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environment. Already foundering carbonate platforms due 
to environmental deterioration were left vulnerable to sub-
mergence and eventually succumbed to drowning. Low 
rates of carbonate production were outpaced by the rate of 
relative sea-level rise caused by high-amplitude oscillations 
in global glacio-eustatic sea-level change and/or regional 
tectonic subsidence. The duration of the drowning event 
across the entire Bird’s Head region is interpreted to have 
lasted a duration of approximately 9.5 My, between 18.0 
and 8.58 Ma. This has implications when interpreting tim-
ings of sedimentary basin fill across western New Guinea 
and in other basins where carbonate platform drowning is 
recorded.

Keywords Platform drowning · Drowning unconformity · 
Biostratigraphy · Carbonates · Foraminifera · Indonesia

Introduction

The concept of drowning unconformities is well estab-
lished and there are many examples of carbonate platform 
drowning strata documented in the rock record world-
wide (e.g., Schlager 1981, 1989; Hallock and Schlager 
1986; Longman et al. 1987; Simone and Carannante 1988; 
Erlich et al. 1990, 1993; Föllmi et al. 1994; Drzewiecki 
and Simo 1997; Weissert et al. 1998; Blomeier and Rei-
jmer 1999; Wortmann and Weissert 2000; Wissler et al. 
2003; Ruiz-Ortiz et al. 2004; Mutti et al. 2005; Föllmi 
and Gainon 2008; Sattler et al. 2009; Najarro et al. 2011; 
Marino and Santantonio 2010; Brandano et  al. 2016; 
Sulli and Interbartolo 2016). Carbonate platforms are 
defined as flat-topped accumulations of carbonate sedi-
ments developed at or very near sea level (Hallock and 
Schlager 1986). These platforms are complex natural 

Abstract Drowning unconformities and their related 
strata are important records of key tectonic and environ-
mental events throughout Earth’s history. In the eastern 
Bird’s Head region of West Papua, Indonesia, Middle Mio-
cene strata record a drowning unconformity present over 
much of western New Guinea, including several offshore 
basins. This study records platform carbonate strata overlain 
by mixed shallow- and deep-water units containing ben-
thic and planktonic foraminiferal assemblages in several 
outcrop locations across the eastern Bird’s Head region. 
These heterolithic beds are interpreted as drowning suc-
cessions that are terminated by a drowning unconformity. 
We define a succession exposed along the Anggrisi River 
in the eastern Bird’s Head as a stratotype for carbonate plat-
form drowning in the Bird’s Head, analogous to similar 
faunal turnovers identified in its offshore basins. Detailed 
facies analyses, biostratigraphic dating, and paleoenviron-
mental interpretations using larger benthic and planktonic 
foraminifera collected from the Anggrisi River succession 
help to constrain the drowning event recorded onshore as 
beginning in the Burdigalian and ending in the Serravallian. 
The cause of platform drowning in the Bird’s Head is attrib-
uted to a reduction in the rates of carbonate accumulation 
due to the presence of excess nutrients in the depositional 
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systems that are sensitive to a number of environmental 
factors that may contribute to drowning. Environmen-
tal stresses that may lead to carbonate platform demise 
and the formation of drowning unconformities include 
oceanic anoxic events, tectonism and flexural loading, 
hyper- and hypo-salinity, change in carbon dioxide con-
tent of the oceans or atmosphere, change in nutrient sup-
ply, death of zooxanthellae, temperature, hydrodynamics, 
turbidity, light penetration, and evolutionary modification 
(Schlager 1991; Thorne 1992; Hallock and Schlager 1986; 
Erlich et al. 1990, 1993; Mutti et al. 2005). In all cases, 
however, platform drowning occurs because the rate of 
platform top production and accumulation is exceeded by 
the rate of relative sea-level rise, either because the rate 
of relative sea-level rise has increased, or because the 
rate of carbonate production has decreased. The process 
of carbonate platform drowning presents somewhat of a 
paradox as rates of carbonate production and accumula-
tion normally exceed rates of long-term sea-level rise and 
subsidence; glacioeustatic sea-level rises, on the other 
hand, can exceed carbonate production (Schlager 1981; 
Hallock and Schlager 1986; Föllmi et al. 1994; Wissler 
et  al. 2003; Ruiz-Ortiz et al. 2004; Mutti et  al. 2005; 
Brandano et al. 2016). Kim et al. (2012) demonstrated 
that even if the rate of relative-sea level rise is lower than 
maximum carbonate potential platform drowning can still 
occur if accumulation rates at the initiation of drowning 
are lower than the rate of relative sea-level rise. This can 
be induced by slow response times of carbonate-produc-
ing marine benthic organisms to re-colonize the platform 
top after flooding. The time required for biotic coloniza-
tion controls the increase in water depth which, in turn, 
determines carbonate production in a keep-up mode that 
is directly followed by drowning (Kim et al. 2012). These 
slow response times cause negative feedback in the rates 
of carbonate accumulation, which decrease exponentially 
with increasing water depth. This scenario serves as a 
possible explanation for the ‘drowning paradox’, where 
there is no evidence for significant external forcing, such 
as tectonic activity or glacio-eustatic changes (Kim et al. 
2012). A drowning unconformity may be produced above 
a drowned platform through sediment starvation leading 
to a condensed section or progressive onlap by aggrad-
ing strata (Bosence et al. 1998; Ruiz-Ortiz et al. 2004) or 
progradation of siliciclastic strata, abruptly terminating 
carbonate production (Schlager 1989; Erlich et al. 1990, 
1993).

In this paper, we present outcrop evidence analogous to 
interpreted drowning successions occurring in sedimen-
tary basins from on- and offshore New Guinea. We provide 
ages and a causal interpretation for the drowning event of 
New Guinea by comparing sedimentological and biostrati-
graphic data from outcrop samples and review of well data.

Physical characteristics of drowning strata

Features of successions deposited during relative sea-level 
driven drowning may include a gradational lower and upper 
contacts, chemical sedimentation (e.g., glauconite, phos-
phate, ferruginous crusts), open-marine shelf sediments, a 
variable hiatus at the upper boundary, late-stage shelf-mar-
gin growth and sub-horizontal basinal marine onlap (Erlich 
et al. 1990, 1993). Drowning events can appear in outcrop 
to occur abruptly due to a sudden shutdown of carbonate 
platforms through environmental deterioration. However, 
they may also occur gradually, as younger platforms back-
step conformably to continue accumulating in areas with 
more favorable environmental conditions (Erlich et al. 1990, 
1993). In most scenarios, the drowning sequence appears 
gradational and typically includes a change in lithology 
from shallow-water carbonates to deeper-water siliciclastics 
or pelagic sediments of variable composition. These strata 
define a deepening-upwards sequence. During the drowning 
process, as water depths increase, shallow and deep-water 
lithologies may mix, producing short ‘drowning succes-
sions’ of heterolithic beds (Schlager 1989). These interbed-
ded sequences are intermediate between platform carbonates 
and fully deep-water sediments, which contain a mix of ben-
thic and planktonic carbonate factory products, marking the 
inception and completion of the drowning process (Marino 
and Santantonio 2010).

Seismic expression of drowning strata

In seismic reflection data, drowning unconformities have 
a similar seismic character to subaerial unconformities 
(type 1 sequence boundaries). These features include high-
amplitude reflections produced by the contrast in acoustic 
impedance between the deep- and shallow-water facies 
above and below the boundary, or presence of condensed 
sections, and both display marine onlap at the base of the 
platform margin (Schlager 1989). In traditional sequence 
stratigraphic interpretations, drowning unconformities are 
usually considered equivalent to marine flooding surfaces 
and may occupy opposite positions in the relative sea-level 
cycle to type 1 sequence boundaries (Van Wagoner et al. 
1988; Erlich et al. 1990, 1993; Catuneanu 2006; Masse 
and Fenerci-Masse 2011). Schlager (1999) sought to define 
drowning unconformities as a third major boundary type, a 
‘type 3 sequence boundary’, prone to forming long marine 
hiatuses and exhibiting high reflectivity in seismic sections. 
Drowning unconformities can be distinguished from other 
sequence boundaries by the retrogradational stacking pattern 
of carbonate platform margins that typically signify back-
stepping (Burgess et al. 2013), in contrast to the traditional 
incised valleys, coastal onlap, and forced regressive sur-
faces of type 1 sequence boundaries. Since carbonate strata 
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backstep during drowning, the drowning unconformity can 
form diachronously across the platform top and will show a 
variable hiatus, depending on when and where subsequent 
deposition of deeper-water strata begins (e.g., Föllmi et al. 
1994).

