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Abstract  Most regional landslide susceptibility models do not 
consider the evolving soil hydrological conditions leading up to 
a multiple occurrence regional landslide event. This results in 
inaccurate predictions due to the non-linear behaviour of the 
terrain. To address this, we have developed a simple and efficient 
model that incorporates the mid-term evolution of soil hydrologi-
cal conditions. The model combines a water balance model and 
a geotechnical model based on infinite slope theory. The analysis 
of 561 high-intensity rainfall events in a typhoon-prone region of 
the Philippines revealed that the percolation of water during the 
5-month wet season is crucial in determining landslide susceptibil-
ity. Consequently, high-intensity rainfall events at the start of the 
wet season are less likely to trigger landslides, while later events are 
more hazardous. We analysed the change in landslide susceptibil-
ity during the 2018 rainy season by comparing the probability of 
failure (PoF) before and after three high-intensity rainfall events 
(July, August and September). Only the event in September caused 
a significant increase in the probability of failure (PoF). The model 
showed an accuracy of 0.63, with stable cells better represented 
than unstable cells. The antecedent hydrological conditions on the 
lower soil layers are responsible for changes in landslide suscep-
tibility. Our findings support the hypothesis that new approaches 
to developing hydro-meteorological thresholds for landslide early 
warning systems should be evaluated, especially in regions with 
strong seasonality.

Keywords  Landslides · Rainfall · Soil moisture · 
Susceptibility · Typhoon

Introduction
Rainfall-triggered landslides occur in mountainous areas around 
the world and have a relevant presence in tropical countries or 
those affected by extreme meteorological conditions (Kirschbaum 
et al. 2015; Lin et al. 2017; Froude and Petley 2018). Some of these 
landslides occur in the form of multiple, almost simultaneous, shal-
low slope failures, the so-called MORLEs (Multiple Occurrence 
Regional Landslide Events) according to Crozier (2005). Extreme 
rainfall events such as tropical cyclones or convective storms 
are common triggers for MORLEs, which consequences can be 
devastating, including a great number of fatalities and damage to 
infrastructure and properties (e.g. Chiang and Chang 2011; Zhuang 
et al. 2022). Many efforts have been put in the assessment of the 
hazard and risk associated to MORLEs, mostly relying on the 
recognition of locations prone to slope instability (Guzzetti et al. 
2005; Crozier 2017; Guzzetti 2021) and the identification of critical 

rainfall intensities that trigger these instabilities (Guzzetti et al. 
2012; Gariano and Guzzetti 2016; Melillo et al. 2018; Reichenbach 
et al. 2018; Guzzetti 2021). Nevertheless, understanding why the 
response of the terrain is not linear and MORLEs do not occur 
always under the same rainfall conditions is still a major challenge 
(Jones et al. 2021). Observations from typhoon-prone regions (such 
as the one in this paper) reveal that very similar rainfall conditions 
at different times may or may not result in MORLEs, this being a 
key point of this research.

Landslide susceptibility models determine the probability of 
spatial occurrence of slope failures given a set of geoenvironmen-
tal conditions (Guzzetti et al. 2005, 2006). Probability is assessed 
using data-driven correlations (Baeza and Corominas 2001; Guzzetti 
et al. 2005; Reichenbach et al. 2018; Hearn and Hart 2019; Lombardo 
et al. 2019) or physical laws (e.g. Medina et al. 2021; Montgomery 
& Dietrich 1994) taking terrain characteristics and environmental 
conditions as input. Although terrain characteristics are nearly static 
variables (predisposing factors), environmental conditions are con-
trolled by dynamic processes at different time scales (predisposing 
and triggering factors). Most regional-scale landslide susceptibil-
ity models are “single event models” (SEM) and account only for 
triggering factors that occur on a short timescale, i.e. the rainfall 
occurred on the day(s) of the MORLE. The reason for this is the 
computational cost of using longer timescales in large areas. How-
ever, it is known that long-term variations of pore-water pressure 
in the soil due to water infiltration strongly control the instability 
of the slopes (Iverson 2000; Fan et al. 2020; Pelascini et al. 2022; 
Napolitano et al. 2016; Tufano et al. 2021); thus, in many occasions, 
SEM do not perform well as the transient nature of pore-water pres-
sure is overlooked. To overcome such limitation, some SEM include 
antecedent conditions, such as antecedent rainfall (Crozier and Eyles 
1980; De Vita and Piscopo 2002; Glade et al. 2000; Medina et al. 2021, 
Kirschbaum and Stanley 2018), soil saturation (Leonarduzzi et al. 
2021) or soil water content (Crozier 1999).

Remote and in situ sensing are popular alternatives to quantify 
continuous soil wetness for landslide risk assessment purposes 
(Wicki et al. 2021). In situ soil moisture sensors are used in early 
warning systems (Mirus et al. 2018a; Wicki et al. 2020; Oorthuis 
et al. 2023) to improve traditional rainfall thresholds. Soil moisture 
satellite measurements are gradually becoming a popular alterna-
tive (Brocca et al. 2008; Abraham et al. 2020; Bordoni et al. 2021; 
Stanley et al. 2021) as their spatial/temporal accuracy increases. A 
main advantage of using sensing data over modelled data is that 
it can be used in “continuous models” (CM), where the transient 
character of the environmental conditions is included. However, 
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sensing data are not exempt from limitations, and the spatial reso-
lution is amongst the main ones. In situ sensing provides data from 
specific points that may not be spatially representative. While satel-
lite soil moisture data provides data from a planimetric grid, data 
sensed from the satellites is only of the very shallow layer of the 
soil (< 100 cm).

Many tropical areas are characterized by a strong seasonality, 
with a wet and a dry season, generally due to the impact of mon-
soons. Typhoons (how tropical cyclones are called in the North-
West Pacific region) are very common MORLE triggers (Chiang 
and Chang 2011; Zhuang et al. 2022). They often occur between June 
and November, peaking in September, coinciding with the end of 
the wet season in several Pacific regions (Basconcillo and Moon 
2021). The wetness of the soil when typhoons make landfall can 
be very high, which may result in a higher probability of landslide 
occurrence. It is, therefore, important to account for the soil wetness 
when assessing landslide hazard. Higher (lower) water content in 
the soil pores corresponds to lower (higher) suction on them (van 
Genuchten 1980). Suction plays a crucial role in partially saturated 
soils, as it conditions the mechanical behaviour of the soils, and 
therefore, their stability (Alonso et al. 1990). The seasonality of the 
weather can, therefore, be associated to a seasonality of slope stabil-
ity, which should be considered on the regional landslide hazard 
assessment. Nevertheless, many regional landslide susceptibility 
models assume the fully saturated soil hypothesis since including 
the hydrology and mechanics of unsaturated soils is often data 
demanding and computationally expensive (Baum et al. 2008; Ma 
et al. 2021).

