutting each other. Most trace fossils (about 
70%) such as Phycodes, Cruziana, Rusophycus, Planolites 
and Palaeophycus occupy the shallower horizons (tiers 1–3). 
However, Zoophycos represents the shallow-middle tier of 
this ichnofabric. In addition, very shallow tiers to superfi-
cial traces (e.g., Gordia and Circulichnis) are common and 
produced almost no disturbance of the primary fabric. The 
Zoophycos ichnofabrics are a common component of the 
distal expression of the Cruziana ichnofacies in many Pal-
aeozoic successions, e.g., the Chefar El Ahmar Formation 
(Devonian) of Algeria (Bouchemla et al. 2021), the middle 
Permian of Oman (Knaust 2009), the lower Permian Taiyuan 
Formation of central China (Hu and Qi 2000) and the Hong-
guleleng Formation (Devonian–Carboniferous transition) of 
western Junggar, NW China (Fan and Gong 2016).

Discussion

The present study differs from others in integrating, for the 
first time, different stratigraphical, sedimentological and 
ichnological information in order to arrive at an accurate 
insight into the palaeoenvironmental characterisation of the 
Aheimer Formation. The additional granularity seems to be 
as a result of the inclusion of ichnological data (Table 4), 
confirming the finer resolution of the present study.

Palaeoenvironments and palaeoecology

Outcrops in the NGP, including the type section studied, are 
evidently of younger Carboniferous (Westphalian‒Stepha-
nian) and Early Permian ages (Tables 1, 2). These siliciclas-
tic-dominated deposits reflect a marginal depositional site 
(Tables 3, 4; Fig. 15). The close proximity of the study area 
to the shoreline (Fig. 1d) is inferred due to the indications 
of a strong siliciclastic input (Fig. 3). Lithofacies analyses 
have revealed that this formation was laid down across a 
relatively wide spectrum of depositional environments, 
including shallow subtidal, prograding shoreline and fluvial 
conditions (Table 3), reflecting different stacking patterns of 
facies in the available accommodation space (Fig. 5a). As 
mentioned above, the studied succession is subdivided into 
four 3rd-order sequences. The most important depositional 
features and environmental parameters governing the distri-
bution of trace fossils, macrofauna and flora are discussed 
below.

Fig. 9   Facies types (FT7‒FT9, FT11). a FT7, hummocky cross-
stratified sandstone showing fine-grained, subangular to subrounded, 
well-sorted, closely-packed quartz arenite cemented by clay and iron 
oxide, WA86. b, c FT8, heterolithic cross-bedded sandstone/mud-
stone. b Fine- to medium-grained, subangular to subrounded, loosely-
packed quartz arenite with patches of clay, WA84. c Laminated mud-
stone with silt-sized quartz grains embedded in clay matrix, WA81. 
d, e FT9, ripple laminated sandstone/siltstone. d Very fine- to coarse-
grained, subrounded, mono and polycrystalline, siliceous quartz 
arenite. Quartz grains show corrosion, WA113. e Laminated siltstone 
dominated by silt-sized quartz grains and clay matrix with iron oxide 
cement, WA88. f FT11, organic-rich mudstone showing dark appear-
ance of the clay with organic matter, WA118. All photographs PPL, 
except for c‒e, which XPL. Scale bars = 0.5 mm, except for a and f, 
for which it represents 0.2 mm
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Depositional sequence NG 1 (upper carboniferous)

The HST deposits of this sequence are represented by a 

single facies association (FA1), including two facies types 
(FT1 and FT2) (Table 3; Figs. 3, 5a). These fine-grained 
siliciclastic and dolomite facies types show a marine 

Fig. 10   Trace fossils from the upper Carboniferous‒lower Per-
mian Aheimer Formation. a Siltstone bedding plane with few cross-
sections (arrows) of the sand-filled Arenicolites isp., unit I. b Sand-
stone bedding plane with burrows of Arenituba isp. (yellow arrows) 
co-occur with Treptichnus isp. (black arrow), unit III. c Sandy dolo-
mite bedding plane with Circulichnis isp., unit III. d Dolomitic fer-
ruginous sandstone with Cruziana isp. (yellow arrows) co-occur with 
Phycodes aff. palmatus (black arrow) oriented parallel to bedding, 
unit III. e Dolomitic sandstone with traces of Diplocraterion paral-