Geological history

The Pacific island of New Guinea is often described as 
having the appearance of a bird in map view. Papua New 
Guinea comprises the ‘Bird’s Tail’ in the east, and the 
Indonesian provinces of West Papua and Papua comprise 
the ‘Bird’s Head’, ‘Neck’ and ‘Shoulder’ to the west. The 
‘Bird’s Neck’ forms the Cenderawasih Bay embayment, to 
the north of which are located the islands of Yapen, Biak, 
and Supiori (Fig. 1). Several sedimentary basins are found 

within the Bird’s Head, namely the Bintuni, North Irian, 
and Salawati Basins (Fig. 1). The Salawati and Bintuni 
Basins, to the west of the Bird’s Head, are known to pro-
duce hydrocarbons. The Bird’s Head region is a region of 
active tectonic deformation that is the result of interaction 
between the Eurasian, Pacific, and Australian plates, as well 
as several smaller microplates (Visser and Hermes 1962; 
Dow and Sukamto 1984; Pieters et al. 1983; Cloos et al. 
2005), dissected by several major, mainly strike-slip, fault 
zones (Fig. 1).

The majority of New Guinea was part of the northern 
promontory of the Australian continent termed the Sula 
Spur during the Paleogene (Hall 2002, 2012). In eastern 
New Guinea, collision occurred between intra-Pacific 
island arcs formed above a northward-dipping subduction 
zone, and the Sula Spur during the latest Chattian–Aqui-
tanian (Dewey and Bird 1970; Dow 1977; Pigram and 
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Davies 1987; Milsom et al. 1992; Hall 2002, 2012; Hill 
and Hall 2003; Wallace et al. 2004). Evidence of this arc-
continent collision can be found in the eastern Bird’s Head 
where a proposed suture between accreted arcs and the 
Australian continental margin is presently represented 
by the Ransiki Fault, interpreted to extend into Cender-
awasih Bay, east of the Wandamen Peninsula, and link 
with the Weyland Overthrust in the New Guinea Central 
Ranges (Pigram et al. 1982; Dow and Hartono 1982; Mil-
som 1991, 1992; Fig. 1). The island arc rocks are repre-
sented by the Arfak Volcanics east of the Ransiki Fault 
in the eastern Bird’s Head, and the Yapen Volcanics and 
Auwewa Formation found on Biak and Supiori (Fig. 2). 
These arc rocks now form the basement to much of the 
northern New Guinea margin including the eastern Bird’s 
Head, Cenderawasih Bay, and its islands (Fig. 2). Similar 
sequences of these rock types have been interpreted as part 
of an ophiolite suite (Dow and Hartono 1982; Pieters et al. 
1983; Hall 2002; Hill and Hall 2003; Cloos et al. 2005), 
abducted on to the New Guinea Central Ranges along the 
Weyland Overthrust (Fig. 1).

During this time, the Sorong Fault Zone (Fig. 1) was initi-
ated when the Philippine Sea Plate began its clockwise rota-
tion, at approximately 20 Ma, causing its southern bound-
ary to change from one of subduction to sinistral strike-slip 
(Ali and Hall 1995; Hall 2002). The Sorong Fault forms 
the northern margin of the Salawati Basin (Redmond and 
Koesoemadinata 1976; Phoa and Samuel 1986), which is 
dominated by east–west folds and a complex interplay of 
strike-slip and extensional faults (Gibson-Robinson and 
Soedirdja 1986; Wilson 2006).

Arc-continent collision produced a subaerial, erosional, 
and angular Early Miocene unconformity (Fig. 2) and sev-
eral compressional structures across northern New Guinea. 
In the Biak Basin (Fig. 1), this unconformity is marked by 
a subaerial erosion surface in which folded and thrusted 
island arc material deformed during the collision was 
uplifted and exposed leading to the erosional truncation 
of ramp anticlines with up to 820 m of section missing 
(Gold et al. 2014). The reduction of island arc material by 
erosion created platforms on which coral reefs flourished 
and platform carbonates developed (Wilson 2002). These 
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carbonate platforms developed across the region dur-
ing early to middle Miocene slow relative sea-level rise, 
depositing the ‘New Guinea Limestone Group’ (NGLG) 
that includes several contemporaneous carbonate forma-
tions (Visser and Hermes 1962; Pieters et al. 1983; Brash 
et al. 1991; Fig. 2). The Middle Miocene saw a signifi-
cant increase in the rate of relative sea-level rise, driven 
by regional subsidence (Visser and Hermes 1962; Satyana 
2003; Wilson 2006). During this time, carbonate platforms 
failed to keep pace with the rate of relative sea-level rise, 
attributed to the onset of extensional tectonics (Visser and 
Hermes 1962), and drowned.

Extension was driven by the continued convergence of 
the Pacific and Australian plates whereby the Pacific plate 
converges WSW at ~248° relative to the Australian plate 
(Wallace et al. 2004; Cloos et al. 2005; Fig. 1). Paleomag-
netic measurements from the Bird’s Head show little evi-
dence for rotation away from this azimuth with respect to 
Australia throughout the Neogene (Klootwijk et al. 1986; 
McCaffrey and Abers 1991). Convergence about this azi-
muth during the early Neogene directed maximum com-
pressive stress towards the SW and minimum compres-
sive stresses directed NW–SE. Similar NW–SE-directed 
extension is described in Seram (Fig. 1) as occurring at 
the same time as the Bird’s Head at approximately 15 Ma 
(Pownall et al. 2013, 2014). In the Bird’s Head, minimum 
compressive stress propagating NW–SE caused the for-
mation of several NE–SW-striking extensional basins. On 
the northern New Guinea margin, these basins developed 
in the Niengo Basement Platform (Fig. 1), which formed 
as a series of horsts and grabens that developed due to the 
oblique motion between the Australian and Pacific plates 
(Williams and Amiruddin 1983; McAdoo and Haebig 
1999).

The tilted half-grabens and other extensional structures in 
the Niengo Basement Platform area strike NE–SW (Fig. 1). 
Examples of these include the NE–SW-trending Sorendidori 
Fault and Numfoor Ridge (Fig. 1). The Sorendidori Fault 
is an oblique normal fault that separates and downthrows 
younger Neogene sediments of the island of Biak to the SE 
from Early to Middle Miocene carbonates of the island of 
Supiori to the NW (Fig. 1). Extension is interpreted to have 
ceased by the end of the Miocene where Pliocene–Pleisto-
cene carbonates are draped undisturbed across extensional 
tilted blocks.

By the end of the Miocene, the Sorong Fault Zone 
ceased to be a major feature. Pliocene strata that uncon-
formably cover the eastern end of the Sorong Fault Zone 
in the northern Bird’s Head are not broken by any active 
strike-slip faults (Hamilton 1979) and it is now considered 
to be inactive (Watkinson and Hall 2016). However, dur-
ing the Pliocene, convergence between the Australian and 
Pacific plates was accommodated by other strike-slip faults 

developed in the Bird’s Head region. The Ransiki Fault, 
originally formed as a collisional suture, was reactivated 
as a zone of dextral strike-slip with a recent extensional 
component (e.g., Watkinson and Hall 2016). The Yapen 
and Biak Fault Zones (Fig. 1) also became major features. 
The Biak Fault Zone is a series of segmented, parallel, 
NW–SE-trending strike-slip faults that form the linear 
coastline of Supiori’s peninsula, linking with the linear 
coast of southwest Biak (Fig. 1). These faults also form 
clearly expressed lineaments on the seafloor that can be 
observed in multibeam bathymetric data (Fig. 1). The Biak 
Fault Zone is shown to be a young feature by incising 
the youngest Pliocene sequences and recent sedimenta-
tion within the Biak Basin is controlled by activity along 
the faults (Bertoni and Garcia 2012; Memmo et al. 2013). 
Recent seismicity along the Biak Fault Zone exhibits a 
distinct dextral slip component along the fault zone.

The Yapen Fault forms the E–W-trending linear coast-
line of the north coast of Yapen Island and a submarine 
ridge extending westward from Yapen to the eastern Bird’s 
Head (Fig. 1). It separates the Woinoei Sorenia Strait in 
the north from a part of Cenderawasih Bay over 2000 m 
deep in the south. The Yapen Fault is a well-documented 
left-lateral structure. The fault strikes SE onshore to the 
east of the island of Yapen where it is termed the Jobi 
Fault system. The Jobi Fault in eastern Yapen (Fig. 1) has 
been shown to display left-lateral offset (Atmawinata and 
Ratman 1982; Dow and Hartono 1982; Atmawinata et al. 
1989). The associated Randaway Fault system that cuts 
obliquely SE through the center of the island (Fig. 1) is 
proposed to have been active since the Pliocene or later, 
having incised the Ansus Conglomerate (Fig. 2), dated by 
foraminiferal assemblages to be of Pliocene age (Charlton 
2010). This sub-recent movement of the Yapen Fault is 
supported by the sharp bathymetric expression of the sub-
marine ridge on the seafloor (Fig. 1) and the occurrence of 
numerous sinistral strike-slip earthquakes along its course.

