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Abstract  Landslide occurrence has become increasingly influ-
enced by human activities. Accordingly, changing land use and 
land cover (LULC) is an important conditioning factor in land-
slide susceptibility models. We present a bibliometric analysis 
and review of how LULC was explored in the context of landslide 
susceptibility in 536 scientific articles from 2001 to 2020. The pat-
tern of publications and citations reveals that most articles hardly 
focus on the relationship between LULC and landslides despite a 
growing interest in this topic. Most research outputs came from 
Asian countries (some of which are frequently affected by land-
slides), and mostly with prominent international collaboration. 
We recognised three major research themes regarding the char-
acteristics of LULC data, different simulated scenarios of LULC 
changes, and the role of future scenarios for both LULC and  
landslide susceptibility. The most frequently studied LULC classes 
included roads, soils (in the broadest sense), and forests, often 
to approximate the negative impacts of expanding infrastruc-
ture, deforestation, or major land use changes involving agricul-
tural practice. We highlight several articles concerned primarily 
with current practice and future scenarios of changing land use 
in the context of landslides. The relevance of LULC in landslide  
susceptibility analysis is growing slowly, though with much poten-
tial to be explored for future LULC scenario analysis and to close 
gaps in many study areas.

Keywords  Slope stability · Mass movement · Land cover changes · 
Bibliometric analysis · Literature review

Introduction
Landslides are natural and potentially hazardous phenomena that 
move rock, debris, or earth downslope under the influence of grav-
ity (Cruden and Varnes 1996). Landslides arise from interactions 
between slope geometry, soil and rock properties, as well as surface 
and groundwater dynamics (Bogaard and Greco 2016). These pre-
conditioning characteristics influence weathering processes and 
may contribute to a decrease in shear strength (Skilodimou et al. 
2018). This decrease, combined with triggering factors such as pre-
cipitation, earthquakes, snow melt, or human activities, can lead to 
potentially destructive landslides (Petley 2012; Haque et al. 2019). 
For example, Froude and Petley (2018) reported that 4862 land-
slides caused 55,997 fatalities between 2004 and 2016. Neverthe-
less, the impact of landslides on society remains underestimated 
because much of the damage attributed to earthquakes and storms 
is tied instead to resulting landslides (Varnes 1984; Aleotti and 
Chowdhury 1999). In this context, landslide susceptibility analysis 

has become essential for disaster risk reduction, aiming to prevent 
damages and casualties (Bragagnolo et al. 2020).

Landslide susceptibility maps identify terrain locations likely 
to be most prone to slope failure by analysing the characteristics 
of reported landslides (Guzzetti et al. 2005). For this purpose, it 
is necessary to identify the factors influencing landslide occur-
rence. Numerous studies have explored the influence of geology 
(Henriques et al. 2015; Kim and Song 2015), rainfall (Guzzetti et al. 
2007; Zêzere et al. 2015), and geomorphometric characteristics 
(Vorpahl et al. 2012; Nugraha et al. 2015) in this respect. For exam-
ple, Reichenbach et al. (2018) identified as many as 596 different 
conditioning factors used in 565 articles published between 1983 
and 2016; geomorphometric variables made up 37% of all these 
conditioning factors, followed by those linked to land cover (18%).

Land cover refers to the biological and physical materials on the 
Earth’s surface (Herold et al. 2006). It comprises natural elements, 
such as water bodies, forests, exposed rock or soil, and surfaces 
modified by humans, such as roads, buildings, and agriculture. In 
contrast, land use alludes to the socio-economic appropriation of 
the land (Herold et al. 2006), i.e., the purpose humans give to the 
terrain, to safeguard occupation or production. Land cover impacts 
soil mechanical behaviour and moisture in many ways. For exam-
ple, vegetation may protect soil from erosion and improve slope 
stability through mechanical anchoring and soil suction by roots 
(Löbmann et al. 2020; Parra et al. 2021; Masi et al. 2021). On the 
contrary, deforestation, road construction, slope cutting, or build-
ing construction on hillslopes often reduce slope stability (Chen 
et al. 2019).