lelum (black arrows) co-occur with Lockeia isp. (yellow arrows) 
and Planolites isp. (red arrow), oriented parallel to bedding, unit I. 
f Sandy dolomite bedding plane with numerous Gordia aff. marina 
(arrows), unit III. g Sandstone bedding plane with traces of Hel-
minthopsis isp., unit III. h Ferruginous siltstone with Lockeia sili-
quaria bulges (arrows) oriented parallel to bedding, unit I. i Bedding 
plane of ferruginous siltstone with an ovoid-shaped mound of Lock-
eia isp. (arrow), unit I. Scale bars = 2.0  cm, except for h and i, for 
which it represents 1.0 cm
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Fig. 11   Trace fossils from the upper Carboniferous‒lower Permian 
Aheimer Formation. a Fine-grained sandstone with traces of Lockeia 
isp. (black arrows) co-occur with Palaeophycus isp. (yellow arrows) 
mostly oriented parallel to bedding, unit I. b Siltstone with a beaded 
string of Neoeione moniliformis, unit I. c Bedding plane of ferrugi-
nous siltstone with numerous interconnected pustules of Neonereites 
multiseriali co-occur with Diplocraterion parallelum (arrows), unit I. 
d Fine-grained sandstone bedding plane with abundant tubes of Pal-
aeophycus isp., unit III. e Ferruginous sandstone bedding plane with 
numerous passive sand-filled traces of Planolites isp., unit I. f Dolo-

mitic sandstone bedding plane with high density traces of Protovirgu-
laria isp. (arrows), unit III. g Ferruginous siltstone with few ridges of 
Ptychoplasma cf. excelsum (arrows) oriented parallel to bedding, unit 
I. h Dolomitic ferruginous sandstone bedding plane with Rhizocor-
allium isp. (arrow), unit III. i Dolomitic ferruginous sandstone bed-
ding plane with few traces of Rusophycus cf. carbonarius (arrows), 
unit III. j Bedding plane of sandstone with horizontal, vertical, 
and sub-vertical tubes of Schaubcylindrichnus freyi, unit III. Scale 
bars = 1.0 cm, except for b‒d and f, for which it represents 2.0 cm
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environment, ranging from intertidal to shallow subtidal set-
tings (Fig. 15). The tidal effect throughout deposition is sup-
ported by the occurrence of highly ferruginous sandstone/

shale couplets, and the existence of wave-ripples, cross-lam-
ination, and mudstone drapes in sandstone (e.g., Buatois and 
Mángano 2003). The pattern of facies repetition with nearly 

Fig. 12   Trace fossils from the upper Carboniferous‒lower Permian 
Aheimer Formation. a‒c Sandy dolomite with numerous burrows of 
Skolithos linearis (a, b) and Skolithos isp. (c) oriented perpendicular 
to bedding, unit III. d Cross-section view of sandstone with a com-
plex burrowing system of Thalassinoides paradoxicus, unit III. e, f 
Bedding plane of sandstone with Th. suevicus burrows, unit III and 

I, respectively. g‒i Shale and siltstone with sandstone interbeds pen-
etrated by elongate paired burrows of Tisoa siphonalis, unit I. Note 
the moderately preserved horizontal lamination in passive sand fill. 
Paired burrows descend mainly from the upper surface of siltstone 
layers (arrows in i). Scale bars = 2.0 cm
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equal thickness of sets of strata (Figs. 4b, 5a, b, 6a) confirms 
an aggrading shelf with equal rates of accommodation and 
sedimentation (Van Wagoner et al. 1990). In addition, the 

cyclical thickening and thinning may reflect differences in 
tidal current energy during neap-spring tidal fluctuations 
(Kvale et al. 1989; Kvale and Archer 1990).

Fig. 13   Trace fossils from the upper Carboniferous‒lower Permian 
Aheimer Formation. a, b Shale and siltstone with sandstone interbeds 
penetrated by elongate paired Tisoa siphonalis burrows with slight 
helical course and passive sand fill. Paired burrows descend mainly 