In the Bird’s Neck, the Lengguru Fold and Thrust Belt 
(LFTB) forms the westward extension of the mountains of 
the Central Ranges (Fig. 1). The LFTB is stated to have 
formed in the last 7–8 Ma from the Tortonian (Bailly et al. 
2011) based on ages of metamorphism from internal rock 
units within the LFTB. Their results suggested that a high-
pressure metamorphic event took place during the latest 
Tortonian to Messinian (7–8 Ma) followed by rapid exhu-
mation associated with migmatization only 1 or 2 Ma after 
their burial. This rapid exhumation is able to produce high-
pressure metamorphic rocks in less than 5 Ma, validating 
fission-track ages of metamorphic units in New Guinea that 
suggest rapid uplift occurred in New Guinea since 10 Ma 
and in many areas since 5 Ma (Hill and Gleadow 1989). 
This uplift continued into the Pliocene, culminating with 
the formation of the regional ‘intra-Pliocene unconformity’ 
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known from within the Salawati Basin to occur at approxi-
mately 4 Ma (Decker et al. 2009).

Previously described drowning successions 
in the Bird’s Head

Strata that may represent drowning successions have been 
described previously in the Bird’s Head, but were not rec-
ognized as such (e.g., Visser and Hermes 1962; Pieters 
et al. 1983; Gibson-Robinson and Soedirdja 1986; Brash 
et al. 1991; McAdoo and Haebig 1999). Examples include 
successions of limestones and/or siliciclastic sediments 
with alternating benthic and planktonic fossil assemblages 
recorded along the northern coast of New Guinea (e.g., Vis-
ser and Hermes 1962; Gibson-Robinson and Soedirdja 1986; 
McAdoo and Haebig 1999).

North Irian Basin

The North Irian Basin (also termed the ‘Mamberamo’ or 
‘North Coast’ Basin) is located in the Mamberamo region 
of the Bird’s Shoulder along the northern New Guinea mar-
gin (Fig. 1). This basin is described as a single large basin 
with interconnected, separate depocentres sharing a correla-
tive fill (McAdoo and Haebig 1999). The North Irian Basin 
formed between structural highs of the Niengo Basement 
Platform, comprising ocean-floor or island arc volcanic and 
ultramafic material, since the Paleocene (McAdoo and Hae-
big 1999).

McAdoo and Haebig (1999) described continuous Ceno-
zoic deposition within the North Irian Basin with the excep-
tion of a regional depositional hiatus in the Late Miocene. 
This hiatus is marked by a major unconformity, found at 
the base of the Mamberamo Formation and the top of the 
Makats Formation (Fig. 2, Column F), and traceable over 
large areas of the basin (Visser and Hermes 1962; McAdoo 
and Haebig 1999). We suggest that this may be a drowning 
unconformity as it separates shallow-water platform carbon-
ate from overlying deep-water marl and pelagic carbonate. 
This facies change is contemporaneous with other such 
changes across New Guinea interpreted to record regional 
platform drowning and can be traced into the eastern Bird’s 
Head (Fig. 2, Column C) and islands of Biak and Supiori 
(Fig. 2, Column D).

Salawati and Bintuni Basins

Many authors agree that the Salawati and Bintuni 
Basins (Fig. 1) are built on continental crust of either 
the northern promontory (Sula Spur) of the Australian 
plate (Redmond and Koesoemadinata 1976; Chevallier 

and Bordenave 1986; Gibson-Robinson and Soedirdja 
1986; Phoa and Samuel 1986; Charlton 1996), or a small 
microcontinent comprising the Bird’s Head (Pigram et al. 
1982; Dow and Hartono 1982; Pigram and Panggabean 
1984; Pigram and Davies 1987; Struckmeyer et al. 1993; 
Puntodewo et al. 1994; Hall 2002; Wilson 2006; Tikku 
et al. 2006).

The Bintuni Basin overlies a basement of NGLG that 
ceased deposition in the Middle Miocene (Pigram et al. 
1982). It is interpreted to have formed as a fore-deep in 
the late Cenozoic (Chevallier and Bordenave 1986) when 
the former shallow-marine NGLG platform was rapidly 
deepened as a result of collision between the Bird’s Head 
microcontinent with the Australian continent along a 
short-lived east-facing subduction zone (Pigram et  al. 
1982).

In the Salawati and Bintuni Basins, and in outcrop 
in the western Bird’s Head, the Kais Limestone of the 
NGLG is overlain by marl and micritic limestone of the 
Klasafet and Klamogun Formations, both interpreted as 
pelagic strata (Visser and Hermes 1962; Fig. 2, Columns 
A and B). On depositionally topographic highs, the upper 
part of the Kais Limestone is overlain by the Sekau For-
mation (Visser and Hermes 1962; Koesoemadinata 1976; 
Pieters et al. 1983). This unit is described as comprising 
limestones with the same faunal composition as the Kais 
Limestone, interbedded with marl, clay, and argillaceous 
limestones occurring on topographically high coral reefs 
at the time of deposition (Visser and Hermes 1962). It is 
interpreted here that the interbedded sequences between 
the Kais Limestone and fully pelagic strata of the Klasafet 
and Klamogun Formations represent drowning succes-
sions. The drowning unconformity is therefore situated 
at the base of the Klasafet and Klamogun formations 
(Fig. 2).

In the Salawati Basin, the ‘U’ Interval overlies the Kais 
Limestone as a succession of interbedded limestone and 
siliciclastic strata. This heterolithic succession represents 
another gradual facies transition of shallow-water plat-
form carbonates of the Kais Limestone to fully pelagic 
strata of the Klasafet and Klasaman Formations. The 
boundary between this heterolithic interval and wholly 
siliciclastic strata of the Upper Klasafet and Klasaman 
Formations is termed the ‘U’ Marker (Gibson-Robinson 
and Soedirdja 1986; Satyana 2003). The ‘U’ Marker is 
an easily recognized horizon in seismic and well logs 
(Valenta 1979; Gibson-Robinson and Soedirdja 1986) 
marking a sharp transition from mixed limestone and 
calcareous clays below to mainly clays above (Gibson-
Robinson and Soedirdja 1986). We interpret the ‘U’ Inter-
val as a drowning succession and the ‘U’ Marker as a 
drowning unconformity within the Salawati Basin (e.g., 
Gold et al. 2014).
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Materials and methods

Fieldwork was undertaken in the eastern Bird’s Head 
region in 2011 and 2013 during which heterolithic succes-
sions of carbonate strata were observed at several localities 
(Fig. 3). Heterolithic successions were observed at the top 
of the Maruni Limestone along the eastern coast of the 
Bird’s Head, the Kais Limestone near the village of Anjai 
in the central Bird’s Head (Fig. 3), and Napisendi Forma-
tion along the northern coasts of the islands of Biak and 
Supiori (Fig. 3). However, the best exposure occurs above 
the Maruni Limestone along the Anggrisi River (Sungai 
Anggrisi), south of the city of Manokwari (Fig. 3). Verti-
cal facies variations within the heterolithic sections were 
measured and the sedimentological and paleontological 
features were recorded at each bed.

At each locality, a clear change in facies together with 
a faunal turnover from shallow-water benthic to pelagic 
planktonic foraminiferal assemblages was observed. 
A simple scheme, based on lithology and foraminiferal 
assemblage, was devised to record the spatio-temporal 
distribution of facies across the study area (Fig. 4). The 
facies scheme contained four categories: (1) shallow-water 
platform, (2) argillaceous platform, (3) periplatform, and 
(4) pelagic (Fig. 4). This scheme is based on carbonate 
rock fabrics, textures, and paleoenvironmental interpreta-
tions of foraminiferal assemblages from Bé and Tolder-
lund (1971), Bé (1977), Hallock and Glenn (1986), and 
BouDagher-Fadel (2008).

The Sungai Anggrisi section was determined to be rep-
resentative of heterolithic successions in the eastern Bird’s 
Head and was chosen for more detailed analysis. Fourteen 
localities along Sungai Anggrisi were visited (Fig. 5) and 
stratigraphic sections were measured, and sedimentologi-
cal and paleontological features were recorded. System-
atic sampling occurred at each facies change for detailed 
microfacies and biostratigraphic analyses. Thin-sections 
were prepared of the samples and stained with a mixture of 
Alizarin Red S and potassium ferricyanide (Dickson 1966) 
to aid in the identification of ferroan and non-ferroan phases 
of calcite. Thin-sections were then classified according to 
microfabrics and microfossil composition. During these 
detailed analyses, six distinct foraminiferal assemblages 
were identified within the facies scheme (Fig. 6). Data from 
all 14 localities along Sungai Anggrisi were collated to pro-
duce a composite log of the eastern Bird’s Head heterolithic 
succession (Fig. 6).