Therefore, land use and land cover (LULC) are important con-
ditioning factors that influence rainfall-triggered landslides (Glade 
2003), and many studies have argued that land use/cover changes 
(LUCC) might increase landslide susceptibility (Chen and Huang 
2013). For example, Lehmann et al. (2019) explored the relationship 
between deforestation and landslide occurrence by looking at root 
reinforcement in four distinct climatic environments with different 
forest management practices. Since deforested lands had negligible 
root strength, the authors simulated forest alteration scenarios in 
which areas without forest regrowth showed higher landslide occur-
rence and impacts. Similarly, Mugagga et al. (2012) reported a spatial 
relationship between landslide occurrence and slopes deforested 
for cultivation. Apart from areas where crops have replaced forests, 
abandoned cultivated lands may also be highly susceptible to land-
slides (Galve et al. 2015; Persichillo et al. 2017). Like deforestation,  
most construction works compromise slope stability (Karsli et al. 
2009; Meneses et al. 2019) by altering infiltration, surface runoff, 
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and groundwater flows (Vuillez et al. 2018). Furthermore, excavation 
and blasting commonly used for construction may change the natural 
stress state and force equilibrium in a given hillslope (Liu et al. 2021).

Many studies argued that LUCC might alter landslide sus-
ceptibility (Chen and Huang 2013; Liu et  al. 2021). In this  
sense, Pisano et al. (2017) analysed the influence of LUCC on land-
slide susceptibility through future scenarios. One of the future  
scenarios considered past trends, with increases in forest and cul-
tivated areas, and another presented a decrease in forest area and 
agricultural activity. The authors concluded that reducing forest 
areas and abandoning farming lands might increase the erosional 
processes. Promper et al. (2014) analysed LUCC over 138 years in 
Austria to simulate the evolution of landslide risk. The authors con-
sidered two main future trends; the first adopted the LULC trends 
previously verified in the region, and the second took into account 
no newly built areas. The result was that the expansion of housing 
construction was predicted in landslide susceptibility areas. Both  
studies showed that LULC scenarios might aid landslide suscepti-
bility studies for reducing disaster risk.

While an increasing number of studies have been considering 
LULC in landslide susceptibility (Quevedo et al. 2021) or inven-
tory analysis (Uehara et al. 2022), most review articles separately 

focus on LULC (Montalván-Burbano et al. 2021), landslide sus-
ceptibility modelling (Budimir et al. 2015; Huang and Zhao 2018; 
Pourghasemi et al. 2018; Reichenbach et al. 2018; Merghadi et al. 
2020; König et al. 2022; Lima et al. 2022), landslide classification 
system (Hungr et al. 2014; Li and Mo 2019), and landslide study 
area (Dikshit et al. 2020; Dias et al. 2021; Valdés Carrera et al. 
2021). Here, we offer a systematic review of how landslide sus-
ceptibility studies include the multi-faceted aspects of LULC and 
bibliometric analysis of the use of LULC data in landslide sus-
ceptibility. Finally, we discuss major research themes, focusing 
on which and how LULC types were parameterised to arrive at 
a possible ranking.

Materials and methods
Research on natural hazards has seen an increasing number of 
bibliometric studies analysing the scientific output on landslides 
(Wu et al. 2015; Briones-Bitar et al. 2020; Carrión-Mero et al. 
2021). However, none of the studies explored the use of LULC in 
susceptibility analyses. Below, we outline our database search cri-
teria; filtering criteria; data pre-processing; bibliometric analysis; 
and strategies for reviewing (Fig. 1).

Fig. 1   Methodological flow-
chart
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Search criteria, filters, and database

This study considered the Web of Science™ (WoS), since it is the 
oldest scholarly database (Birkle et al. 2020), maintained by Clari-
vate Analytics™, with more than 74.8 million records and 1.5 billion 
references in 254 subject disciplines (Singh et al. 2021). Further-
more, we follow the choice of many previous bibliometric studies 
of landslides (Gokceoglu and Sezer 2009; Reichenbach et al. 2018; 
Merghadi et al. 2020; Dias et al. 2021). We focused on search terms 
that express LULC to capture the effect of human activities on 
landslide susceptibility (Meneses et al. 2019; Knevels et al. 2020) 
and LUCC. We considered all fields (topic option) and applied the 
search argument: ((“landslide susceptibility” OR “mass movement 
susceptibility”) AND (“land cover” OR “land use” OR “land use 
cover change” OR “LULC” OR “LUCC”)). This first selection, car-
ried out in July 2021, resulted in 1071 articles.

The search was limited to peer-reviewed articles and excluded 
books, book chapters, conference proceedings, and reports, as well 
as “grey literature”, theses, and dissertations (Reichenbach et al. 
2018). All articles post-dating 2020 were also excluded from this 
collection, resulting in 814 articles. Next, we checked whether the 
remaining papers included mention of landslide susceptibility, as 
many articles focused on other natural hazards, such as soil erosion, 
gully occurrence, and soil subsidence, though with cursory refer-
ence to landslides. Nearly a fifth of the papers was irrelevant to the 
analysis, leaving us with 645 articles.