Focusing on the region of Itogon in the Philippines, which is 
commonly hit by typhoons and has an extensive history of land-
slides, we assess the role of antecedent hydrological conditions in 
the landslide susceptibility models. A recent study of Jones et al. 
(2023) in this region found that typhoon-triggered landslides in 
the Philippines display some degree of time dependency, which 
suggests that they may be affected by the antecedent wetness con-
ditions. Also, in the same region, Abancó et al. (2021) pointed out 
that the soil saturation of the upper soil layer seemed very relevant 
for the time of the MORLE occurrence; however, this needs to be 
proven. Nolasco-Javier and Kumar (2018) developed a minimum 
rainfall threshold for rainfall-triggered landslides in an adjacent 
area. They found out that events happened only after 500 mm of 
antecedent rainfall along the rainy season and suggested that ante-
cedent rainfall does not have a high influence on landslide trigger-
ing for short periods (up to 25 days). However, the antecedent rain-
fall gains importance on the landslide triggering if longer periods 
are considered. In conclusion, attempts to include long antecedent 
conditions have been made in the Philippines, but there is a lack 
of simple, usable models that include these effects in the regional 
landslide susceptibility assessment.

Here we investigate why regions regularly impacted by typhoons 
have a different slope stability response under similar triggering rain-
fall conditions (and the same geologic/geomorphologic predispos-
ing factors). To do so, we have coupled two physically based models 
and applied them in a landslide-prone region of the Philippines: a 
water balance model, specifically developed for the context of tropical 
regions, and the FSLAM landslide susceptibility model (Medina et al. 
2021; Guo et al. 2022). The goals of this study focus on the following: 
(i) quantifying the infiltration of rainfall into the soil for a 20 years 

data series; (ii) empirically comparing rainfall and infiltration pat-
terns that caused MORLEs and others that did not; (iii) analysing the 
landslide susceptibility changes at the event and seasonal timescales. 
In the Discussion, we also evaluate uncertainties derived from the use 
of satellite-based soil moisture data in regional slope stability models.

Study area
Landslides triggered by extreme weather patterns cause severe 
damage and life losses in the Philippines every year (Nolasco-
Javier et al. 2015; Paringit et al. 2020; Abancó et al. 2021; Emberson 
et al. 2022; Jones et al. 2023). The country has an average annual 
rainfall of approximately 2348 mm, with more than 4000 mm in 
the rainiest area (Central Luzon) (Climate Change Knowledge 
Portal for Development Practitioners and Policy Makers). The 
rainfall regime is characterized by two monsoon seasons: (a) 
the southwest monsoon (SWM), from May to September, when 
the western coast experiences its rainy season and accounts 
for approximately 43% of the annual rainfall of the country 
(Asuncion and Jose 1980); and (b) the northeast monsoon (NEM), 
when the rain hits mostly the eastern coast between October and 
late March. Besides the monsoons, approximately 20 tropical 
cyclones enter the Philippine Area of Responsibility, and seven 
to eight make landfall every year (Nolasco-Javier and Kumar 
2019). During the SWM, heavy rain hits the west of the major 
island of the Philippines, Luzon, which has a very mountainous 
topography, with half of the island above 500 m.a.s.l. The heavy 
rainfall, enhanced by the passage of tropical cyclones over the 
island, triggers a great number of landslide events.

We selected part of the Upper Agno catchment as a study 
area, in the northwest of the major island of the Philippines, 
Luzon. The study area contains four sub catchments on the west 
of the Agno River, at the mining area of Itogon, near the city of 
Baguio. The region is located at the southern end of the Central 
Cordillera Mountains. The key reason for selecting these four sub 
catchments is that they were severely impacted by Typhoon Parma 
in 2009 (locally known as Typhoon Pepeng) (Nolasco-Javier and 
Kumar 2018) and Typhoon Mangkhut (locally known as Typhoon 
Ompong) in 2018 (Abancó et al. 2021), which caused MORLEs in 
the area (Fig. 1).

The sub catchments under study have areas between 16 and 88 
km2, with a total area of 200 km2, and elevations between 490 and 
2018 m above the sea level (m.a.s.l.). The slopes range from flat to 
72°, with a mean value of 29°. The catchments are dominated by 
fine material, from the Bakakeng clay formation and fine-sandy 
material, from the Ambassador silt formation (Carating et al. 2014).

Landslide inventories from Typhoon Parma (Jones et al. 2023) 
and Typhoon Mangkhut (Abancó et al. 2021) have been used to 
calculate the landslide density after each typhoon. More details of 
the inventories are given in the “Landslide inventories” section. The 
two most southern sub catchments were covered by the two inven-
tories and were severely impacted in both typhoons, with landslide 
densities up to 95 and 46 landslides, respectively, in a 500 m radius.

Data
In the following sections, we present key information on the data-
sets used as input for an empirical analysis of the landslide-trigger-
ing rainfalls and infiltration patterns, as well as for the physically-
based models discussed above.



Landslide inventories

We selected a period of 19 years (2001–2020) and researched how 
MORLEs have impacted the study area. According to the records 
of the City Disaster Risk Reduction and Management Council 
(CDRRMC) of the City of Baguio (Paringit et al. 2020), at least 
18 tropical cyclones are known to have caused landslides in the 
area along this period. For most of them, the damage was local 
or only a few landslides were reported. However, for 2009 and 
2018 typhoon events, the number and spatial distribution of land-
slides was greater and landslide inventories were compiled using 
satellite imagery (Abancó et al. 2021; Jones et al. 2023). Landslide 
inventories for the remaining 16 typhoons were not available dur-
ing this study (Fig. 2).

Most of the landslide-triggering typhoons occurred between 
July and October, therefore at the end of the SWM season (Fig. 3). 
Typhoon Parma (called Typhoon Pepeng in the Philippines) was 
simultaneous to Typhoon Melor (Typhoon Quedan). They created 
the Fujiwhara effect (or interaction), a relative counterclockwise 
motion and decreasing separation distance between the two 
storm centres. Because of the presence of Melor, Parma slowed 
down and looped, reversed and made landfall three times over 
northern Luzon (Nolasco-Javier et  al. 2015) between 3 and 9 
October 2009. The landslide inventory for Typhoon Parma covers 
the two Southern sub catchments of the study area (Jones et al. 
2023). Typhoon Mangkhut, in 2018, crossed the north of Luzon 
Island between the 13 and 15 of September 2018 along the four sub 
catchments (Abancó et al. 2021; Jones et al. 2023).