from the upper surface of siltstone layers (arrows in b), unit I. c Shale 
penetrated by passive sand-filled, paired burrow parts of Tisoa sipho-
nalis, unit I. d‒f. Bedding plane of dolomitic ferruginous sandstone 
with burrows of Zoophycos isp., unit III. Scale bars = 2.0 cm
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The occurrence of organic-rich fissile shale may suggest 
a partially restricted shallow subtidal marine environment 
with a low to moderate rate of sedimentation (e.g., Pem-
berton et al. 1992). In addition, the recorded small-scale 
oscillation ripples and combined flow ripples also indicate 
periods of standing water and wave modification. This 
restricted condition helped in reducing the wave action (i.e., 
low to moderate water energy), and consequently, permits 
accumulation of organic material in bottom sediments. In 
these restricted environments, which are characterised by 
the increase of nutrient supply in the water column and fine-
grained sediment, the seafloor and bottom sediments may 
become oxygen-deficient (i.e., dysoxic conditions; cf. Jarvis 
et al. 1988; Koutsoukos et al. 1990; Fürsich et al. 2012). 
These conditions may be also documented by the low to 
moderate species diversity of macrofossils (mainly brachio-
pods and crinoids) and microfossils (mainly agglutinated 
and microgranular benthic foraminifera). In addition, the 

near absence of infaunal elements may also reflect these dys-
oxic conditions (cf. Oschmann 1993; Fürsich et al. 2012). In 
these stressed conditions, the Tisoa trace maker may burrow 
deeply into anoxic sediments for deriving energy via chem-
osymbiosis and consequently produce extraordinary depths 
(Knaust 2019; present study).

As was mentioned, sediments of DS NG 1 are inten-
sively burrowed (Table 4; Fig. 3). The abundant traces of 
suspension-feeding organisms support at least moderate 
water energy that keeps organic nutrients in suspension 
(i.e., a low to moderate rate of sedimentation). At the same 
time, this level of water energy permits the accumulation 
of food particles for different deposit-feeding trace mak-
ers of several ichnotaxa. The occurrence of large-diameter 
Thalassinoides points to a nutrient-rich and well-oxygenated 
water column along with low- to moderate-energy condi-
tions (e.g., Abdel-Fattah et al. 2016; El-Sabbagh et al. 2017; 
Vinn et al. 2020). However, shrimp-produced Thalassinoides 

Fig. 14   Schematic diagrams (not to scale) of the described ichnofab-
rics in the Permo‒Carboniferous Aheimer Formation, western side of 
the Gulf of Suez, Egypt. a Tisoa ichnofabric. b Schaubcylindrichnus 
ichnofabric. c Zoophycos ichnofabric. Abbreviation: Ar: Arenico-
lites; At: Arenituba; Ci: Circulichnis; Cr: Cruziana; Di: Diplocrate-

rion; Go: Gordia; He: Helminthopsis; Lo: Lockeia; Neo: Neoeione; 
Ne: Neonereites; Pa: Palaeophycus; Ph: Phycodes; Pl: Planolites; Pr: 
Protovirgularia; Pt: Ptychoplasma; Rh: Rhizocorallium; Ru: Ruso-
phycus; Sch: Schaubcylindrichnus; Sk: Skolithos; Th: Thalassinoides; 
Tr: Treptichnus; Ti: Tisoa; Zo: Zoophycos; DS: Discontinuity surface
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had a broader range of salinity tolerance, ranging well into 
environments of low salinity (e.g., Swinbanks and Luter-
nauer 1987). Horizontal burrows of Treptichnus ichnotaxon 
suggest low-energy conditions on the marine shelf (Buatois 
et al. 2013). The latter is also confirmed by the absence of 
the more basinal marine expressions (e.g., Rhizocorallium 
and Zoophycos) and/or high-energy proximal suites (e.g., 
Skolithos). Diplocraterion ichnospecies have been found in 
tidal flats and estuaries (e.g., Buatois and Mángano 2011; 
Gingras et al. 2012a). In these aspects, their producer is 
considered as an opportunistic species (e.g., r-strategist) 
that thrived in stressful brackish-water conditions (Knaust 
2017). The latter is also confirmed by the occurrence of 
some agglutinated genera as Ammobaculites, Trochammina 
and Reophax (Kureshy 1966; Armstrong and Brasier 2005).