All abstracts were screened to ensure that the analysis con-
sidered only articles that used LULC as a conditioning factor in 
the susceptibility analysis. Where abstracts did not clearly indi-
cate whether the article was suitable, the entire publication was 
screened. For example, some papers mentioned that landslide 
susceptibility might support land use planning but disclosed little 
about how LULC may affect landslide susceptibility instead. Hence, 
we manually removed articles focused on landslide inventory or 
susceptibility modelling without LULC as a conditioning factor, 
resulting in 536 articles in our final database.

Bibliometric analysis and review

The bibliometric analysis was conducted in three stages: (i) assess-
ment of productivity and impact, based on publication and citation 
counts; (ii) network mapping to visualise collaborations among 
authors and countries; and (iii) most frequent keywords and 
research areas to portray major research themes.

The first stage explored trends in scientific output, considering 
publications, citations, cited references in each article, and the focus 
of the most cited papers. Next, we analysed co-authorship using 
bibliometric maps of collaboration networks generated through 
VOSviewer software (van Eck and Waltman 2010). Subsequently, 
the publication counts were mapped according to countries and 
study areas to depict the geographical focus of the studies, to 
explore which countries have been most studied at which scale, and 
to check whether the most studied countries also suffered major 
landslide disasters in the past.

The most frequent keywords approximate the personal and 
collective choice of technical jargon, the structure consistency 

(Herrera-Franco et al. 2021), and trends in the subject areas (Leung 
et al. 2017). The most frequent keywords in the abstracts and the 
most common authors’ keywords were computed using the R pro-
gramming language and VOSviewer software, respectively. For the 
abstract analysis, a cleaning step was performed to remove stop 
words and the terms used to select the articles (i.e., landslide, land-
slide susceptibility, mass movement susceptibility, land cover, land 
use, land use cover change, LULC, LUCC). Then, only stem words 
were considered to avoid over-presenting slight variations of the 
same term in the word cloud, e.g., map, maps, or mapping. Finally, 
we analysed the authors’ keywords with a co-occurrence network 
map (van Eck and Waltman 2010) to identify prominent groupings.

Lastly, we highlighted articles that specifically explored the rela-
tionship between LULC and landslide susceptibility, following the 
more traditional line of literature review. While the massively ris-
ing publication numbers in the general field of landslide research 
may encourage, if not even partly justify, the use of bibliometric 
exploration, we see this as an addition to, rather than a replacement 
of, conventional literature reviews. Therefore, we selected articles 
that contained terms related to LULC in their titles, such as land use 
and land cover. This selection allowed us to thoroughly explore the 
contribution of these specific articles and highlight trends in the 
use of LULC in landslide studies.

Results

Publication trends
Among all the 536 articles, 533 were written in English, and the 
other three were in Korean, Malay, and Portuguese. The database 
comprises articles published between 2001 and 2020, divided into 
four equal intervals: (i) 2001 – 2005; (ii) 2006 – 2010; (iii) 2011 
– 2015; and (iv) 2016 – 2020. In these phases, the annual average 
number of publications grew nearly 15-fold between the first and 
the last phase (Fig. 2).

Phase I had the highest proportion of individual publications 
(19%) and the least international collaboration (24%), with most 
articles addressing landslide susceptibility with statistical mod-
els, such as discriminant function (Dai and Lee 2001) and logistic 
regression (Lee and Min 2001; Baeza and Corominas 2001). These 
papers analysed LULC according to landslide occurrence (Baeza 
and Corominas 2001). In phase II, articles began to focus on model 
comparison, with increasing use of artificial neural networks for 
susceptibility modelling (Merghadi et al. 2020) and some studies 
about the influence of LULC characteristics on landslide suscep-
tibility (Yesilnacar and Süzen 2006). In phase III, models such as 
logistic regression and frequency ratio remained popular, with 
several studies recognising the effects of LULC on landslide sus-
ceptibility (Reichenbach et al. 2014). Finally, phase IV amassed the 
highest fraction of publications concerned with the relationship 
between LULC and landslide susceptibility.

The rapid increase in publication numbers since 2012 reached 
a peak in 2019 when 80 articles were published. This peak may 
be partly related to the International Consortium on Landslides 
(ICL) strategies to understand and reduce landslide disaster risk 
(Sassa 2015). In 2012, for example, the 10th Anniversary Confer-
ence of ICL created a strategic plan for the period between 2012 
and 2022 (Sassa 2012). Additional boosts for this rapid rise in 
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research output are the substantial increase in freely available 
satellite imagery and topographic and LULC data (Wulder and 
Coops 2014; Jun et al. 2014; Gómez et al. 2016).