Digital elevation model

We used a nationwide Digital elevation model (DEM) acquired 
in 2013 and generated through airborne IfSAR technology with 
5-m spatial resolution and 1-m root-mean-square error vertical 
accuracy (Grafil and Castro 2014) (Fig. 1).

The DEM was used for the physically based model to assess 
both the hydrological response of the terrain to the rainfall and 
the landslide susceptibility. This latest is assessed by pixel, so with 
a 5-m resolution (see results in the “Landslide susceptibility assess-
ment” section).

Soil

The soil map was provided by the Department of Agriculture-
Bureau of Soils and Water Management (DA-BSWM) (Carating 
et al. 2014). It originally had 15 classes in the study area. They have 
been reclassified into four broader classes, according to available 
descriptions (Fig. 6a). The geological origin of the soils was also 
considered during the reclassification, on the basis of the Geology 
Map (Baguio City Quadrangle, Sheet 3169 III (DENR-MGB 1995) 
and the Sison Quadrangle, Sheet 3168 IV (DENR-MGB 2000)), pro-
vided by the Department of Environment and Natural Resouces’ 
Mines and Geosciences Bureau (DENR-MGB). Table 1 shows the 
geotechnical properties of the four classes that are required for the 
stability analysis. The model used for the slope stability analysis is 
explained in detail in the “Methods” section.

Fig. 1   Location of the four sub catchments under study within the Upper Agno catchment (a) and location of the Upper Agno catchment 
within the Philippines (d). Landslide density (number of landslides in a 500 m radius) is indicated for Typhoon Parma (2009) (b) and Typhoon 
Mangkhut (2018) (c). Note that the Parma inventory only refers over the two southern catchments
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The friction angle, cohesion, permeability, porosity and den-
sity values were determined by few available laboratory tests 
(Casingal and Ganiban 2021) and estimations based on soil 
descriptions (Carating et al. 2014) in the other cases. Soil thick-
ness values were initially estimated based on field observations 
(for example, in the location of Fig. 4) and calibrated in the model 
(see in the “Results” section).

Land use and land cover

The land use and land cover map was provided by the National 
Mapping and Resource Information Authority of the Philippines 
(DENR-NAMRIA 2010). It originally had 11 classes within the study 
area, which, according to the descriptions, were reclassified into 
seven (Fig. 5b). Table 2 shows the estimated values of the root cohe-
sion and the curve number (United States Department of Agricul-
ture 1986) of each soil type that is required for the analysis using 
the physically based model for the susceptibility mapping (Medina 
et al. 2021).

Rainfall and soil moisture

Satellite-derived precipitation data from the Integrated Multi‐ 
satellite Retrievals for Global Precipitation Measurement (GPM 
IMERG)  (Huffman et al. 2019) mission was used to analyse the 
rainfall in the study area along the period 2001–2020. In particular, 
we used rainfall data from the grid cell centred on 248,953 and 
1,809,101 (WGS84/UTM 51N) (see Fig. 1). The data have a resolution 
of 0.1° (approx.10 km) and a time interval of 30 min. The selection 
of this specific grid cell to be used for the analysis was based on its 
proximity to the area with a high density of landslides in the two 
MORLEs that affected the study area.

The rainfall data was employed for (a) performing an empirical 
comparison between episodes that did and did not trigger MOR-
LEs, (b) input on the water-balance model, to obtain the fractions 
of rainfall that result in evapotranspiration/runoff/infiltration, and 
(c) input of the landslide susceptibility model. In this latest case, 
interpolation of data from 16 grid cells was used to obtain a rainfall 
map, as can be seen in detail in (Abancó et al. 2021).

Fig. 2   Typhoons that caused landslides in the area within the studied period (2001–2020), and the number of known landslides according 
to available inventories and records. Note that the area considered may slightly vary depending on the source of information (inventories vs. 
reports)

Fig. 3   Monthly distribution of typhoons and landslides in the study area between 2001 and 2020



We compared the soil moisture obtained by the water balance 
model (see in the “Water balance mode” section) with the satellite-
derived soil moisture data, in particular data from the Soil Moisture 
Active Passive (SMAP) Level-4 (L4) product (Reichle et al. 2017). Data 
from SMAP-L4 are derived assimilating previous SMAP products: 
Level 1, 2 and 3 data, which are processed in a land surface model from 
NASA. As an input data for the land surface model, the soil porosity is 
included. The soil porosity is obtained from the Harmonized World 
Soil Database version 1.21 (HWSD1.21). In particular, for the study area, 
the soil porosity is 0.47, which is not realistic for a clayey material, as it 
is further discussed in the Discussion. From all the outputs of the land 
surface model, we used the “analysis” product, which is an estimate of 
the 3-hourly instantaneous soil moisture and temperature of the soil. 
In particular, we used the root zone data (0–100 cm soil layer), which 
has a spatial resolution of 9 km and a temporal resolution of 3 h.

Methods
The influence of the rainfall and soil antecedent hydrologi-
cal conditions in the triggering of MORLEs has been studied 
using the coupling of two physically based models, which are 
explained in detail in the following sections. First, we developed 
a water balance model to quantify the rainfall infiltration and 
consequent changes in the soil antecedent hydrological condi-
tions. We applied the water balance model to a 19-year series of 
rainfall and we empirically compared the soil hydrological con-
ditions and rainfall patterns for different episodes: some that 
triggered landslides and others that did not. Then, we coupled 
the water balance model and the slope stability model FSLAM 
in order to assess the changes in landslide susceptibility due 
to the changes in soil hydrological conditions along the rainy 
season of 2018.