Based on the works of Seilacher (1964, 1967a, b) and 
Frey and Seilacher (1980), all of the recorded ichnogenera 
correspond to a firmground suite of the Glossifungites Ich-
nofacies, representing colonization of exhumed firm but 
unlithified substrates, and greatly resembling the interme-
diate energy firmground suites of MacEachern et al. (2007b). 
Although suites attributable to the Glossifungites Ichnofa-
cies occur in a wide range of environments (Hayward 1976; 
Frey and Seilacher 1980; Savrda 1991; MacEachern et al. 
1992a, b; Raychaudhuri et al. 1992; MacEachern and Burton 
2000; Gingras et al. 2002a, b; Bann et al. 2004; Dasgupta 
and Buatois 2012), the trace fossil suite in this ichnofacies, 
dominated with long, narrow vertical tubes, and usually 
paired, is common in nearshore environments, particularly 
in intertidal sediments (e.g., Rhoads 1967; Zonneveld et al. 
2001). These findings are consistent with our results. The 
trace makers require the substrate to be exhumed by mechan-
ical removal of loose unconsolidated overburden in order 
to reach the firm substrate (e.g., MacEachern et al. 1992a, 
b; Buatois and Mángano 2011). Consequently, this leads to 
the development of a discontinuity surface, i.e., short-lived 
omission (e.g., MacEachern et al. 1992a; Pemberton et al. 
2001). In the study area, a total of five autogenic Glossi-
fungites Ichnofacies-demarcated siltstone surfaces (sensu 
Abdel-Fattah et al. 2016) were recognized in sediments of 
DS NG 1. After subaerial exhumation and/or submarine 
erosion, the colonization stage of the discontinuity surface 
by firmground trace makers is performed during periods 
of marine conditions (i.e., a hiatus in deposition). Subse-
quently, passive filling of the burrows is completed during an 
ensuing depositional episodes and burial of the firmground 
suite.

Depositional sequence NG 2 (lower Permian)

As was mentioned, this sequence consists of three systems 
tracts: LST, TST and HST, comprising the entire unit II 
and the lower part of unit III (Fig. 5a). The LST sediments 

are represented by a single facies association (FA2) that 
includes two facies types (FT3 and FT4) (Table 3; Fig. 3). 
The presence of trough and planar cross-bedding, fining-
upward cycles and an erosive lower boundary supports these 
stacked deposits as low-sinuosity braided channels (Postma 
1990; Galloway and Hobday 1996; Miall 1996). Pebbly and 
coarse-grained sandstones are interpreted as channel fills 
deposited by tractive currents, whereas the fine-grained 
sandstone and siltstone are deposited during the stage of 
falling flow velocity of the flood on the channel banks (Dal-
rymple et al. 1990; Miall 1996). In addition, kaolinitic silt-
stones could be related to changes in climate to a wet period 
and retrogradational time (Kämpf and Schwertmann 1983).

The large and rounded exotic quartz pebbles and gravels 
characterise the lower part of the LST of this sequence seem 
to be derived from quartz veins occurring within the Pre-
cambrian basement and transported northward for a long dis-
tance. It is worth mentioning that, within the Palaeozoic suc-
cession of the northern part of the Eastern Desert of Egypt, 
similar large pebbles are only recorded in the basal part of 
the Cambrian sandstone of the Araba Formation at Somr El 
Qaa (around 28°13'N and 32° 22'E) (Klitzsch et al. 1990). 
The latest Carboniferous and earliest Permian tectonic insta-
bility played an important role in the influx of these coarse 
clastics with high rates of deposition (e.g., Klitzsch 1990; 
Klitzsch et al. 1990).

Within these LST sediments, pith casts of Calamites are 
recorded (Fig. 4d). Calamites grew to 20 m tall, standing 
mostly along the sandy banks of rivers (Rafferty 2011). In 
addition, a distinctly different ichnocoenosis is represented 
within this unit by the monospecific occurrence of a small 
population of Planolites isp. (Fig. 3), which, in this context, 
indicates a stressed, opportunistic colony (Ekdale 1985; 
Bromley 1996). Freshwater discharge was conducive to limit 
biogenic activity, resulting in reduced trace fossil diversity 
and sparse burrowing (e.g., Bhattacharya and MacEachern 
2009). In addition, the absence of marine micro- and macro- 
fossils in sediments of this LST confirms these environmen-
tal conditions (Fig. 15).