The number of references per article has also increased. The 
average reference list has roughly tripled in length over the past two 
decades, being the shortest in 2002, with 25 references per article, 
and surpassing 80 references per article in 2020. This increase in the 
number of current publications and references per article improves 
the probability of a published article being cited at least once. For 
example, the total number of citations per year increased consider-
ably in 2016, reaching a maximum of 5860 citations in 2020 (Fig. 2). 
This increase in citations may be related to the “Sendai Partnerships 
2015–2025 for global promotion of understanding and reducing 
landslide disaster risk”, which was adopted for 33 countries aiming 
to improve landslide research (Sassa 2015).

Articles published in 2012 were the most cited: eight of the 39 
papers received more than 150 citations each. The main contribu-
tions of these eight articles concerned the comparison of model 
performance, using an average of ten conditioning factors, focus-
ing on study areas in Iran, Vietnam, Malaysia, and South Korea. 
In some of these studies, LULC was the second (Pourghasemi 
et al. 2012a, b) or the third (Tien Bui et al. 2012; Mohammady et al. 
2012) most important landslide conditioning factor. Some authors 
found that settlements or residential land were mainly located in 
susceptible areas (Pourghasemi et al. 2012b; Althuwaynee et al. 
2012), while many authors pointed out the higher susceptibil-
ity close to roads (Tien Bui et al. 2012; Althuwaynee et al. 2012; 
Mohammady et al. 2012).

The 15 most-cited articles represented 3% of all analysed papers 
and concentrated 18% of all citations between 2001 and 2017, most 
of them published during phases I (33%) and III (33%). These 
papers featured landslide susceptibility models based on two to 
four different algorithms. For example, the most cited article (Lee 
and Min 2001) exemplified how to model susceptibility with logis-
tic regression and analysed the relationship between conditioning 
factors and landslide occurrence. In addition, the Annual Citation 
Index (ACI) represents the average citation according to the article 
publication year. Most articles (79%) received between one and 20 
citations per year, while only 1% received more than 60 citations 
per year on average (Fig. 3). Among the 15 most cited articles, the 
paper with the highest ACI (Chen et al. 2017) pioneered the use of 
the logistic model tree for landslide susceptibility, showing that 
the normalised difference vegetation index (NDVI) was among the 
most relevant proxies of land cover in the study area.

Co‑authorship and geographic spread

The 536 articles comprised 1305 authors; out of these, 1008 con-
tributed only to a single paper. The articles had between one (3%) 
and 15 (1%) authors; most contributions had reached three to four 
authors. In depicting collaborations between co-authors, we con-
sidered a minimum publication threshold of five joint papers with 
the largest set of connected items. The resulting map of 34 authors 
shows that 12% collaborated with ten or more authors; 27 articles 
were single-authored (Fig. 4).

Fig. 2   Trends in publication 
numbers on LULC and land-
slide susceptibility, considering 
(i) publications: the number 
of publications per year; (ii) 
citations per year (left y-axis): 
citations registered in each 
year; (iii) times cited: how 
many times articles published 
in each year were cited; (iv) 
references (right y-axis): the 
average number of references 
cited in each article per year
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The most collaborative authors work from Asia. For example, 
cluster 1 (red) has nine authors from six institutions in China, 
Iran, and Malaysia; cluster 2 (green) binds eight researchers from 
institutions in Australia, Belgium, Iran, Nepal, and Turkey; cluster 3 
(blue) includes five authors associated with three institutions from 
Austria, India, and Iran (Fig. 4). The remaining clusters have three 
authors, each with fewer variations in institutions: all researchers 
in clusters 4 (olive-yellow) and 5 (purple) are from South Korea and 
China, respectively; clusters 6 (light blue) and 7 (orange) include 
authors from Norway and India, respectively, with one collaborator 
from Vietnam.

Regarding the top contributing countries (Table 1), 53% are in 
Asia, 33% in Europe, and 13% in America and Oceania. Authors 
from the People’s Republic of China were the most numerous, 
being involved in 102 publications in collaboration with 28 coun-
tries, mainly Iran and Malaysia. These articles focused on landslide 
susceptibility modelling performance, drawing on various machine 
learning algorithms. Based on the performance of each country, 
the average citation (AC) values exceeded 100 for Malaysia, Turkey, 
Norway, and South Korea.

The data on landslide disasters was compiled to check if these 
most-contributing countries were also among the most impacted 
by landslides. We used the Emergency Events Database (EM-DAT) 
(Guha-Sapir et al. 2009) (Fig. 5), which has been recording dis-
asters since 1903, for selecting the 20 most-affected countries by 
landslide disasters. These 20 countries had 66% of all recorded 
landslide disasters and 64% of all fatalities. Only five of the most 
affected countries between 2001 and 2020 had commensurately 
high numbers of publications: China, India, Japan, Turkey, and 
Italy (Table 1). However, we stress that this representation is only a 
rough indication and may hardly capture the international mobility 
of landslide researchers working abroad or targeted international 
research programmes.