Table 1   Geotechnical properties of the reclassified soil types

Soil type Permeability (m/s) Cohesion (kPa) Friction 
 angle (°)

Soil thickness (m) Density (kg/m3) Porosity 
(m3/m3)

Min Max Min Max

Fine (clay, silt) 1 × 10−6 0 5 20 40 2 2000 0.3

Fine-sandy 1 × 10−5 0 3 25 45 2 2000 0.3

Sandy 1 × 10−4 0 3 35 45 2 2000 0.35

Coarse 1 × 10−3 0 2 35 45 2 2000 0.4

Fig. 4   View of the slope that was affected by one of the major landslides during Typhoon Mangkhut (2018). Inset, the red dot shows the loca-
tion of the picture in the study area. Photo credit G. Bennett
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Water balance model

The water balance model described here is a long-term continuous 
model (CM) that analyses water movement through the water cycle 
at daily time steps. Originally, it was developed by UPC BarcelonaT-
ech and called “Easy Bal” model (Serrano-Juan et al. 2020). The 
original water balance model only included two layers to represent 
the catchment soil: the root zone and the saturated zone (aquifer). 
We developed a modified version of the model which includes three 
layers (Fig. 6) in order to improve the effects of the unsaturated soil 
conditions. Although the mechanics of unsaturated soil is complex, 
the proposed model is simplified as we were seeking for a solution 
that was not computationally expensive and avoids having a lot of 
input variables. The new model is designed to evaluate water bal-
ance per unit of soil area as a function of precipitation, the potential 
evapotranspiration (or ETP), temperature and irrigation. It physi-
cally represents the root zone (Layer 1), unsaturated zone below the 
root zone (Layer 2) and saturated zone (Layer 3). Layer 2 and Layer 

3 have different saturation degrees, but their hydraulic conductiv-
ity is the same since they represent the same material type. On the 
other hand, the bedrock is impermeable.

Root zone
The hydrological cycle in Layer 1 (root zone) is regulated by 
the rainfall, the evapotranspiration ( ETP ), the runoff ( Ru ), 
the infiltration ( If  ) and the percolation process from the root 
zone to Layer 2 ( Pe ). In the root zone, the model consists of six 
parameters to perform the modelling: latitude, wilting point, 
initial water content, soil thicknesses, soil porosity, and hydrau-
lic conductivity. The water balance in this layer is based on the 
following equations.

To estimate potential evapotranspiration, the model uses 
the Hargreaves method (Hargreaves and Samani 1985), which 
requires rainfall, maximum and minimum daily temperature 
data as inputs (Eq. 1).

Fig. 5   Reclassified soil map (a) and reclassified land use and land cover map (b) of the study area

Table 2   Land use and land cover

Land use and land cover 
type

Root cohesion (kPa) Curve number

Min Max A B C D

Forest 0 5 30 59 73 79

Shrubs 0 3 32 58 72 79

Grassland 0 2 49 69 79 84

Bare soil 0 3 43 65 76 82

Farmland 0 1 56 68 80 84

Urban area 0 1 90 92 96 98

Water 999 999 100 100 100 100



where ETP is the potential evapotranspiration in mm/day, and 
Tmean , Tmax and Tmin are the mean, maximum and minimum tem-
peratures, respectively, in Celsius (°C). Extra-terrestrial radiation 
( Ra ) is estimated based on the location’s latitude and the calendar 
day of the year.

Runoff is calculated by a Hortonian approach. During heavy 
rainfall, when rainfall intensity exceeds soil infiltration capac-
ity, Hortonian overland flow occurs. It consists of rainfall excess 
and a recession-infiltration phase. The excess phase has runoff 
accumulation, while the recession phase sees reduced overland 
flow as infiltration increases. Hence, a simplistic version to esti-
mate runoff based on the Hortonian approach can be applied 
in the proposed hydrological model. For instance, when rainfall 
intensity is greater than hydraulic conductivity (soil perme-
ability), runoff is equal to rainfall at time step i; otherwise, all 
the rainfall infiltrates. It is highly recommended to use hourly 
rainfall data. Equation 2 can be applied to separate runoff from 
infiltration (note that i subindexes refer to timestep):

where Rui and Ii are the runoff and rainfall intensity at time step i 
respectively, and K is the soil hydraulic conductivity. Therefore, the 
model can estimate the soil Layer 1 degree of saturation based on 
the following equation (Eq. 3).

where Sd is the saturation degree, the subindex i indicates time 
step in days, n is soil porosity, Rday is precipitation (mm/day), Ru 
is runoff (mm/day), Wp is the soil wilting point (-), n is the soil 

(1)ETP = 0.0023 × Ra × (Tmean + 17.8) × (Tmax − Tmin)
0.5

(2)Rui = IF(Ii > K , Ii , 0)

(3)

Sd(layer 1)i = max(min(Sd(layer 1)i−1 +

(

Rday − Ru
)

− ETP

nt(layer 1)
, 1),

Wp

n(layer 1)
)

porosity of layer 1(-) and nt (mm) is the total amount of available 
soil pores obtained by multiplying its porosity and soil thickness. 
Additionally, volumetric water content ( VWC ) in this layer can be 
estimated as (Eq. 4):

Finally, the percolation process to the lower unsaturated zone 
from Layer 1 to Layer 2 ( Pe , in mm) is controlled by the following 
equation (Eq. 5):

Lower unsaturated zone

The hydrological cycle in Layer 2 (lower unsaturated zone) is regu-
lated by the percolation from Layer 1 and the recharge process to 
the saturated zone (recharge to Layer 3). Here, the model considers 
two parameters: soil thickness and soil porosity. The water balance 
in this layer is based on the following equations.

Considering Layer 1’s infiltration, saturation degree ( Sd ) of the 
lower unsaturated zone is estimated as (Eq. 6):

where nt is the total amount of available soil pores of layer 2, Pe is 
the percolation from layer 1 (mm) and Re is the recharge which 
estimates the amount of water (mm) that is going into the aquifer 
(Layer 3, saturated zone). The recharge is calculated as (Eq. 7):

(4)VWCi = n(layer 1) × Sd(layer 1)i

(5)Pei = (Sdi−1−Sdi +
Rday − Ru − ETP

nt(layer 1)
) × nt(layer 1)

(6)Sd(layer 2)i = min(Sd(layer 2)i−1 +
(Pe, 0) − Re

nt(layer 2)
, 1)

(7)Rei = (Sd(layer 2)i−1 − Sd(layer 2)i +
nt(layer 2) −max(Pe, 0)

nt(layer 2)
) × nt(layer 2)

Fig. 6   Conceptual representation of the three-layer water balance model: structure of the soil before the rain (a); processes occurring in the 
root zone as the rainfall starts: evapotranspiration (ETP), runoff (Ru), infiltration (If), percolation (Pe) and soil saturation- change in satura-
tion degree (Sd) due to reduction of fillable porosity (n) (b); processes occurring in the deeper layers as the water infiltrates during the rain: 
changes in saturation degree, recharge (Re), lateral flow (Fl) and increase of the water table (WT) (c)
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Saturated zone
Layer 3 represents the aquifer and receives water from the unsatu-
rated zone as recharge ( Re ). Water output is calculated as lateral 
flow ( Fl ) which represents the water that goes into the aquifer. Two 
parameters control this layer: initial water table and slope. The 
water balance in Layer 3 is based on the following equations: aquifer 
water table and lateral flow (mm and mm/day respectively), which 
are calculated as follows (Eqs. 8 and 9):

where WTi is the water table at i time step, K is the hydraulic con-
ductivity (mm/day) and � is the terrain slope (degrees).