Biostratigraphic data from outcrop samples collected 
from localities with a close field-relationship to the het-
erolithic successions depicted in Fig. 3 were used to dis-
play the full spatial distribution of facies belts across the 
field area. Gross depositional environment maps were pro-
duced of the field area during the early, middle, and late 

Miocene, comprising 105 data points (Fig. 7). Biostrati-
graphic data from 15 public domain wells (Table 1) were 
also reviewed and identified a similar turnover of faunal 
assemblages and facies in areas to the west of the field area. 
Ages were assigned to well data and outcrop samples based 
on assemblages of planktonic and larger benthic foraminif-
era. Ranges of taxa were taken from Adams (1970), Iac-
carino et  al. (2007), and BouDagher-Fadel (2008) and 
were calibrated to the Indo–Pacific ‘letter stages’ (Adams 
1970; BouDagher-Fadel 2008; Lunt 2013) and Wade et al. 
(2011) sub-tropical planktonic foraminiferal zones. Bio-
zonation schemes used in this study are the Indo–Pacific 
‘letter stages’ of Adams (1970), BouDagher-Fadel (2008), 
and Lunt (2013) for larger benthic foraminifera, and Wade 
et  al. (2011) for sub-tropical planktonic foraminiferal 
zones. Sub-tropical planktonic foraminiferal zones were 
calibrated to Timescale Creator (version 6.1.2, http://www.
tscreator.org) following the geological timescale of Grad-
stein et al. (2012).

New outcrop evidence for platform drowning 
in the Bird’s Head

We define the section along Sungai Anggrisi (Figs. 3b–c, 
5, 6) as a stratotype for carbonate platform drowning in the 
Bird’s Head. This stratigraphic section serves as an ana-
logue to similar successions observed in the subsurface of 
offshore basins to the west of New Guinea. The heterolithic 
succession at Sungai Anggrisi is approximately 20 m thick 
and displays all four facies defined in Fig. 4. Six unique 
foraminiferal assemblages are identified within the succes-
sion that reflect the faunal turnover from shallow-water car-
bonate platform deposition to wholly pelagic strata through 
time (Fig. 6).

Shallow‑water platform facies

The basal unit of the Sungai Anggrisi succession com-
prises reefal platform carbonate of the Maruni Limestone 
(Figs. 3b, 6). This unit is well bedded, with planar beds 
dipping 250/10°NW, comprising white-colored and well-
cemented fossiliferous limestone (Figs. 3b, 6). The limestone 
is dominated by larger benthic foraminifera; however, bivalve 
fragments, corals, and the rhodophyte Lithophyllum spp. are 
also present. Through petrographic analysis, it is classified 
as a mud-lean packstone comprising ~70% bioclasts, ~20% 
non-ferroan spar cement, and ~10% matrix. Larger benthic 
foraminifera within this limestone include Eulepidina spp. 
(including E. badjirraensis), Lepidocyclina (Nephrolepidina) 
brouweri, Lepidocyclina (N.) oneatensis, Lepidocyclina 
(N.) sumatrensis, Miogypsina kotoi, Miogypsina tani, Mio-
gypsinodella primitiva, Miogypsinoides spp. (including M. 

http://www.tscreator.org
http://www.tscreator.org
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dehaarti and M. bantamensis), and Spiroclypeus tidoengan-
ensis. These taxa represent foraminiferal Assemblage 1 and 
suggest an Early Miocene, late Aquitanian (middle Te5 letter 
stage, equivalent to sub-tropical zone M2, 21.12–19.3 Ma) to 
middle Burdigalian age (upper Te5 letter stage, equivalent to 
sub-tropical zone M3, 19.3–17.54 Ma) for the deposition of 
this limestone (Adams 1970; BouDagher-Fadel 2008). The 
microfossil assemblage, containing reef-loving organisms 
such as lepidocyclinid and miogypsinid foraminifera, and red 
algae that favor the seaward side of reef crests, together with 
the relatively large amount of early diagenetic marine spar 
and fragmentation, indicate deposition within a relatively 
high-energy reef-front environment (Hallock and Glenn 
1986). The shallow-water platform facies was observed at 
three localities along Sungai Anggrisi (Figs. 5, 6).

Argillaceous platform facies

The planar bedded white limestone unit is paraconform-
ably overlain by alternating irregular beds of grey marl and 
brown packstone in a succession approximately 20 m thick 
(Figs. 3b, 6). This heterolithic succession is equivalent to the 
Sekau Formation of the western Bird’s Head (Fig. 2). The 
white limestone has a sharp planar contact with the overly-
ing heterolithic succession parallel to bedding. Carbonate 
interbeds within the succession comprise brown, well-indu-
rated, argillaceous mud-lean packstone and grainstone that 
contain abundant larger benthic and planktonic foraminif-
era, bivalve fragments, rhodophyte red algae, and ferroan 
cement (Fig. 4). Trypanites ichnofacies vertical burrows are 
observed along bed boundaries in contact with the overly-
ing grey marl. Biostratigraphic analyses of the lower brown 
packstone interbeds contain a larger benthic foraminif-
eral assemblage including Lepidocyclina (Nephrolepidina) 
brouweri, L. (N.) nephrolepidinoides, L. (N.) stratifera, L. 
(N.) verbeeki, Miogypsina cushmani, M. intermedia and 
Miogypsinoides indica. This assemblage suggests an Early 
to Middle Miocene, Burdigalian to early Langhian (lower 
Tf1–upper Te5 letter stages, equivalent to sub-tropical zones 

M3–M5, 19.3–15.1 Ma) age for these units (Adams 1970; 
BouDagher-Fadel 2008). The foraminiferal assemblage in 
these interbeds represent Assemblage 3 and indicate an inner 
neritic depositional setting. The argillaceous platform facies 
was observed at seven localities (Figs. 5, 6). Fossils iden-
tified from within this facies are interpreted to have been 
deposited in situ as bioclasts display no evidence for trans-
portation (e.g., through abrasion, fragmentation, or as intra-
clasts). The presence of Trypanites ichnofacies borings also 
indicate that these carbonates were deposited in situ and the 
platform top may have formed hard grounds.

Periplatform facies

The uppermost packstone beds contain an increasing abun-
dance of large, flat, rotaliina foraminifera, which include 
Cycloclypeus indopacificus, Katacycloclypeus annulatus, 
Lepidocyclina (Nephrolepidina) ferreroi, L. (N.) inflata, L 
(N.) martini, Miogypsina antillea, M. kotoi, M. regularia, 
Planostegina spp. and Operculina spp. These foraminifera 
represent Assemblage 5 and suggest a Middle Miocene, 
middle Langhian to latest Serravallian (upper Tf1–Tf3 
letter stages, equivalent to sub-tropical zones M6–10, 
15.1–11.63 Ma) age (Adams 1970; BouDagher-Fadel 
2008). The abundance of large, platy benthic foraminifera 
indicates deposition in relatively moderate water depths 
between 20 and 50 m in platform slope or periplatform 
environments (Hallock and Glenn 1986). The latest Serrav-
allian age assigned to the uppermost brown packstone bed 
of the heterolithic succession is based on the last observed 
occurrences of K. annulatus and C. indopacificus, which 
are zonal markers for the end of Indo–Pacific letter stages 
Tf2 and Tf3, respectively (BouDagher-Fadel 2008). The 
Tf3/Tg boundary (11.63 Ma) of the Indo–Pacific Letter 
Stages is denoted by a significant faunal turnover in larger 
benthic foraminifera at the end of the Serravallian (Adams 
1970; BouDagher-Fadel 2008). However, the faunal turno-
ver at the Tf3/Tg boundary in New Guinea is denoted by 
complete facies change in planktonic foraminifera replac-
ing shallow-water taxa, rather than a change in composi-
tion of shallow benthic assemblage. The uppermost peri-
platform facies was observed at three localities (Figs. 5, 6).

Pelagic facies

The argillaceous platform and periplatform facies are inter-
bedded with grey marl within the heterolithic succession. 
Petrographic analysis of the marl shows them to be pack-
stone comprising ~90% planktonic foraminifera and ~10% 
micrite matrix. Planktonic foraminifera within marl of the 
lower half of the heterolithic succession include Catapsy-
drax dissimilis, D. altispira, D. baroemoensis, Globigerina 

Fig. 3  Field photos of drowning successions and drowning uncon-
formities across the northern Bird’s Head. The drowning succes-
sion is marked by a sharp change in facies from platform carbonates 
beneath and dark shales or heterolithic grey marl and brown pack-
stone above. a Befoor Formation unconformably overlies the Maruni 
Limestone in the north–eastern corner of the Bird’s Head, north of 
Manokwari. b Drowning succession at the top of the Maruni Lime-
stone along the river Sungai Anggrisi, south of Manokwari. c Het-
erolithic drowning succession beds observed farther along Sungai 
Anggrisi. d Deep-water facies rocks containing abundant planktonic 
foraminifera within the Napisendi Formation on the northern coast 
of Supiori. e Heterolithic grey marl and better indurated brown pack-
stone within the Napisendi Formation on the island of Biak. f Under-
lying platform limestone of the Napisendi Formation beneath dark 
grey shales in the south–east of the island of Biak