The study areas of each analysed article and the national 
research output support the observation that almost all the most 
affected countries featured as study areas (Fig. 6). Also, the most 
studied and productive countries, such as China, India, Iran, and 
Italy, have LULC mapping initiatives at the national scale (Congedo 
et al. 2016; Moulds et al. 2018; Zhang et al. 2019; Ghorbanian et al. 
2020). However, not all studied regions were represented by authors 
in these countries, which means that not necessarily the most stud-
ied and affected areas are the most contributing. For example, there 
are studies about Afghanistan, Colombia, Costa Rica, Ecuador, and 
El Salvador, carried out by researchers whose affiliation is associ-
ated with countries such as China and Nepal, the Czech Republic, 
USA, Germany and Canada, and Spain, respectively.

Keywords and research areas

The most common term in the abstracts of all 536 articles was 
“map” (Fig. 7), which appeared more than 1700 times, describ-
ing the characteristic research product of landslide susceptibility 
studies. Other common words were “factor”, “slope”, and the stem 
form of distance (“distanc”). About two dozen terms were related 
to landslide conditioning factors and eight to LULC. Among the  
15 most used LULC keywords, “road” was the top ranking, followed 
by “soil” and “forest” (Fig. 8). References to the proximity of roads 
appeared mainly as a landslide conditioning factor, while only two 
abstracts informed about the presence of roads in unstable areas. 
Rawat and Joshi (2012) and Sujatha et al. (2012), for example, high-
lighted, respectively, that up to 9% of the roads in the Igo river 
basin, and intense anthropogenic activities, such as busy roads, 
in Tevankarai Ar sub-watershed, both in India, were located in 
high landslide susceptible areas. Other common, though similarly 
generic, LULC terms such as “settlement” or “agriculture” remain 
comparably scarce in the publication record.

Fig. 3   The distribution of articles over time according to ACI (A) and their total percentage (B)
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Table 1   Top 15 most-
contributing countries 
to research on landslide 
susceptibility and LULC

TP  total number of publications, TC  total number of citations, AC average citations, TR  total number of 
researchers, R/MI researchers per million inhabitants (UNESCO Institute for Statistics 2021)

Rank Country Region TP TP (%) TC TC (%) AC TR R/MI

1 People’s Republic 
of China

Asia 102 19% 4382 15% 42.96 1,536,502 1089

2 Iran Asia 91 17% 7218 25% 79.32 57,031 0679

3 India Asia 83 15% 2227 8% 26.83 215,281 0156

4 South Korea Asia 64 12% 6415 22% 100.23 353,454 6826

5 Malaysia Asia 59 11% 6668 23% 113.02 66,480 2054

6 Italy Europe 48 9% 2295 8% 47.81 116,488 1956

7 Vietnam Asia 46 9% 2811 10% 61.11 66,093 0679

8 Turkey Asia 41 8% 4551 16% 111.00 97,833 1160

9 USA America 35 7% 1368 5% 39.09 1,385,481 4205

10 Norway Europe 27 5% 2801 10% 103.74 30,582 5685

11 Germany Europe 21 4% 1452 5% 69.14 359,599 4320

12 Japan Asia 21 4% 1261 4% 60.05 670,454 5328

13 Australia Oceania 20 4% 1160 4% 58.00 116,414 4532

14 Greece Europe 18 3% 640 2% 35.56 29,907 2791

15 Austria Europe 16 3% 420 1% 26.25 44,113 4947

Fig. 4   Co-authorship network map showing seven main collabora-
tion clusters in studies on landslide susceptibility and LULC. Circle 
sizes represent the publication counts of each author, i.e., the higher 

the dot size, the higher the publication count. The line thickness 
shows the collaboration among the authors, in which thicker con-
necting lines represent more articles jointly co-authored
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Regarding keywords provided by the authors, a total of 542 dif-
ferent entries were identified and corrected for minor inconsisten-
cies. We focused on those 50 keywords that appeared at least five 
times: “landslide susceptibility” occurred in 45% of all articles, 
followed by “GIS” (Geographic Information System) (43%), “land-
slide” (35%), and “frequency ratio” (15%). The keywords “land use” 

and “land cover” appeared only in seven and five articles, respec-
tively. The authors’ keywords were analysed with a co-occurrence 
network map, considering seven words as the minimum cluster 
size (Fig. 9). All four clusters have keywords related mainly to 
algorithms used for landslide susceptibility modelling, underscor-
ing the strong methodological focus in this field, and many less 