Rainfall and infiltration analysis

The GPM IMERG rainfall data series 2001–2020 was introduced 
in the water balance model to account for the soil hydrological 
conditions continuously along the 19 years period. In order to ana-
lyse the rainfall and soil hydrological conditions likely to trigger 
landslides, we developed a code using Matlab (The MathWorks Inc. 
2021) to select high-intensity rainfall episodes. The events were 
selected based on the criteria defined in Abancó et al. (2021): rain-
falls with intensity higher than 4 mm/h on average, for 3 consecu-
tive hours. Less than 2% of the 30 min rainfall records exceeded 
4 mm/h in the period 2001–2020; therefore, it was considered to 
be an extreme rainfall intensity. Following Abancó et al. (2021), the 
start (end) of the rainfall event needs to be preceded (followed) 
by 1 h without rain.

A total of 561 rainfall episodes were identified, including the 
episodes with landslides (both MORLEs and other events where less 
than 100 landslides were reported, so with a density lower than 0.5 
landslides/km2) (Fig. 7). In particular, three of the rainfall events are 
associated to MORLEs, and 22 of them to events with less than 100 
landslides reported. The rest of the high-intensity rainfall events 
did not trigger landslides, according to the available records. The 
reason why three rainfalls are associated to MORLEs while there 
is only two MORLEs reported in the study area between 2001 and 
2020 is because, according to the criteria of start and end of the 
rainfall event, Typhoon Parma had two different rainfall events: the 
one starting on the 1st of October 2009 and another one starting on 
the 5th of October 2009. The second one corresponds to the back-
ward movement of Typhoon Parma after interacting with Typhoon 
Melor. This also happens with the 16 tropical storms that triggered 
less than 100 landslides, which resulted in 22 rainfall events.

The result of the analysis was a set of (a) ten parameters that 
described the characteristics of the event triggering rainfall 
(duration, event rainfall, mean rainfall intensity, maximum 
rainfall intensity for 30/60/90/120/180/240/300 min) and (b) five 
parameters that described the antecedent condition of the soil since 
the start of the SWM (percolation, accumulated percolation since 
the start of the SWM, water table, lateral flow, volumetric water 
content of the root zone soil layer, which is the volume of water per 
volumetric unit of soil that stays in the root zone).

(8)WTi = min(max(WTi−1 +
Rei−1
nlayer 2

−
Fli−1
nlayer 2

, 0),WTi × 1000)

(9)Fli = WTi × K ×
sin(�)

1000

Landslide susceptibility model

The landslide susceptibility model used in this work is the FSLAM 
model (Medina et al. 2021). FSLAM is a physically based model 
to assess landslide susceptibility at the regional scale, which main 
characteristic is its very short computational time. FSLAM con-
sists of a simplified event hydrological model and the infinite slope 
theory to assess the slope stability. The event hydrological model 
computes the water table before and after the “event rainfall” (rain-
fall that triggers the landslides). The factor of safety ( FoS ) is then 
calculated based on the infinite slope theory, using the geotechni-
cal properties of the soil (the two most sensitive properties can be 
stochastically included), the slope and depth of the soil layer and 
the position of the water table. Afterwards, the probability of failure 
( PoF ) maps (before and after the triggering rainfall) are calculated 
based on the stochastic values of the FoS in each of the cells of the 
map. A complete description of the model, including the details of 
the physical background, can be found in (Medina et al. 2021), so 
will not be repeated here.

We selected three high-intensity rainfall events (“event rain-
fall”) from the section above to calculate the landslide susceptibil-
ity using FSLAM model: two that did not trigger MORLEs and one 
that happened a month after and did trigger a MORLE. An impor-
tant point for this work is that FSLAM is a SEM that includes the 
antecedent conditions as an input, through a parameter called ante-
cedent effective recharge ( qa ). The antecedent effective recharge in 
FSLAM is an input of the model and is used to determine the value 
of the water table at a kind of steady condition before the event 
rainfall starts. In order to incorporate the transient effect of the 
soil hydrological conditions along the wet season in this analysis, 
the water balance model presented above was coupled with FSLAM 
so the average of 3 months of recharge was used to calculate the 
antecedent effective recharge and therefore used to calculate the 
water table.

The coupling of the water balance model and FSLAM was 
done by using two outputs of the water balance model as inputs 
in FSLAM. The outputs are (a) the lateral flow ( Fl ), which is the 
amount of water that goes into the aquifer, and (b) the fillable 
porosity of the Layer 2 ( nlayer2 ) at the beginning of the landslide-
triggering “event rainfall”, which from now on will be referred as nf  . 
These two parameters were considered as qa (antecedent effective 
recharge) and n (porosity) in the geotechnical model of FSLAM, 

Fig. 7   Monthly distribution of 561 episodes of high-intensity rainfall 
registered between 2001 and 2020



respectively. FSLAM has a series of inputs that had to be calibrated: 
the soil geomechanical (cohesion and friction angle) and hydro-
logical (permeability) parameters and the depth of the soil. The 
calibration process is crucial to make the coupling consistent.

Results

Comparison of rainfall patterns and antecedent soil hydrological 
conditions
Events with multiple landslides happened in the study area in 12 
of the 20 years analysed. However, episodes with more than 100 
landslides (the threshold used in this study to be considered a 
MORLE) happened only in two of the 20 years analysed. MORLEs 
were recorded coinciding with high accumulated rainfall since the 
start of the southwest monsoon ( ARSWM ), the rainy season, and 
moderately high daily rainfall ( Rday ) (Fig. 8).

The analysis of the 20-year rainfall data series from a GPM-
IMERG grid data cell (10 × 10 km approximately, see Fig. 1 for the 
location of the grid centre) shows that the majority of the annual 
rainfall always occurred along the SWM (May to September), when 
the median monthly rainfall amount is 290 mm/month. In contrast, 
NEM months (October to April) accumulated less rainfall, with a 
median value of 65 mm/month. Yearly rainfalls show a large vari-
ability, between 1879 and 3746 mm/year, with daily rainfalls as high 
as 500 mm/day.

Four of the parameters were selected for the analysis of the 561 
high-intensity rainfall events (see in the “Rainfall and infiltration 

analysis” section) due to their representativity of the antecedent 
soil hydrological conditions and event rainfall conditions and their 
presence in the literature: on one side, the percolation since the 
start of the SWM ( PeSWM ) and the volumetric water content ( VWC ) 
of the soil in the root zone as antecedent water conditions in the 
soil, and on the other side, the total event rainfall ( ER ) and the max-
imum hourly rainfall intensity ( Imax ) as event rainfall parameters.