◂
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Fig. 5  Stratigraphic and structural cross section depicting the loca-
tions, foraminiferal assemblages, and facies encountered at 14 loca-
tions along the drowning succession observed at Sungai Anggrisi, 

eastern Bird’s Head. Satellite image credit: Google Earth (Map data: 
Google, DigitalGlobe)
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Fig. 4  Samples analyzed for petrography were grouped into four 
facies based on microfacies and faunal composition. 1 Shallow-water 
platform facies contain a diverse assemblage of organisms includ-
ing robust rotaliid foraminifera often within grainstone or mud-lean 
packstone. 2 Argillaceous platform facies contain similar faunal 
composition to the shallow-water platform facies with the inclusion 

of significant ferroan calcite cement. 3 Periplatform facies comprise 
packstone containing large, flat, rotaliid foraminifera. 4 Pelagic facies 
comprise packstone and wackestone that contain abundant planktonic 
foraminifera. Microfossil paleoenvironmental and bathymetric inter-
pretations were made using Bé and Tolderlund (1971), Bé (1977), 
Hallock and Glenn (1986), and BouDagher-Fadel (2008)
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occlusa, Ga. praebulloides, Globigerinoides altiaperturus, 
Gdes. obliquus, Gdes. quadrilobatus, Gdes. subquadratus, 
Gdes. trilobus, G. dehiscens, G. woodi and Praeorbulina 
glomerosa. These taxa represent foraminiferal Assemblage 
2, which suggest an Early Miocene, Burdigalian (sub-tropical 
zone M3, 19.3–17.54 Ma) to Middle Miocene, early Lang-
hian (sub-tropical zone M5, 16.38–15.1 Ma) age for this unit 
(Iaccarino et al. 2007; BouDagher-Fadel 2015). Globular 
planktonic foraminifera are common in the basal grey marl of 
the succession and are indicative of ‘moderate’ water depths 
between 50 and 100 m (Bé and Tolderlund 1971; Bé 1977). 
The large number of globular planktonic foraminifera, with 
a planktonic:benthic ratio greater than 100:1, and micrite 
mud in this sample, indicate it was deposited as a pelagic 
limestone in a middle neritic environment. The lower pelagic 
facies was observed at seven localities (Figs. 5, 6).

The upper part of the heterolithic succession contains dif-
ferent assemblages of interbedded benthic and planktonic 
foraminifera. The upper grey marl contains the planktonic 
foraminifera D. altispira, D. baroemoensis, D. globosa, D. 
quadrata, D. venezuelana, Globigerina decoraperta, Ga. 
eamesi, Ga. occlusa, Ga. praebulloides, Globigerinella prae-
siphonifera, Globigerinoides quadrilobatus, Gdes. subquadra-
tus, Gdes. trilobus, G. dehiscens, Globorotalia conoidea, Grot. 
menardii, Grot. miozea, Grot. peripheroronda, Grot. praeme-
nardii, Grot. scitula, Globoturborotalita woodi, Orbulina bilo-
bata, O. suturalis, O. universa and Sphaeroidinellopsis sub-
dehiscens. These taxa represent foraminiferal Assemblage 4 
and suggest a Middle Miocene, middle Langhian (sub-tropical 
zone M6, 15.1–14.24 Ma) to latest Serravallian (sub-tropical 
zone M10, 11.79–11.63 Ma) age for this marl (Iaccarino et al. 
2007; BouDagher-Fadel 2015). An increasing abundance of 
carinate planktonic foraminifera is observed up-section and 
indicates increasing water depths in excess of 100 m (Bé and 
Tolderlund 1971; Bé 1977). The upper pelagic facies was 
observed at three localities (Figs. 5, 6).

The heterolithic succession above the Maruni Limestone 
passes upwards to Befoor Formation siliciclastic strata 
(Figs. 2, 6). The Befoor Formation is dated to range from the 
Late Miocene, Tortonian, to Pliocene, Zanclean (sub-tropical 
zones M11–PL3, 11.63–3.59 Ma). However, along Sungai 
Anggrisi, only the lower Befoor Formation is observed, rep-
resenting the Tortonian to Messinian (sub-tropical zones 
M11–M14, 11.63–5.72 Ma) based on the presence of the 
planktonic foraminifera G. dehiscens, Globorotalia menardii, 
Pulleniatina primalis, Globigerinoides quadrilobatus, Gdes. 
trilobus, N. acostaensis, and S. subdehiscens (Iaccarino et al. 
2007; BouDagher-Fadel 2015). These taxa represent Assem-
blage 6 and are observed at a single locality along Sungai 
Anggrisi (Figs. 5, 6). This assemblage is recorded within a 
continuous succession of pelagic facies strata and an absence 
of interbeds of shallower-water carbonates. The Befoor For-
mation is observed as an uninterrupted succession of wholly 

pelagic facies strata several tens of meters thick where it is 
widespread northwest of Manokwari, until carbonate deposi-
tion resumes once more in the Zanclean (Fig. 2).

Interpretation of the Sungai Anggrisi drowning 
succession

Heterolithic beds overlying the white reefal limestone along 
Sungai Anggrisi are interpreted here as a drowning succession, 
formed during approximately 7.5 My of Burdigalian–Serrav-
allian carbonate platform drowning. Heterolithic successions 
were interpreted as drowning strata based on sedimentological 
and stratigraphic evidence marked by significant facies and fau-
nal changes (e.g., Masse and Fenerci-Masse 2011). The initia-
tion of platform drowning is interpreted to have occurred during 
sub-tropical planktonic foraminiferal zone M3 (19.3–17.54 Ma) 
due to the transition from shallow-water platform to argilla-
ceous platform and pelagic facies likely occurring some time 
within this zone (Fig. 6). The faunal turnover observed between 
the periplatform and pelagic facies at the Tf3/Tg boundary 
(11.63 Ma) is interpreted to mark the age of completion of car-
bonate platform drowning as it represents the last bed of peri-
platform facies strata underlying wholly deep-water strata of 
uninterrupted pelagic facies (Fig. 6). The drowning unconform-
ity therefore is situated above the uppermost bed containing 
Assemblage 5 taxa (Fig. 6) and is interpreted to correlate to the 
unconformity described by McAdoo and Haebig (1999) within 
the North Irian Basin, the ‘U’ Marker within the Salawati and 
Bintuni basins, and uppermost limestone unit of the Sekau For-
mation in the western Bird’s Head. In the eastern Bird’s Head, 
only c. 20 m of the heterolithic succession is exposed, consist-
ent with descriptions of the 30–50-m-thick Sekau Member of 
the western Bird’s Head (Visser and Hermes 1962; Pieters et al. 
1983). However, this is considerably less than the c. 200-m ‘U’ 
Interval found in the southern Salawati Basin.

The Early Miocene units of the NGLG, including the 
Maruni and Kais Limestones, are interpreted to repre-
sent typical carbonate platform deposits (e.g., Hallock 
and Schlager 1986). The Maruni Limestone is interpreted 
to have been deposited as part of a rimmed platform con-
taining proximal back-reefs, passing basinward to fringing 
reefs and periplatform slope facies. The basal white Maruni 
Limestone of the Sungai Anggrisi succession represents 
healthy platform growth, deposited with high average sur-
face water temperatures, high water transparency, and low 
levels of available nutrients (e.g., Föllmi et al. 1994). Low 
nutrient levels (oligotrophy) are indicated by the presence 
of large benthic foraminifera and absence of silt and coarser 
siliciclastic grains, indicating low levels of terrestrial runoff 
and therefore nutrient supply (Hallock 1988; Weissert 1989, 
1990; Föllmi et al. 1994).

Throughout the Miocene, carbonate production rates 
were reduced in the Bird’s Head as denudation of land areas 
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increased the amount of terrigenous material shed into off-
shore areas (e.g., Wilson 2002). It is therefore interpreted 
that minor siliciclastic grains and iron within Fe-rich cal-
cite cements in the argillaceous platform facies was sourced 
by terrestrial runoff. Iron was transported as particles of 
iron oxides from surrounding muddy, clay-rich sediment or 
adsorbed on to clays. The presence of Fe-enrichments in 
drowning and post-drowning sediments are often related to 
a primary higher nutrient content in the water column and a 
change from oligotrophic to meso- or eutrophic conditions 
(Zempolich 1993; Föllmi et al. 1994; Drzewiecki and Simo 
1997; Blomeier and Reijmer 1999).