Fig. 5   Countries most affected by landslide disasters, according to 
EM-DAT (www.​emdat.​be) records from 1903 to 2020 (blue) and the 
deaths caused by these events (red); and the records of landslide dis-

aster events (dark blue) and the number of fatal victims (orange) in 
the timespan covered by this literature review (2001–2020)

Fig. 6   Comparison of most studied countries and national research 
output on landslide susceptibility and LULC: (i) the study area (green 
dots) shows the percentage of articles that studied a given country; 

(ii) the publications (gradient colour) are the number of articles pub-
lished by each country, according to the authors’ affiliation
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frequently mentioned keywords refer to specific statistical meth-
ods. The central core of the network has three nodes (relevant 
topics) with similar importance and many connections among the 
clusters.

The research covered 27 subject areas, reflecting the interdisci-
plinary nature of landslide and LULC studies. The most frequent 
research areas (Fig. 10) were Geology (30%), followed by Water 
Resources (15%), and Environmental Sciences and Ecology (14%). 
Despite the predominance of areas focused on science, technol-
ogy, engineering, and mathematics (STEM), few of them are also 
related to social analysis and public management, i.e., fields 
closely studying LULC from various perspectives. Furthermore, 
the analysed articles were published in 128 different journals, of 
which the top 15 most frequent journals covered 57% of all pub-
lications and 74% of all citations. The greatest number of articles 
was published in the “Environmental Earth Sciences” journal. On 

Fig. 7   Word cloud of the most frequent terms in the 536 abstracts of studies on landslide susceptibility and LULC

Fig. 8   The 15 most frequently mentioned LULC keywords in the 
abstracts. The percentage refers to the number of abstracts in which 
each keyword was mentioned

974



 Landslides 20 · (2023) 

the other hand, considering the citations, the highlighted jour-
nal was “Environmental Geology”, which presented the highest 
average citation by article. According to the database, the jour-
nal that showed the longest activity was “Natural Hazards”, with 

publications between 2004 and 2020, followed by “Landslides” 
and the “International Journal of Remote Sensing”, both since 
2005. Both research areas and journals may confirm the pattern 
of interdisciplinarity shown by the keyword analysis.

Fig. 9   Co-occurrence network map of keywords provided by authors 
in publications on landslide susceptibility and LULC. The circles are 
the keywords, while lines connect the words supplied together. Cir-

cle sizes are scaled to word frequencies; the thicker the connecting 
lines, the more related the terms

Fig. 10   The ten most-frequent 
WoS research areas
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Landslide susceptibility focused on LULC

Most of the studied papers sought better models for landslide sus-
ceptibility analysis. Some identified LULC as one of the most influ-
ential landslide conditioning factors for susceptibility modelling. 
For example, Arabameri and Rezaei (2019) found that LULC, NDVI, 
and distance to road were the most important landslide condition-
ing factors in the Sangtarashan watershed, Iran. All these factors are 
related to LULC. Similarly, LULC was the most important factor in 
the susceptibility modelling in the Sarkhoun catchment, Iran (Shi-
rani et al. 2018), and in Mezam Division, Cameroon (Afungang et al. 
2017). The former study highlighted that poor rangeland, agricul-
ture, and rock outcrops were the most related to landslide suscep-
tibility; the latter pointed out that predicted landslides are concen-
trated in a hilly area with an expanding urban population. Austin 
et al. (2013) analysed the effects of the Three Gorges Dam on local 
urban areas and landslide susceptibility in Yichang City, China. 
With the flooding of the reservoir area, numerous settlements were 
moved to higher-elevation areas. In this sense, the authors assessed 
the landslide occurrence likelihood in these new urban areas, con-
cluding that the new constructions are below steep slopes, which 
could lead to high susceptibility. The influence of LULC on land-
slide susceptibility was also explored by Galve et al. (2015) in Cinque 
Terre, Italy. The authors generated scenarios by changing LULC 
classes, i.e., they used maps with abandoned lands and simulated 
scenarios in which vineyards, forests, or structural measurements 
replaced the abandonment. They found that vineyards may slightly 
reduce landslide susceptibility; on the other hand, forests might be 
more effective in reducing susceptibility. With a focus on vegetation 
class, Miller (2013) proposed to use the Surface Cover Index in land-
slide susceptibility analysis in Dominical, Costa Rica. This index 
represents vegetation vigour and degradation and improved the 
model performance when incorporated into the landslide suscep-
tibility analysis. While these studies focused on model performance 
improvement or urban land cover changes and landslide suscep-
tibility, they hardly explored why LULC was the most important 
factor for a given study area or how it could alter susceptibility.