In general, sediments of both TST and HST of DS NG 2 
consist of sandstone, siltstone, mudstone and dolomite inter-
beds, representing mainly the third facies association (FA3) 
and including five facies types (FT5‒FT9; Figs. 3, 5a). Fur-
thermore, these sediments are characterised by abundant 
sedimentary structures, highly burrowed and fossiliferous 
with micro- and macro- fossils (Tables 3, 4; Fig. 3). These 
results confirm depositional palaeoenvironments ranging 
from upper shoreface to the offshore transition (Fig. 15). 
Sandstones with large-scale tabular-planar cross-bedding, 
trough cross-bedding and symmetrical wave ripples can be 
deposited throughout the upper shoreface (Clifton 2006). 
Sandstones and siltstones showing large-scale hummocky 
cross stratification and oscillation ripples mark the lower to 
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middle shoreface environment (Hunter and Clifton 1982; 
Clifton 2006). The amalgamation of the oscillatory motion 
from waves and storm-generated currents are assumed to 
produce hummocky cross-stratification (Harms et al. 1982; 
Swift et al.1983; Duke et al. 1991). Burrowed and fossilifer-
ous dolomite with crinoids, brachiopods, bivalves, foraminif-
era and bryozoan skeletal fragments suggest normal-marine 
environments ranging from lower shoreface to offshore tran-
sition (Table 3). The latter is also confirmed by the lower 
level of burrowing and the paucity of physical sedimentary 
structures in the mudstone sediments, documenting deposi-
tion below fair-weather wave-base in a quiet-water environ-
ment (i.e., offshore transition) (Leckie and Walker 1982; 
Rosenthal and Walker 1987; MacEachern and Pemberton 
1992).

Sediments of the upper part of the HST of this depo-
sitional sequence are burrowed with a characteristic suite 
of trace fossils (Figs. 3, 5a, 15), confirming the activity of 
varied producers that mainly performed different trophic 
behaviours. This part (between 110 and 118 m; Figs. 3, 
5a) contains abundant Palaeophycus isp., Planolites isp., 
Thalassinoides paradoxicus, Skolithos isp. and Zoophycos 
isp., reflecting the activity of deposit (fodinichnia) and sus-
pension (domichnia) feeders (Table 4). Although Zoophycos 
is a common ichnotaxon in deep marine waters of the Meso-
zoic and later (Ekdale and Berger 1978; Bottjer et al. 1987; 
Vinn et al. 2020), Palaeozoic Zoophycos occurs in nearshore 
deposits (e.g., Osgood and Szmuc 1972; Yurewicz 1977; 
Vinn and Toom 2015; Bouchemla et al. 2021). Skolithos 
is typically marine in origin (e.g., Trewin and McNamara 
1995). It is a common indicator of relatively high energy, 
shallow-water, nearshore to marginal-marine environments 
(e.g., Desjardins et al. 2010; Vinn and Wilson 2013; Knaust 
2017). Palaeophycus occurs in various palaeoenvironmental 
marine settings (Frey and Pemberton 1991; Löwemark and 
Nara 2010; Toom et al. 2019), including shoreface and off-
shore deposits (Knaust 2017). Consequently, this trace fossil 
assemblage occurring in the upper part of the HST of DS 
NG 2 is interpreted as the shallow-marine (middle to lower 
shoreface) proximal Cruziana Ichnofacies (e.g., Seilacher 
1967a, b).

Depositional sequence NG 3 (lower Permian)

Similar to the underlying sequence, DS NG 3 consists of 
three systems tracts: LST, TST and HST, comprising the 
upper part of unit III (Fig. 15). The LST sediments are 
devoid of any marine micro- or macro- fossils. However, 
plant remains and rare traces of Helminthopsis isp. have 

been found (Fig. 3). The recorded Ginkgo-like fossil leaves 
(Fig. 4f) represent a terrestrial plant, which prefers a warm, 
humid, open-canopy and a well-drained environment (Lin 
et al. 2022). Helminthopsis is a facies-crossing ichnotaxon, 
common in both marine and non-marine settings (e.g., Pem-
berton et al. 2001). Their producer, probably polychaete 
annelids, occurs in brackish to fully marine environments 
(Bromley 1996; Buatois et al. 1998).

Sediments of both TST and HST of DS NG 3 represent 
the second and the third facies associations (FA2 and FA3, 
respectively), including seven facies types (FT3‒FT9; 
Figs. 3, 5a). In addition, these sediments are characterised 
by moderately abundant sedimentary structures, highly bur-
rowed and highly fossiliferous with macrofossils (Tables 3, 
4; Fig. 3), documenting depositional environments ranging 
from upper shoreface to offshore transition (Fig. 15).