Comparing the high-intensity rainfall events, the ones that trig-
gered MORLEs coincide with high values of percolation since the 
start of the SWM (Fig. 9a, c), with a value of the 96th percentile or 
higher. Although MORLEs occurred also with the highest values 
of total event rainfall (97th percentile or higher), the maximum 
intensities registered in these rainfalls were within the percentile 
87th or above, so not extraordinarily high (Fig. 9b). Similarly, when 
event rainfalls exceed 200 mm (percentile 95th), landslides are very 
common, but the maximum intensity values are not that repre-
sentative. Individual landslides can happen even with low values 
of percolation since the start of the SWM.

The volumetric water content of the soil in the root zone 
achieves its maximum value very often, as the saturation of the 
upper layer of the soil is common during the wet season. Although 
MORLEs happened always in the situation of saturated (or nearly 
saturated) soil in the root zone, the saturation of this layer of the 
soil is not a representative parameter to identify landslide occur-
rence (Figs. 9d, e).

Figure 8b shows that the full saturation of the root zone is very 
stable during the wet seasons of the period 2001–2020. However, in 

Fig. 8   Daily (Rday) and accumulated rainfall since the start of the South West Monsoon (ARSWM) for the period 2001–2020 in the study area. 
Landslide occurrence is indicated, distinguishing between events that triggered more (MORLEs) or less than 100 landslides (a); volumetric 
water content of the root zone of the soil, calculated using the water balance model (“Water balance model” section) (b); boxplots for yearly, 
monthly (distinguishing between months of the North East Monsoon, NEM, and South West Monsoon, SWM) and daily rainfall (R) for 2001–
2020 in the study area (c)
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Fig. 9d, e, it can be observed that saturation of the root zone ( VWC 
values of 0.35 m3/m3) are not a sufficient condition for MORLEs to 
occur. In contrast, percolation values higher than 1200 mm since the 
start of the SWM season seem to be a good indicator for MORLEs 
hazard (Fig. 9a, c).

Landslide susceptibility assessment

Sensitivity analysis of model parameters

The landslide susceptibility model FSLAM has been used in previ-
ous studies, although never coupled with the water balance model 
nor in a tropical climate area. In order to check if the influence 
of the FSLAM inputs was equivalent to study areas with different 
climatic contexts and to adjust the range parameter values to this 
particular case, the process of calibration has been complemented 
with a sensitivity analysis of the model parameters. The results of 
the calibration of each FSLAM input parameter based on sensitiv-
ity (true positive ratio (TPR)) and specificity (true negative ratio 
(TNR)) indices are presented. These were obtained using the full 
inventory dataset. The value range of the input parameters as well 
as the default values are shown in Table 3. In addition, rainfall event 
input is usually observed data from rain gauges, radar or remote 
sensing; therefore, it is assumed as a fixed value.

The results of the sensitivity analysis are plotted by boxplots, 
and their respective maximum and minimum values are also indi-
cated (Fig. 10). Selected range values for each parameter were cho-
sen considering realistic parameter values for each soil properties 
input. Seven parameters were evaluated in Fig. 10 where each of 

them shows different sensitivity level based on the box height. Fur-
thermore, outliers (showed as points in each extreme of the box-
plots) indicate how sensitive a particular parameter value could be 
when is higher or lower than the average value (median is indicated 
as a horizontal line in each boxplot).

Results show that one of the most sensitive input parameters is 
cohesion (Medina et al. 2021; Durmaz et al. 2023) expressed as Cs 
and Cr . The TPR and TNR ranges are significantly larger than the 
other parameters. The less (more) the cohesion value, the more 
unstable (stable) the soil, which increases the true positive (nega-
tive) ratio allowing to have more landslide (no-landslide) events. 
They both are the main parameters that control the presence of 
landslides based on the box width which indicates that, in the 
assessed parameter range 2.5–25, each iterated value causes a sig-
nificant change in susceptibility maps (either higher or lower TPR 
or TNR value).

Parameters log(k) and � have similar behaviour in terms of TPR 
and TNR indices, while n and z seem to be parameters with no 
influence in allowing FSLAM to detect landslides. Only z , when is 
set lower than 1 m, shows a big variation in terms of TPR and TNR. 
Similar to Medina et al. (2021), a particular case is found in qa where 
low values (< 1 mm/day) are more important than high ones as 
they do not show a long variation when it is set > 1 mm/day. This is 
observed as those values are represented as outliers in the boxplot, 
which indicates that values lower than 1 mm/day cause a variation 
from 0.7 to 1 approximately for either TPR or TNR; meanwhile, 
values greater than 1 mm/day only produce a variation from 0.6 to 
0.7 approximately. This analysis indicates that qa is also one of the 
most sensitive parameters in FSLAM to produce landslides. In this 

Fig. 9   Analysis of 561 high intensity rainfalls from the period 2001–2020 in the study area, distinguishing between ones that caused MORLEs, 
ones that caused landslides (less than 100) and others that did not cause any landslide. Total event rainfall (ER) vs. Percolation since the start 
of the SWM (PeSWM) (a); ER vs. maximum hourly intensity (Imax) (b); Imax vs. PeSWM (c); ER vs. volumetric water content of the root zone soil layer 
(VWC) (d); Imax vs. VWC (e)



analysis, it seems that qa low values are not suitable if presence of 
landslides is required in the post-event susceptibility map.

Landslide susceptibility changes at event and seasonal 
timescales
The comparison of rainfall patterns and soil hydrological condi-
tions (“Comparison of rainfall patterns and antecedent soil hydro-
logical conditions” section) points out that the amount of rainfall 
infiltrated along the rainy season is a key point in the landslide 
triggering process. Hence, here we analyse the change of landslide 
susceptibility at two timescales: event and seasonal timescale. For 

this, we selected three high-intensity rainfall events (from the 561 
analysed in the “Comparison of rainfall patterns and antecedent 
soil hydrological conditions” section), which correspond to the 
same rainy season. The selected events are (a) 16th of July 2018, (b) 
9th of August 2018 and (c) 13th of September 2018 (Table 4). The 
first two events do not have landslides reported, while the third one 
(Thyphoon Mangkhut) is associated with a MORLE.