Indeed, few publications explored the influences of LULC in 
detail. Yesilnacar and Süzen (2006) pioneered LULC mapping, 
considering multispectral satellite images, vegetation indices,  
topographic indices, and transformation components (principal 
component analysis). In studying the Asarsuyu basin, Turkey, the  
authors showed that including multiple indices and principal 
component analysis improved the overall classification accu-
racy while estimating the influence of LULC classes using the 
logistic regression algorithm. Although the logistic regression 
overall accuracy rose by only 2%, the landslide locations estima-
tion improved by up to 20%. Moreover, young forests (forests 
removed by fires or deforestation and regrown after the 1980s) 
and a moist mixed group (rocks, grassland, and agriculture) were 
the most frequent LULC classes in landslide bodies and high sus-
ceptibility areas. Meneses et al. (2019) evaluated the influence of  
different LULC datasets on landslide susceptibility in the Zêzere 
watershed, Portugal, to identify road networks that could be more 
predisposed to future blockages caused by landslides. For that, the 
authors included the same predisposing factors in all models; the 
only change in modelling processes corresponded to variation in  
LULC spatial resolution. The study results demonstrated that more  

detailed LULC data improved the landslide susceptibility mapping, 
though not necessarily their transferability to similar catchments 
elsewhere. The authors emphasised the lack of studies that compare 
LULC maps with different properties (scale and spatial resolution) 
since LULC is usually taken from pre-existing cadastres or mapped 
from satellite imagery. Both studies exemplify that including LULC 
data in landslide susceptibility analysis may provide more insights 
about LULC and landslides; however, the approaches remained 
static since they considered a single slice.

Given that human activities can modify vast areas quickly 
(Glade 2003), LULC may need more dynamic scenarios. For exam-
ple, Chen et al. (2019) tracked LULC over 21 years (1992, 2002, and 
2013) to quantify their relevance for landslides in Xuan’en County, 
China, an area marked by a substantial increase in anthropic activ-
ities such as clearing forests for grass and arable lands. The authors 
reported that these conversions compromised slope stability, 
though less so in recent years, commensurate with lower deforesta-
tion rates. The study suggested that including LUCC in landslide 
assessment and proper land use planning in urbanisation may 
decrease landslide susceptibility. A similar temporal analysis was  
also done by Persichillo et al. (2017), who studied landslide-prone 
terrain in rural areas, mainly agriculture fields and vineyards, in 
three different catchments in Altrepò Pavese, Italy. The study built  
on 58 years of data with five pre-existing LULC maps and found 
that LULC was one of the most important conditioning factors on 
slope stability, especially in abandoned lands. Maintaining culti-
vated areas seemed crucial to support land conservation and reduce 
shallow landslide activity. Similarly, Reichenbach et al. (2014) classi-
fied the LULC for 2 years (1954 and 2009) before and after reported 
landslides in the Briga catchment, Italy. The study contemplated 
various scenarios to explore the relationship between forest and 
landslide susceptibility and pointed to more stable slopes in 1954, 
likely because of the increase in forested areas. Comparing 1954 
and 2009 through different land use scenarios, the authors dem-
onstrated an increase in landslide susceptibility with decreasing 
forest areas and expanding patches of bare soil. The scenarios of 
reforestation resulted in more stable slopes in the model. This study  
used only DEM-derived variables and LULC classification, offering 
high reproducibility.

The relationship between forest and landslide susceptibility was 
also explored by Malek et al. (2015) for Buzau County, Romania. The 
authors studied past (1989, 2000, and 2010) and future scenarios 
(2040) for three LUCC classes: persistent forest, forest expansion, 
and deforestation. The study points out forest cover changes in 
different landslide susceptibility classes and how these modifica-
tions can be considered for risk management. For example, areas 
with higher susceptibility had more non-forest but were also more 
likely to expand forests in the future; hence, landslide susceptibil-
ity is prone to change accordingly. Shu et al. (2019) explored how 
LULC changed along with landslide susceptibility over 150 years 
(1946 – 2097) in the Val d’Aran region, Spain. Again, outcomes 
showed an increase in areas with low susceptibility and a decrease 
in high susceptibility zones, possibly related to the 163% increase 
in forest cover areas from 1946 to 2097 in one of the scenarios. The 
authors excluded other future impacts, such as climate changes or 
rainfall regimes. Finally, Pisano et al. (2017) considered past land 
cover (1954, 1981, and 2007) trends for simulating LULC scenarios 
for the Rivo basin, Italy, for 2030 and 2050. Then, more cultivated 
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areas decreased landslide susceptibility, likely because cultivation 
replaced areas without prior maintenance, resulting in better land 
and water management practices. The authors argued that good 
management practices would lower landslide susceptibility in 
the future. Hence, simulating different LULC scenarios allows to 
identify how LUCC may alter landslide susceptibility, thus aiding 
decision makers in territorial planning for disaster risk reduction.