The heterolithic nature of the facies indicates sedimenta-
tion in alternating suspension fallout and bed-loads within 
a low-energy setting below wave base (i.e., deposition in the 
lower shoreface environment) (Hunter et al. 1979; Leckie 
and Walker 1982; MacEachern and Pemberton 1992). 
Sediments of the TST, in particular, are intensively bur-
rowed with a high ichnodiversity (Figs. 3, 5a, 15). These 
ichnotaxa have been produced primarily by deposit-feeding 
organisms in addition to suspension feeders and grazers 
(Table 4). Cruziana co-occurs with Rusophycus and they are 
mainly related to shallow-water environments (e.g., Fillion 
and Pickerill 1990; Seilacher 2007; Vinn 2014; Vinn and 
Toom 2016). Phycodes likewise is commonly recorded in 
shallow-marine environments (Han and Pickerill 1994). Pal-
aeophycus is regarded as a eurybathic trace fossil recorded 
in diverse environments (e.g., Pemberton et al. 2001). Circu-
lichnis is known in marine and non-marine sediments (Fil-
lion and Pickerill 1984; Uchman and Rattazzi 2019). Gor-
dia is a facies-crossing form that occurs in both marine and 
non-marine settings (Gaigalas and Uchman 2004), including 
shallow and deep-water marine deposits (Miller and Knox 
1985). Schaubcylindrichnus occurs in a wide range of envi-
ronments, particularly in lower shoreface deposits (Frey and 
Howard 1985, 1990). Rhizocorallium occurs in nearshore, 
shelf and deep-marine sediments (e.g., Mángano et al. 2002; 
Knaust 2017). It represents a common constituent of trans-
gressive systems tracts (e.g., Knaust 1998; MacEachern 
et al. 2012).

In general, the presence of a diversified trace fossil 
assemblage, produced primarily by deposit feeders in low- 
to moderate-energy conditions along with a moderate rate 
of sedimentation in nutrient-rich sediments, as well as the 
water column, suggests a typical proximal-archetypal Cru-
ziana Ichnofacies (e.g., MacEachern et al. 1999, 2007a). 
In general, the presence of fully marine trace fossils (e.g., 
Cruziana, Rausophycus, Rhizocorallium) with almost homo-
geneous distribution suggests relatively stable and low-stress 

Fig. 15   Lithostratigraphy, interpreted depositional environments, 
sequence stratigraphy and concluding remarks of the upper Carbonif-
erous-lower Permian Aheimer Formation in the study area

◂
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conditions (Gingras et al. 2012b; MacEachern et al. 2010). 
However, the occurrence of abundant Zoophycos in about six 
levels within the upper part of the TST of DS NG 3 (Figs. 3, 
15) may indicate an episodic depletion of oxygen on the 
seafloor, i.e., dysoxic to anoxic seafloor conditions. Ekdale 
and Mason (1988) mentioned that fodinichnia-dominated 
associations (e.g., Zoophycos) occur where bottom water is 
oxic to dysoxic and the interstitial water is anoxic. In gen-
eral, sediments accumulated in oxygen-poor depositional 
environments commonly contain trace fossils that have been 
produced by low-oxygen-tolerant deposit-feeding organisms 
(e.g., Bromley and Ekdale 1984; Savrda and Bottjer 1986). 
Furthermore, the oxygen-controlled trace-fossil model of 
Ekdale and Mason (1988) suggests that the decrease of oxy-
gen concentration of the interstitial water parallels a transi-
tion from trace-fossil associations dominated by dwelling 
traces of suspension feeders (i.e., domichnia) to trace-fossil 
associations dominated by deposit-feeding structures (i.e., 
fodinichnia). These observations are in accordance with our 
results.

Depositional sequence NG 4 (lower Permian)

This sequence consists of several facies types, represent-
ing two systems tracts: LST and TST (Figs. 3, 5, 15). This 
greatly varied microfacies and abundant sedimentary struc-
tures document different depositional settings, ranging from 
fluvial (FT3) in the entire of LST, restricted estuary (FT11) 
in the basal part of the TST, and shoreface (FT5, FT8, FT9) 
in the upper part of the TST, and confirming different stack-
ing pattern of facies in the available accommodation space 
(Fig. 15).

The LST starts with fluvial deposition represented by 
planar to trough cross-bedded sandstones, and confirming 
that braided streams dominated the area. Deposition of clean 
sand can be interpreted as stream bedload continuously cut-
ting their banks, leaving no chance for floodplain fines to be 
preserved (e.g., Miall 1985, 1993; Galloway and Hobday 
1996). The highest degree of channel amalgamation is rec-
ognized at the base of fluvial depositional sequences and is 
caused by a combination of low rates of floodplain aggrada-
tion, high rates of lateral channel migration, and high rates 
of avulsion (Catuneanu et al. 2011; Catuneanu 2017, 2019).