Carbonate accumulation rates are inversely related to 
nutrient availability at levels typically found in modern, 
low-latitude oceans (Hallock and Schlager 1986). One such 
nutrient involved in the primary productivity of oceans is 
iron. The link between increased iron and increased phyto-
plankton activity in the oceans is well established (Martin 
and Fitzwater 1988; Walsh and Steidinger 2001; Sellner 
et al. 2003; Winckler et al. 2008; Costa et al. 2016). The 
positive relationship between increasing amounts of iron and 
high phytoplankton growth rates occurs due to the role iron 
plays in photosynthesis, where iron–sulfur proteins, termed 
‘ferredoxins’, mediate electron transfer in the metabolic 
reactions of photosynthesis (Geider and La Roche 1994). 
The increased amount of iron, and therefore phytoplank-
ton, acted to reduce levels of transparency in the water col-
umn above the Maruni Limestone platform as conditions 
changed from that of oligotrophy to mesotrophy. Hallock 
and Schlager (1986) suggested that a reef cannot recover if 
submerged below 25% of surface light levels. This equates 
to only several meters or tens of meters of submergence 
required to drown present-day reefs in Aqaba, the Florida 
Keys, Hawaii, and Barbados (Hallock and Schlager 1986). 
The increasing abundance of carinate planktonic foraminif-
era replacing shallow-water benthos observed within drown-
ing successions of the Bird’s Head indicate an increase in 
water depths to at least 100 m. This is more than sufficient 
to terminate carbonate production in waters where trans-
parency is low. Burgess and Hovius (1998) demonstrated 
that where rates of fluvial discharge are high, such as areas 
of intense tropical denudation, many modern deltas are 

able to prograde during marine transgressions and times of 
high relative sea-level. This scenario explains how iron was 
introduced into the depositional environment through ter-
restrial run-off while water depths began to increase above 
the Maruni Limestone platform.

Environmental preferences of organisms observed within 
foraminiferal Assemblage 1 suggest that water depths locally 
were no greater than 20 m during deposition of the reefal 
Maruni Limestone at the initiation of the drowning process 
during the middle Burdigalian. The increasing abundance 
of carinate planktonic foraminifera up-section indicates 
that water depths increased to greater than 100 m (e.g., Bé 
and Tolderlund 1971; Bé 1977) by the Tortonian, a dura-
tion of approximately 7.5 My. An increase in water depth 
of at least 75 m in approximately 7.5 My recorded from 
the entire Sungai Anggrisi succession equates to a rate of 
regional relative sea-level rise of approximately 10 m/My. 
The lowest accumulation rates for prograding carbonates are 
reported as 30 m/My (Schlager 1981; Handford and Loucks 
1993; Wissler et al. 2003), therefore a long-term rise in rela-
tive sea-level of 10 m/My should not have been sufficient to 
outpace the rate of carbonate accumulation. This observa-
tion supports the ‘drowning paradox’ of Schlager (1981). 
However, Kim et al. (2012) demonstrated that the drowning 
paradox can be overcome if accumulation rates at the initia-
tion of drowning are lower than the rate of relative sea-level 
rise. Evidence for mesotrophy in the carbonate production 
factory observed in the Sungai Anggrisi drowning succes-
sion may be one reason for initial carbonate accumulation 
rates to be low at this location. This may have been further 
exaggerated by the slow response time of benthic organ-
isms of the periplatform and argillaceous platform facies to 
re-establish as relative sea-level rise continued to progress 
leading to drowning of the Maruni Limestone platform. The 
interpretation therefore is that a combination of relative sea-
level rise and environmental deterioration is responsible for 
platform drowning in the Bird’s Head.

The already-foundering Maruni Limestone platform top 
under elevated trophic conditions may have finally suc-
cumbed to drowning during shorter, more rapid pulses of 
relative sea-level rise (e.g., Hallock and Schlager 1986). 
Incursions of pelagic facies over argillaceous platform 
and periplatform facies limestones are interpreted here as 
catch-up and short-term keep-up deposition (as defined 
in Kim et al. 2012) when drowning during longer-term 
relative sea-level rise was interrupted by high-frequency 
sea-level falls of approximately 20–30 m during the mid-
dle Miocene (Miller et al. 2005; Snedden and Liu 2010; 
Fig. 2). The amplitude of these oscillations was enough to 
shift the deposition of periplatform and pelagic facies up 
and down the platform slope, depositing the relatively shal-
low-water facies during intervening troughs in the short-
term global sea-level trend (Fig. 2). The sharp increase in 

Fig. 6  Composite sedimentary log based on field data collected at 
14 localities visited at the drowning succession exposed along Sungai 
Anggrisi. The drowning succession deepens upwards with increasing 
numbers of globular and carinate planktonic foraminifera replacing 
typical reefal shallow benthic foraminifera and moderate-water-depth 
larger platy foraminifera. The uppermost periplatform facies bed con-
tains specimens of Katacycloclypeus annulatus (K.a) in the microfos-
sil assemblage, indicating a Serravallian age to the completion of the 
drowning process along Sungai Anggrisi. Modified from Gold et al. 
(2014)

◂
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Fig. 7  Gross depositional 
environment maps depicting 
position of migrating belts of 
shallow-water carbonate plat-
form, argillaceous/periplatform, 
and pelagic facies in the Early, 
Middle and Late Miocene. 
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to backstep to the north through 
time. Data points correspond to 
outcrop samples only
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the short-term global sea-level trend from approximately 
20 m above present-day sea-level at the end of the Serrav-
allian, to approximately 80 m above present-day sea-level 
at the Tor1 MFS, suggests a sudden sea-level rise of 60 m 
in 1 My (Fig. 2). This drastic increase in the rate of short-
term sea-level rise may have outpaced rates of carbonate 
production on the Maruni Limestone platform, resulting 
in the termination of keep-up deposition and formation 
of the drowning unconformity by the end of the Middle 
Miocene. By deposition of the Befoor Formation in the 
Tortonian, water depths were high enough that carbonate 
deposition on the platform was unable to re-establish and 
it was draped by the deep-water sediments that overlie the 
drowning unconformity.

The heterolithic succession between the Maruni Lime-
stone and Befoor Formation may represent an easterly lat-
eral equivalent to the Sekau Formation (Fig. 2). Several 
scenarios have been suggested for the deposition of the 
Sekau Formation. These include struggling reef growth 
in mud-polluted waters and limestone interbeds within 
the heterolithic succession representing fore-reef deposits 
encroached by relatively deeper-water marls (Visser and 
Hermes 1962; Pieters et al. 1983). Along Sungai Anggrisi 
both scenarios are shown to be true. Deposition in mud-
polluted waters is indicated by the argillaceous platform 
facies, and encroachment of deeper-water sediments over 
a shallow-water platform is indicated by the periplatform 
and pelagic facies.

Through a reduction in carbonate accumulation rates by 
excess nutrients, outpaced by the rate of relative sea-level 
rise, transgression of pelagic strata occurred across the top 

of the Maruni Limestone platform. This is clearly shown 
in the gross depositional environment maps of Miocene 
age samples and outcrops from the eastern Bird’s Head 
and islands of Biak and Supiori (Fig. 7). These deline-
ate the shift in relative position of the migrating facies 
belts throughout the Miocene. The maps show the retreat 
of the shallow-water facies belts towards the north from 
the beginning to end of the Miocene (Fig. 7). The shal-
low-water carbonate platform facies (Fig. 4) is widespread 
across much of the Bird’s Head during the Early Miocene 
(Fig. 7). During the Middle to Late Miocene, a faunal turn-
over of shallow-water benthic foraminiferal assemblages 
to deeper-water planktonic foraminiferal assemblages is 
observed as shallow-water facies are replaced by periplat-
form, platform, and pelagic facies (Fig. 4) across the study 
area (Fig. 7).

Evidence for drowning in New Guinea from well 
data

Further evidence for carbonate platform drowning was 
identified during review of biostratigraphic and wireline-
log data from 15 public domain wells (Table 1). These 
wells are located within the known hydrocarbon produc-
ing Salawati and Bintuni Basins, and Arafura Sea (Fig. 1). 
The closest well to the outcrop analogues described in this 
paper is approximately 200 km to the west. However, the 
Kais Limestone and overlying Sekau, Klasafet and Klasaman 
formations are widely distributed in outcrop between the 
data points of this study, implying that carbonate platform 
drowning occurred over a large area during the Middle to 
Late Miocene.