At seasonal timescale, as the total amount of accumulated water 
percolated below the root zone increases ( PeSWM ), the fillable porosity 
of the soil ( nf  ) decreases due to the reduction of pores available 
to store water (Fig.  11). As a consequence, the amount of water 

Table 3   Values of input-parameters selected during the model calibration

Input parameter Parameter name (Medina et al. 2021) Units Default value Minimum value Maximum value

Cr Root cohesion kPa 5 2.5 25

Cs Soil cohesion kPa 5 2.5 25

log(k) Log hydraulic conductivity m/s -6 -7 -5

n Soil porosity - 0.3 0 0.4

qa Antecedent effective recharge mm/day 6 0.1 12

� (max) Soil friction angle ° 40 35 45

z Soil depth m 1 0.5 5

Fig. 10   Results of the calibration and sensitivity analysis of FSLAM parameters. The two plots present the ranges of TPR (a) and TNR (b) indices
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recharging the aquifer increases ( Re ) as the rainy season advances, 
producing a water table rise. This phenomenon does not necessarily 
imply a change in landslide susceptibility, as the probability of failure 
( PoF ) remains constant until the water table is high enough to drop 
the factor of safety ( FoS ) values (Medina et al. 2021). In 2018, this 
situation was not reached until the passage of Typhoon Mangkhut 
(September 2018); therefore, landslide susceptibility remains nearly 
constant all along the rainy season until September.

At the event scale, the rainfall is converted into (a) runoff, (b) 
water to fill in the pores of the unsaturated layers and (c) water 
that recharges the aquifer producing an increase in the water 
table. The effect of the “event rainfall” is similar in the July and 
August scenarios, as the probability of failure ( PoF ) is nearly con-
stant before and after the event rainfall (Fig. 11), meaning that 
the increase of the water table does not reduce the FoS to criti-
cal levels. In September though, before the passage of Typhoon 
Mangkhut, the soil in the lower unsaturated zone was very close to 
saturation (fillable porosity was only 0.04, see Table 4); therefore, 
the antecedent effective recharge was at its highest levels (0.1 mm/
day).  With this situation, the event rainfall did generate a water 
table rise that was critical for many slopes, rising their probability 
of failure very close to 1 or 1 (Fig. 12). In September, the number 
of cells with PoF greater than 0.5 increased by 23% (reaching a 
value of 26.6%), compared to less than 4% in July and August for 
the whole area.

The comparison of the situation before and after Typhoon Man-
gkhut on 15th of September 15, 2018, reveals a significant increase in 
the probability of failure in the location of the landslides. Before the 
typhoon, only 5% of the landslide locations had a PoF (probability 

of failure) above 0.5, and 83% had a PoF below 0.3. However, after 
the typhoon, 55% of the landslide locations had a PoF above 0.5, 
and 65% had a PoF above 0.3 (Fig. 13). In terms of statistical perfor-
mance, FSLAM showed an accuracy of 0.63 during this event, where 
stable cells (no-landslide) were better represented (TNR = 0.73) 
than the unstable cells (no-landslide) (TPR = 0.54) (Table 5).

Discussion
Two major topics are discussed in the following. First, the singu-
larities of the landslide hazard assessment in tropical regions will 
be highlighted, and second, the use of satellite-based soil moisture 
data for landslide hazard assessment will be debated.

The singularities of the landslide hazard assessment in tropical 
regions

In previous studies, Medina et al. (2021) and Hürlimann et al. 
(2022) applied the FSLAM model to study areas with average 
annual rainfall from 900 to 1200 mm characterized by an Alpine 
Atlantic climate and influenced by the Mediterranean Sea and 
orographic effects. These climates are characterized by high 
amounts of rain during the summer months, with values of per-
colation of up to 1 mm/day in the most humid months. In the 
past analyses of these cases, the simulations with FSLAM associ-
ated slope instability with a water table rise during the triggering 
rainfall, considering that the terrain was already fully saturated. 
Therefore, the values of 1 mm/day of percolation correspond 
directly to aquifer recharge.

Table 4   Characteristics of the three selected high-intensity rainfall events for the landslide susceptibility analysis

Date ER (mm) PeSWM (mm) Imax (mm/h) VWC (m3/m3) nf (-) qa (mm/
day)

16/07/2018 227.3 412.3 16.5 0.35 0.27 0

09/08/2018 402.7 802.4 18.2 0.35 0.18 0.01

13/09/2018 292 1393 30.69 0.35 0.04 0.1

Fig. 11   Evolution of volumetric water content (VWC), effective porosity (nf), and antecedent effective recharge (qa) along the wet season of 
2018. Accumulated percolated water below the root zone along the wet season (PeSWM) and event rainfall (ER) are indicated for the three 
analysed events



In contrast, the climate in the Philippines, with frequent tropical 
cyclones and two different monsoon regimes, is characterized by per-
colation rates of up to 20 mm/day in the wet season. With such high 
percolation rates, if all the water would contribute to aquifer recharge, 
the water table would rise very quickly and the probability of failure 
would be continuously very high during the wet season. The reality 
shows that certain conditions need to be met in order for landslides to 
happen, as they do not happen every rainy season or with every high-
intensity rainfall. Moreover, the initial coupled model (based only on 
two layers) showed poor performance when considering that all the 
percolation ( Pe ) is transformed into recharge ( Re ), and therefore, the 
qa is very high. Instead, for low values of qa in the final coupled model 
(i.e. considering three layers), the results greatly improve (see the 
“Sensitivity analysis of model parameters” section).

The terrain in the study area is composed of a layer of regolith 
over unweathered igneous bedrock (mainly diorite), with a weath-
ering degree that gradually decreases in depth from the surface. 
Although there are some differences between the upper and lower 
layers of soil due to weathering patterns, the upper 5 m, where 
landslides occur, display very similar characteristics in terms of 
hydraulic conductivity and porosity, according to field observations 
and georadar campaigns. To account for differences in saturation 
levels between different soil layers (which are represented by fillable 
porosity), the three-layer water balance model is used. The time it 
takes for the unsaturated soil to become saturated, begin recharging 
the aquifer and therefore raising the water table to the point that 
generates slope instability, depends on the amount of rain that falls 
during the wet season.

Fig. 12   Probability of failure map: before (a) and after (d) 16th of July 2018; before (b) and after (e) 9th of August 2018; before (c) and after (f) 
13th of September 2018. Landslide inventory is indicated with black dots

Fig. 13   Cumulative distribution function (CDF) of the probability of failure (PoF) before and after the 15th of September 2018 in the location 
of the landslides
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This explains why Nolasco-Javier and Kumar (2018) found that 
landslides in the area of Baguio are only likely to happen after 
500 mm of rain accumulated during the rainy season and why 
Pelascini et al. (2022) found that typhoon-triggered landslides 
are likely to happen after consistent rain during the wet season. 
In order to properly account for all these effects, a water balance 
model accounting for an unsaturated soil layer below the root zone 
was developed and coupled to FSLAM. The key point for the land-
slide hazard assessment in tropical regions is therefore accounting 
for the change in antecedent soil wetness conditions not only in the 
root zone but also below it.