In the basal part of the TST, the organic-rich mudstones 
are devoid of any marine micro- or macro- fossils. The over-
lying very thin interbeds of red siltstone and fine-grained 
sandstone may indicate the presence of subaerial exposures 
and oxidation (Miall 1985, 1996; Retallack 2001). Conse-
quently, these facies may be deposited in restricted estuar-
ies with alternating low- and moderate-energy conditions 
(Prothero and Schwab 1996). On the other hand, sandstone 
and siltstone sediments in the upper part of the TST are 
characterised by flat and ripple lamination, wave-rippled thin 

beds and low-angle cross lamination with rare brachiopod 
imprints and other marine ichnofauna, documenting deposi-
tion in the upper to middle shoreface environment (Fig. 15) 
(Hunter and Clifton 1982; Clifton 2006).

Regional correlations

In Egypt, similar depositional settings have been recorded 
at several outcrops on the western side of the Gulf of Suez 
(Tables 1, 2). In the subsurface of the Gulf of Suez region, 
the Aheimer Formation is correlated with the upper part 
of the Nubia “B member” of the oil companies' classifica-
tion (e.g., Hermina et al. 1983). In addition, time-equiva-
lent rocks are likewise known from the subsurface of the 
northern part of the Western Desert (the Safi Formation; 
e.g., Keeley 1989). On the eastern side of the Gulf of Suez, 
in contrast, the absence of the upper Carboniferous‒lower 
Permian Aheimer Formation reflects local uplift caused 
by tectonic deformation in conjunction with the Hercyn-
ian Orogeny (Kora 1984, 1998; Klitzsch 1990; Klitzsch 
et al. 1990; Issawi et al. 1999; Guiraud et al. 2001, 2005). 
The Permo‒Carboniferous sediments as well as the older 
deposits were consequently removed by erosion. In general, 
all these upper Carboniferous‒lower Permian successions 
may represent the last major invasion of the Palaeo-Tethys 
Ocean into the northern part of Egypt during Palaeozoic 
times (Bandel and Kuss 1987; Keeley 1989; Klitzsch 1990; 
Klitzsch et al. 1990).

On the other hand, the studied upper Carboniferous‒
lower Permian Aheimer Formation can be regionally cor-
related with the Assedjefar, Dembaba and Tiguenrourine 
formations of western Libya (Bellini and Massa 1980). 
The upper part of the Aheimer Formation can be correlated 
with the lower Permian Saad Formation of southern Israel 
(Zaslavskaya et at. 1995). In Syria, equivalent Permo-Car-
boniferous sediments have been described as the Heil For-
mation (Al-Youssef and Ayed 1992). Equivalent deposits 
were also recorded in central Saudi Arabia (the Unayzah 
Formation; Al-Laboun 1987) and in Oman (the Al Khlata 
and Gharif formations; Levell et al. 1988).

Carboniferous–Permian glaciations

The late Carboniferous‒ early Permian glaciations in Gond-
wana were diachronous and affected North Africa and the 
Middle East region (e.g., Le Heron et al. 2009 and references 
therein). With the exception of some examples of glacially-
related deposits in the Gilf El Kebir region of SW Egypt, 
i.e., the eastern Sahara (Klitzsch 1983, 1990), all other upper 
Carboniferous‒Permian glacial deposits are only well estab-
lished in Oman, Yemen and Saudi Arabia (Braakman et al. 
1982; Al Husseini 2004; Le Heron et al. 2009). In these 
regions, ice sheets and glaciers were mainly concentrated 
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in tectonically uplifted areas at active plate boundaries, i.e., 
Hercynian uplift (Eyles 1993; Al Husseini 2004).

In the Gilf El Kebir region of SW Egypt, and adjacent to 
the Libyan border, Klitzsch (1983) described poorly sorted 
sediments unconformably overlying a Devonian–Stephanian 
fluvio-deltaic succession. This unit, the Wadi Malik Forma-
tion (sensu Klitzsch 1990), is overlain by Jurassic lacustrine 
deposits. Le Heron et al. (2009, p. 68) stated that “a glacial 
origin for these poorly sorted deposits remains plausible but 
has not been subsequently substantiated”. Consequently, fur-
ther fieldwork is required to confirm the glacial origin for 
these sediments.