Biostratigraphic data from 15 wells in western New 
Guinea record a turnover in fauna and facies of open-marine 
assemblages of planktonic foraminifera replacing assem-
blages of shallower-water benthic foraminifera (Fig. 8). 
The termination of stable carbonate platform growth of the 
NGLG is recorded in wells Agung-1, Klalin-1, Sago-1, and 
TBE-1X to occur during the early Langhian (upper Te5 let-
ter stage, equivalent to sub-tropical zone M5, 16.38–15.1 
Ma; Fig. 8). The shutdown of stable carbonate platform 
growth is often denoted by the last occurrences, base to top, 
of ‘reefal’ organisms such as corals and sponges, and typical 
shallow-water benthic foraminifera including lepidocycli-
nids, miogypsinids, and miliolids (Fig. 8). Several wells, 
Monie South-1, Roabiba-1, and Sago-1, record observable 
heterolithic successions of planktonic foraminiferal calcare-
ous shales and marls interbedded with shallow-water benthic 
foraminiferal limestones. These successions were depos-
ited between the middle Langhian and latest Serravallian 
(M6–M10, 15.1–11.63 Ma), marking the inception and com-
pletion of the drowning process (Fig. 8). The completion of 

Table 1  References for public domain wells used in this study

Well References

Agung-1 Fraser et al. (1993), Pairault et al. (2003)
ASA-1X Darman and Sidi (2000)
Gunung-1 Fraser et al. (1993), Pairault et al. (2003)
Klalin-1 Livingstone et al. (1992)
Monie south-1 Pigram et al. (1982)
Roabiba-1 Fraser et al. (1993)
Sago-1 Chevallier and Bordenave (1986)
Tarof-2 Fraser et al. (1993)
TBA-1X Livingstone et al. (1992)
TBA-2X Livingstone et al. (1992)
TBE-1X Koesoemadinata (1976), Chevallier and Bordenave 

(1986), Dolan and Hermany (1988), Fraser et al. 
(1993)

TBH-1X Livingstone et al. (1992)
TBM-1X Livingstone et al. (1992)
TBO-1X Livingstone et al. (1992)
West Salawati Satyana (2003)



 Facies (2017) 63:25

1 3

25 Page 16 of 22

Salawati Basin Bintuni Basin Arafura 
Sea

 23.03 

 20.44 

 15.97 

 13.82 

 11.63 

 7.25 

 22.96 

 21.12 

 19.3 

 17.54 

 16.38 

 15.1 

 14.24 

 13.77 

 13.41 

 11.79 

 11.63 

 10.46 

 9.83 

 6.14 

 5.72 

 8.58

Aq
ui

ta
ni

an
Bu

rd
ig

al
ia

n
La

ng
hi

an
Se

rra
va

llia
n

To
rto

ni
an

M
es

si
ni

an

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13b

M14

M13a

W
ad

e 
et

 a
l.’

s 
(2

01
1)

su
b-

tr
op

ic
al

 z
on

e

M
a

A
ge

/S
ta

ge

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

131 132 133 134 135
-5

-4

-3

-2

-1

M6

M14
-

M13
b

A

M13
a
-

M7

A. West
Salawati

M10

M12
-

M11

M14
-

M13

N. humerosa
4.  carinate planks
3. FO globular planks
2. LO reefal organisms
1. FO A. quoyi

5. FO N. acostaensis,

B

1
2
3

4

5

B. TBA-1X

M12

C. TBA-2X

M11
-

M10

M13
a

6. LO N. continuosa
5. FO N. acostaensis
4.  carinate planks
3. FO globular planks
2. LO SBF
1. FO A. quoyi

1

2
3
4
5

6

C

D. TBO-1X
E. TBM-1X
F. TBH-1X

M10

M12
-

M11

M13
a

6. LO N. continuosa
5. FO N. acostaensis
4.  carinate planks
3. FO 

2. LO SBF
1. FO A. quoyi

Gtr. nepenthes, 
    globular planktonics

1
2

3

4

5

6

D-F

M6

M11
-

M6

M13
a

6 .LO N. continuosa
5. FO Grt. merotumida, 

N. acostaensis
4. LO Par. siakensis
3.  carinate planks
2. FO O. universa,
    globular planktonics
1. LO SBF, reef 
    organisms
    (sponges, corals)

G. Klalin-1

1
2

3

4

5

6

G

6. LO Gtes. variablis,
    Grt. paralenguaensis,
    N. continuosa,
    Sph. seminulina
5. FO C. nitida,
    N. acostaensis
4. FO Gtr. nepenthes
3. 

FO globular planks
1. LO SBF 

 carinate planks
2. 

H. Agung-1

M7
-

M5

M8

M12
-

M11

M13
a

1
2
3

4

5

6

H

I. Gunung-1

M10

M12
-

M11

M14
-

M13

4. FO N. acostaensis,
N. humerosa

3.  carinate planks
2. FO globular planks
    (e.g. Gdes. spp.)
1. LO Mio. spp., SBF  

1
2

3

4

I

J. Tarof-2

M10

M12
-

M11

M13

4. 

3. 

2. 

FO A. quoyi

FO N. acostaensis, 
    carinate planktonics

FO globular planks
    (e.g. Gdes. spp.) 

LO A. quoyi, 
    miliolids, SBF
1. 

1
2
3

4

J

K. TBE-1X

M5

M8
-

M6

M9

1

2
3

4

3. 

2. 

1. 

4. FO Grt. menardii, 
    carinate planks

FO O. universa, 
    Gdes. spp., Psrt. spp.

LO Au. howchini, 
    SBF

FO M. vertebralis,
A. praequoyi

K

L. Sago-1

M3

M5

M13

M10
-

M6

1

2

3
4

5

6

6. 
    carinate planktonics
5. LO . ,

platy benthics
4. FO O. universa,
    Gdes. spp., globular 
    planks
3. LO SBF

FO F. bontangensis
1. LO Eul. spp., Spr. spp.

FO N. acostaensis, 

Cyc  indopacificus

2. 

L

M. Roabiba-1

M8

M9

M8

M9

M13

1
2

3
4

5

5. 
4. FO Grt. scitula,

carinate planks
3. LO platy benthics 
    (e.g. Oprc. spp.)

FO platy benthics 
    (e.g. Oprc. spp.), 
    globular planks 
    (e.g. Gdes. spp)
1. LO B. melo, SBF,
    miliolids

FO N. acostaensis

2. 

M

N. Monie South-1

M10

M11

M13

1

2
3

4

5. FO N. acostaensis
4. LO Par. siakensis

FO Gtr. nepenthes, 
Gta. naparimaensis 

2. LO Lepi. spp., SBF
1. mix SBF & globular
    planks 

3. 

5

N

O. ASA-1X

M10

M12
-

M11

M14
-

M13

1
2

3

4

4. FO N. acostaensis, 
    N. humerosa

2. FO globular planks
    (e.g. Gdes. spp.) 
1. LO Lepi. spp., 

Mio. spp., SBF 

3.  carinate planks

O

Legend

Shallow water 0-20m

Drowning platform 20-50m

Moderate water 50-100m

Deep water 100+m

W E



Facies (2017) 63:25 

1 3

Page 17 of 22 25

the drowning process during the Serravallian is denoted by 
the last up-hole occurrences of moderate-water-depth larger 
benthic foraminifera, such as Cycloclypeus spp. and Oper-
culina spp. (Fig. 8). The mixed assemblages of planktonic 
and shallow-water benthic foraminifera in these wells are 
interpreted to be analogous to the heterolithic beds observed 
above the Maruni Limestone in the Sungai Anggrisi drown-
ing succession, and other locations observed in the eastern 
Bird’s Head.

Other wells, ASA-1X, Gunung-1, Kalitami-1, Tarof-2, 
TBA-2X, TBH-1X, TBM-1X, and TBO-1X, record a sud-
den, rather than gradual, change in facies at the end of the 
Serravallian (M10, 11.79–11.63 Ma; Fig. 8). This is denoted 
by the presence of Alveolinella quoyi and last up-hole occur-
rences of other shallow-water foraminifera such as lepido-
cyclinids and miogypsinids, immediately overlain by facies 
with wholly planktonic foraminiferal assemblages (Fig. 8).

In many wells, basal planktonic foraminiferal assem-
blages are dominated by ‘moderate-water’ taxa (e.g., Bé 
and Tolderlund 1971; Bé 1977) becoming increasingly 
dominated by carinate and other ‘deep-water’ taxa such as 
Globorotalia spp., Neogloboquadrina spp. and Sphaeroi-
dinellopsis spp. up-hole (e.g., Bé and Tolderlund 1971; Bé 
1977). Fully deep-water conditions, with water depths in 
excess of 100 m, are interpreted to have occurred by the 
middle Tortonian (M13b, 8.58–6.14 Ma), often denoted by 
Globorotalia merotumida, Neogloboquadrina acostaensis, 
N. continuosa, and N. humerosa (Fig. 8).

In the Salawati Basin, pinnacle reefs at the top of the Kais 
Platform are younger towards the west of the basin than in 
the east (Fig. 8). The uppermost strata of the ‘U’ Interval are 
described to be N16 age in the west (recalibrated to Wade 
et al. (2011) sub-tropical zone M13a, 9.83–8.58 Ma), and 
N9–N16 (recalibrated to Wade et al. (2011) sub-tropical 
zones M6–M13a, 15.1–8.58 Ma), in the east (Satyana 2003), 

marking the time at which platform drowning in the Salawati 
Basin was complete.