The use of satellite‑based soil moisture data for landslide hazard 
assessment

The importance of soil water content in the assessment of land-
slide susceptibility and hazard is a topic that has been raised mul-
tiple times in the literature (e.g. Mirus et al. 2018b; Wicki et al. 
2020). In fact, recent studies have demonstrated the potential of 
soil wetness measurements to be included in hydrological-based 
thresholds to predict regional shallow landslides (Bogaard and 
Greco 2018; Zhao et al. 2019; Marino et al. 2020; Palau et al. 2023). 

In this sense, two-dimensional probabilistic rainfall thresholds are 
increasing their popularity (e.g. Abraham et al. 2020, 2021; Zhao 
et al 2019). These are used as Early Warning Systems to evaluate 
the conditional probability of the landslide occurrence given the 
joint occurrence of certain antecedent soil moisture conditions and 
the severity of a rainfall event. Some of the approaches include 
soil moisture estimates using satellite-derived data (Brocca et al. 
2012; Thomas et al. 2019), while others account for the antecedent 
soil wetness using physically-based methods (e.g. Zhao et al 2019). 
As already mentioned in the introduction, satellite-based data has 
the advantage of representing a planimetric grid instead of point 
data (such as the data from in situ sensors), but a main limitation 
is that data from the satellites is only of the very shallow layer of 
the soil (< 100 cm).

The present study shows that, in tropical regions, the wetness 
conditions are very relevant, but in the lower layers of the soil 
(below the root zone). Therefore, the use of satellite-based soil 
moisture data for the assessment of landslide hazard assessment 
would not be sufficient and data in depth is required. For exam-
ple, in the case of the wet season of 2018 (analysed in the “Land-
slide susceptibility model” section), soil moisture measured by the 
SMAP-L4 satellite shows minimal changes from July on (Fig. 14). 
Here, it is worth pointing out that, as mentioned in the “Rainfall 
and soil moisture” section, the soil porosity value that is used in the 
compilation of SMAP-L4 is 0.473. This value is the maximum VWC 
value for the SMAP-L4 values, but it is not realistic for such fine 
material as the Bakakeng clay. For this reason, the modelled VWC 
in the root layer is lower than SMAP-L4 VWC, since it is obtained 
using a more realistic porosity (0.35). Saturation is reached early in 
the wet season; however, this is not linked to the triggering of MOR-
LEs. However, starting in mid-August, the recharge of the aquifer 
starts, as the soil pores of the unsaturated zone (Layer 1 and Layer 
2 of the model), are already filled. This element is decisive for the 
likelihood of landslides to happen, as can be observed with the 
event on 13/09/2018.

Table 5   Statistical performance of the three rainfall events analysed

Events Pre-event Post-event

TNR Accuracy TPR TNR

16th of July 2018 (No MORLE) 0.96 - - 0.94

9th of August 2018 (No 
MORLE)

0.96 - - 0.93

13th of September 2018 
(MORLE)

0.99 0.63 0.54 0.73

Fig. 14   Evolution of volumetric water content (b) and antecedent effective recharge (qa) (a) during the wet season of 2018 in the study area



Conclusions
The main goal of this paper was to understand why regions regu-
larly impacted by typhoons have different slope stability responses 
under similar rainfall conditions and the same geologic/geomor-
phologic predisposing factors. We focused on the Itogon region in 
the Philippines and we studied a 20-year rainfall data series with 
the objective of comparing the rainfall events that did trigger land-
slides and the ones that did not, and quantitatively assessing the 
change of the probability of failure with changes in soil hydrologi-
cal conditions.

The analysis of 561 high-intensity rainfall events that occurred 
in the study area showed that the parameter that better identified 
the critical rainfall was actually the percolation since the start of 
the wet season (i.e. the South West Monsoon (SWM), from May 
to October). This parameter represents the amount of water that 
infiltrates below the root zone and contributes both to saturating 
the soil and recharging the aquifer (and rising the water table). 
Rainfall events that had very high intensities occurred at the start 
of the wet season were not as likely to trigger landslides as the ones 
that occurred in a more advanced stage of the SWM.

To understand the reason for this phenomenon, we developed a 
water balance model to track the water cycle into the soil and iden-
tify the part that contributes to the soil saturation and the part that 
leads to a water table rise. This model was afterward coupled with a 
well-known regional landslide susceptibility model (FSLAM). The 
resulting coupled model allows the analysis of the transient char-
acter of the landslide susceptibility in a simplified way, by using the 
concept of fillable porosity to represent the process of the soil satu-
ration (see Fig. 11). The simplicity of the model is key to guarantee 
the computational efficiency and to preserve the idea of FSLAM of 
being a fast regional physically based model.

The changes in landslide susceptibility are strongly related to the 
soil antecedent hydrological conditions, in particular to the amount 
of water that recharges the aquifer, after infiltrating through the 
unsaturated soil layers. At the beginning of the wet season, the 
water that infiltrates into the soil contributes to the increase of the 
saturation degree of the root zone and the lower unsaturated zone 
but does not contribute to the increase of the water table and prob-
ability of slope failure. Only once the soil is saturated the aquifer is 
recharged and the water table rises, leading to potentially critical 
situations associated with high-intensity rainfalls.

We conducted an analysis on the evolution of the probability of 
failure (PoF) in the four sub catchments of our study area during 
the 2018 rainy season. For this, we studied three episodes of high-
intensity rainfall that occurred in July, August and September. Dur-
ing the months of July and August, the probability of failure (PoF) 
remained almost the same before and after the rainfall event, with 
an increase of less than 2% and a maximum of 4%. However, in 
September, the PoF increased by 23%, reaching a value of 26.6%. 
Additionally, 55% of the landslides that were mapped occurred in 
areas where PoF values were above 0.5.

The findings of this study suggest that the use of soil moisture 
satellite-based products for landslide hazard assessment may be 
insufficient in tropical areas and where an important soil thick-
ness is common. These products are representative of the soil water 
content in the upper layers of the soil, which we observed were 
not able to account for the probability of failure of the slopes. The 
use of physically based models that account for the soil wetness in 

lower layers of the soil is, then, more relevant to be used in landslide 
hazard assessment (e.g. in hydrological-based rainfall thresholds). 
Soil moisture satellite-based products are best thought as one of 
the parameters to calibrate the water percolation from the surficial 
layers into the lower parts of the soil, which leads to instability.
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