No previous studies have identified any evidence for 
the late Carboniferous‒ early Permian glaciations in the 
northern parts of Egypt. However, El-Noamani and Tahoun 
(2019) reported that the palaeofloral communities recovered 
from the subsurface upper Palaeozoic Safi Formation in the 
west Beni Suef Basin of the northern Western Desert of 
Egypt may confirm a significant effect of a glacial climate. 
They identified two palaeofloral communities. The first one 
is represented by a cold climate low- and wet- land fern com-
munity. The second palaeocommunity includes an upland 
palaeoflora that is mainly developed under the influence of 
lacustrine flooding resulting from minor deglaciation events.

In fact, the reliability of the influence of the late Carbon-
iferous‒Permian glacial-interglacial cycles on the studied 
sedimentary succession in Wadi Aheimer requires further 
investigation. However, the occurrence of lithologically 
repetitive successions containing organic-rich fissile shales 
in the HST of the DS NG 1 (Figs. 3, 4b, 5a, b, 6a) may be 
attributed to the effect of the late Carboniferous intergla-
cial cycles, representing shallow glaciomarine organic-rich 
sediments accumulating in topographically depressed areas 
during transgression (sensu Lüning et al. 2000). In addi-
tion, in the Mid-Continent region of North America during 
the Permo‒Carboniferous period, the growth and decay of 
Gondwanan ice sheets caused large eustatic sea-level fluc-
tuations, resulting in deposition of lithologically repetitive 
successions. These cyclical sequences include thin core 
shale deposits, which are enriched in organic matter, trace 
metals and authigenic phosphate, confirming deposition 
during glacio-eustatic highstands that resulted in oxygen-
deficient bottom waters in this mid-continental sea in that 
region (Heckel 1986, 1991; Algeo et al. 2004). Alternatively, 
these black shales in the HST of the studied section may 
be interpreted as sediments deposited along the maximum 
flooding surface (MFS) (cf. Armstrong et al. 2005).

In the studied lower Permian succession, as mentioned 
above, sediments of the LST of the DS NG 2, 3 and 4 
(Figs. 3, 5) represent sediments of several braided streams, 
suggesting that these deposits may have accumulated in 
a glaciofluvial setting (see Le Heron et al. 2009). In this 
glacio-terrestrial setting, deposition occurs on a plain that 

is characterised by interconnected incisions and braided 
systems (Duller et al. 2008; Le Heron et al. 2009). These 
observations are in accordance with our results.

Conclusions

The type section of the Permo‒Carboniferous Aheimer For-
mation in the eastern foot slopes of the Northern Galala Pla-
teau, west of the Gulf of Suez, has been studied by integrat-
ing stratigraphical, sedimentological and trace fossil data. 
Three Permian sequence boundaries (SB1‒3) bound four 
3rd-order depositional sequences, including the upper Car-
boniferous DS NG 1, and the lower Permian DS NG 2‒4. 
Litho- and bio- facies development shows a strong relation-
ship to the interpreted sequence architecture. Four different 
facies associations, comprising 11 facies types, represent a 
wide spectrum of depositional palaeoenvironments ranging 
from fluvial, estuarine, intertidal, shallow subtidal, shoreface 
to offshore transitional settings.

The abundant and diverse late Carboniferous‒early Per-
mian ichno-assemblages are composed of horizontal, ver-
tical and sub-vertical traces, confirming the activity of a 
variety of crustaceans, polychaetes, bivalves and arthropods. 
At least 26 ichnotaxa have been identified, representing 
suites of the Glossifungites, proximal Cruziana and prox-
imal-archetypal Cruziana ichnofacies. Ichnofabric analysis 
revealed three distinct types, including Tisoa, Schaubcylin-
drichnus and Zoophycos ichnofabrics.

The presence of fully marine trace and body fossils with 
almost homogeneous distribution supports relatively stable 
and low-stress conditions. In contrast, the trophic structure 
of some other assemblages reflects the influence of particular 
environmental parameters, including substrate consistency, 
bathymetry, water energy, productivity, rate of sedimenta-
tion, salinity and oxygen availability. The integrated results 
indicate that the sequences were formed during an interval 
dominated by different perturbations that resulted in a wide 
spectrum of depositional features. Moreover, evidence for 
the Carboniferous–Permian glaciation is tentatively estab-
lished in North Egypt but requires further investigation.
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