Data from outcrop collected by this study indicates that 
the drowning process was complete by the end of sub-
tropical planktonic foraminiferal zone M10, and the Tf3/Tg 
boundary (11.63 Ma) of the Indo–Pacific Letter Stages, in 
areas farther to the east of the Bird’s Head (e.g., Fig. 2, Col-
umns C–F). However, in the Salawati Basin to the west, the 
drowning process is interpreted to be complete by the end of 
sub-tropical zone M13a (8.58 Ma). These observations sug-
gest that the drowning unconformity formed diachronously, 
younging to the west from M10 (11.63 Ma) to M13a (8.58 
Ma) times, over a period of approximately 3 Ma (Figs. 2, 
8). This substantiates outcrop evidence from the mainland 
Bird’s Head where migrating facies belts indicate the back-
stepping of shallow-water facies to the northwest during the 
Early to Late Miocene (Fig. 7), further supporting diachro-
nous formation of the drowning unconformity as younging 
towards the west. In the eastern Bintuni Basin, evidence 
from the Aroba, Jamusura and Besiri River wells (Rossetter 
1976) indicates that termination of Kais platform growth 
occurred in the Middle Miocene (Pigram et al. 1982). How-
ever, this diachroneity is also shown in the western Bintuni 
Basin where the Kais Formation is indicated as continuing 
into the Late Miocene (Koesoemadinata 1976; Collins 1977; 
Chevallier and Bordenave 1986; Dolan and Hermany 1988). 
In the Bintuni Basin, diachroneity is interpreted to occur as 
subsidence migrated westwards away from the developing 
LFTB (Collins 1977).

Mechanisms for northern New Guinea regional 
relative sea‑level rise

Gibson-Robinson and Soedirdja (1986) attributed the cause 
of the termination of Kais Platform and pinnacle reef growth 
in the Salawati Basin to a minor regression or still-stand that 
prevented further growth, leading to erosion. During subse-
quent renewed transgression, platform reef growth was not 
re-established (Gibson-Robinson and Soedirdja 1986). How-
ever, we consider that favorable conditions during renewed 
transgression following a minor regression or still-stand 
should have enabled the platform to re-colonize and continue 
to grow. Empirical evidence for platform drowning along 
Sungai Anggrisi is derived from facies and micropaleonto-
logical analyses of logged outcrop sections. This evidence 
indicates that a reduction in carbonate accumulation rates 
through environmental deterioration, outpaced by the rate 
of relative sea-level rise, is responsible for the formation of 
similar drowning successions observed in wells from the 
western Bird’s Head, comparable to the ‘U’ Interval of the 
Salawati Basin.

Fig. 8  Faunal turnover of shallow-water foraminifera replaced by 
increasingly deeper-water forms as recorded in 15 wells. Planktonic 
foraminiferal biozones based on Wade et al. (2011) zonation scheme. 
Zonal boundaries marked by changes in age or environmental diag-
nostic taxa. There is a general trend for stable platform deposition 
to cease by M5 (early Langhian), with the initiation of drowning 
occurring at M6 (mid Langhian), with the completion of the drown-
ing process by M10 (latest Serravallian) marked by the disappear-
ance of shallow-water or platy benthic foraminifera. Fully deep water 
in excess of 100  m, dominated by carinate planktonic foraminifera 
occurs by M13b (mid Tortonian). FO first occurrence, LO last occur-
rence, SBF shallow benthic foraminifera, A. Alveolinella, Au. Austro-
trillina, B. Borelis, C. Candeina, Cyc. Cycloclypeus, Eul. Eulepidina, 
F. Flosculinella, Ga. Globigerina, Gdes. Globigerinoides, Grt. Glob-
orotalia, Gta. Globigerinita, Gtr. Globoturborotalia, Gtes. Globoro-
taloides, Lepi. Lepidocyclina, M. Marginopora, Mio. Miogypsina, N. 
Neogloboquadrina, O. Orbulina, Oprc. Operculina, Par. Paraglob-
orotalia, Psrt. Pseudorotalia, Sph. Sphaeroidinellopsis, Spr. Spirocl-
ypeus)

◂
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The mechanism for the increase in rate of relative sea-
level rise is unknown. However, rotation of the Philippine 
Sea Plate, initiating at about 20 Ma, and minor subduction 
close to the northern New Guinea margin related to extru-
sion of 11–12 Ma volcanic rocks in the Bird’s Head (Hall 
and Spakman 2015), could have driven an acceleration in 
subsidence in extensional domains. This may have led to 
an increase in rate of relative sea-level rise contributing to 
platform drowning. In the Salawati Basin, Late Miocene 
termination of the Kais platform is attributed to tectonic 
subsidence commencing at about 6 Ma, with an estimated 
subsidence rate of approximately of 1 km per million years 
in the area of the Waipili-1 well (Livingstone 1992).

Extension is interpreted to have occurred across the 
Bird’s Head during most of the Miocene, initiating in the 
Burdigalian and continuing into the Tortonian. This is sup-
ported by biostratigraphic data collected and reviewed by 
this study, and the presence of sequences, several km thick, 
of middle and late Miocene siliciclastic strata within the 
regional basins, including the Salawati Basin, described by 
Visser and Hermes (1962). However, the entire region has 
undergone subsequent compressional deformation, which 
overprints the original shallow-water sequences that are now 
well above sea-level. The timing of the onset of compres-
sional deformation is controversial; however, we believe that 
it initiated with the onset of uplift of the LFTB of the Bird’s 
Neck, and mountains of the Central Ranges (Fig. 1) across 
the Bird’s Body during the latest Tortonian–Messinian (Hill 
and Gleadow 1989; Cloos et al. 2005; Spakman and Hall 
2010; Bailly et al. 2011; Hall 2012), after the drowning of 
the NGLG carbonate platform.

Conclusions

Although outcrops studied in the eastern Bird’s Head are 
several hundred kilometers away from wells studied in west-
ern New Guinea, the similar facies, paleobathymetry, and 
age of faunal turnover in both regions indicate that carbonate 
platform drowning was widespread across the entire Bird’s 
Head region. The identification of drowning successions 
farther to the east of the Salawati and Bintuni Basins, and 
Sekau Formation type locality, is significant, as it implies 
the New Guinea drowning event was a widespread environ-
mental crisis during the Middle and Late Miocene.

The interbedded deep-water marl and argillaceous car-
bonates described from the ‘U interval’ and Sekau Forma-
tion are similar to alternating beds of the same lithologies 
observed in Sungai Anggrisi. This is significant, as drown-
ing successions such as the Sekau Formation, which con-
tains commercial oil in the western Bird’s Head (Visser and 
Hermes 1962), may extend to the east. Heterolithic suc-
cessions of the ‘U’ Interval in the Salawati Basin record 

the attempt of carbonate platform strata to keep-up with an 
increase in the rate of middle Miocene relative sea-level rise. 
Although the review of well data did not permit identifica-
tion of Fe-enriched intervals, and thus interpretation of envi-
ronmental deterioration through nutrification, the failure of 
platform accumulation to keep pace with the rate of relative 
sea-level rise is recorded by the formation of a drowning 
unconformity interpreted to be marked by the ‘U’ Marker.

The drowning process is interpreted to have lasted c. 
9.5 My, initiating at approximately 18.0 Ma during sub-
tropical planktonic foraminiferal zone M3 (19.3–17.54 Ma). 
Drowning unconformity formation occurred diachronously, 
younging towards the north and west over a period of c. 3 My. 
In areas to the east of the Bird’s Head, the drowning uncon-
formity is interpreted to have formed at 11.63 Ma; however, 
this surface is dated at 8.58 Ma in areas farther west.

A combination of a reduction in carbonate accumula-
tion rates, through a change from oligo- to meso- trophic 
conditions (e.g., Brandano et al. 2016), and submergence 
through relative sea-level rise attributed to extensional 
tectonics, is interpreted to be responsible for the demise 
of the New Guinea Limestone platform (e.g., Hallock and 
Schlager 1986; Sattler et al. 2009). Evidence for submer-
gence is recorded as a gradual increase in bathymetry from 
environmental preferences of foraminifera, either through 
short-term high-amplitude oscillations in the global glacio-
eustatic sea-level trend or localized tectonic subsidence. 
Although regional tectonics and environmental deteriora-
tion are interpreted as a major control on the rise of relative 
sea-level in the Bird’s Head, biostratigraphic dating of the 
exposed drowning successions in the study area permit a 
general correlation with recognized Miocene global cycles 
of sea-level change (e.g., Miller et al. 2005; Snedden and Liu 
2010). These sequences correlate with a long-term trend of 
global sea-level rise from the late Oligocene, with several 
high-amplitude oscillations throughout the early to middle 
Miocene, reaching a peak of ca. 80 m above present sea-
level in the early to middle Tortonian at the Tor1 maximum 
flooding surface (Snedden and Liu 2010). However, caution 
is required in attempting to correlate global sea-level trends 
with stratigraphy in Southeast Asia. This region has been 
the site of major tectonic events throughout the Neogene, 
resulting in localized areas of subsidence, uplift, and there-
fore relative sea-level changes. Nevertheless, onset of glacio-
eustasy in the Miocene could well mean that a eustatic signal 
began to act as a significant control on Miocene strata, even 
in this tectonically active area.
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