Discussion
Landslides are a widespread phenomenon that causes disasters 
around the world. In this sense, many researchers have been seek-
ing the most influential landslide conditioning factors to improve 
landslide susceptibility mapping. Some of these factors are physical, 
such as geology and geomorphometry; others are related to human 
activity (Skilodimou et al. 2018) that rapidly transforms the land-
scape (Guzzetti et al. 2005). In this sense, considering the impact of 
anthropic activities on slopes, researchers have increasingly been 
trying to relate LULC changes and slope instability (Karsli et al. 
2009; Mugagga et al. 2012; Chen and Huang 2013; Austin et al. 2013). 
In the following, we discuss how the influence of LULC on landslide 
susceptibility modelling has been assessed.

Landslides and LULC studies

Landslides have been studied for a long time (Radbruch-Hall and 
Varnes 1976) due to their impacts on society (Haque et al. 2019). 
However, much landslide research became more structured as an 
independent discipline during and following the International Dec-
ade for Risk Reduction of the United Nations in 2000. In this pro-
cess, the core study was defined, aiming to standardise and review 
terminologies (Sassa 2007) and further quantitative susceptibil-
ity assessment studies (Cruden 1997). This mission may partly 
explain the focus on model performance that most reviewed arti-
cles focused on. We recognise a trend from landslide susceptibility 
studies to a stronger focus on statistical (Dai and Lee 2001), deep 
learning (Pradhan and Lee 2010), machine learning (Tien Bui et al. 
2012), and hybrid models (Shirzadi et al. 2017; Roy et al. 2019) in 
the past two decades.

Furthermore, LULC classifications have been done since the 
1970s (Phiri and Morgenroth 2017) but have rapidly improved in 
coverage and resolution thanks to the increase in available satel-
lite imagery (Wulder and Coops 2014; Gómez et al. 2016). He et al. 
(2022) highlighted that the LUCC research focused on modelling 
until 2004; between 2005 and 2013, eco-environmental impacts were 
emphasised, while the current phase focused on improving global 
sustainability. These different focuses on LULC and LUCC research 
are reflected broadly in our literature database. For example, there 
was an increasing trend in the number of publications on land-
slide susceptibility that used LULC data as a conditioning factor 
since about 2004, and more studies that explored LULC and LUCC 
impacts on hillslopes to assess landslide susceptibility (Persichillo 
et al. 2017).

The importance of considering LULC or LUCC on landslide 
assessment relies on the impacts of human activities on slopes, 
mainly agricultural and forestry activities, which are also affected 
by global warming and call for efficient management strategies 
to reduce landslide susceptibility (Gariano and Guzzetti 2016). 
However, considering that landslides will occur under the same 

conditions as past landslides might represent a limited vision, 
as hillslope conditions change drastically in response to human 
activities (Guzzetti et al. 2005). Hence, considering LULC’s future 
scenarios in landslide susceptibility analysis would provide more 
practical results to aid public administrators in long-term land use 
management and landslide disaster risk reduction.

LULC as a landslide conditioning factor

One confounding issue is that LULC encompasses various impacts 
on soil structure according to each cover class (Chen et al. 2019; 
Löbmann et al. 2020; Masi et al. 2021). For example, a developed 
forest presents more significant root reinforcement than under-
growth or cultivation areas (Lehmann et al. 2019). Also, changes in 
LULC likely modify soil shear strength, causing slope instability, 
and in some cases, rapid changes can become a landslide trigger 
(Davies 2015).

Our analysis found that the most common LULC classes were 
road, soil, and forest (Fig. 8), most likely because the relevant data 
are easy to obtain most objectively. Generally, roads enter suscep-
tibility models regarding the distance from mapped landslides 
(Yan et al. 2019). Road construction and maintenance directly or 
indirectly impact the slope through slope cuts or changes in sur-
face water runoff (Vuillez et al. 2018). Other road impacts include 
the construction of paths for forestry logging (Jaafari et al. 2015), 
which generally follow different regulations than those for official 
roads. “Soil” is also frequently reduced to patches of bare land or 
poorly vegetated ground instead of distinct soil types. Many stud-
ies reported that deforestation or logging exposes soil to erosion 
processes and slope instability (Reichenbach et al. 2014; Cohen and 
Schwarz 2017; Persichillo et al. 2017). Again, forests are commonly 
associated with an increase in slope stability (Cohen and Schwarz 
2017). While many studies concur that deforestation raises landslide 
susceptibility (Dai et al. 2002), few mention the roles of forest type, 
structure, health, or natural disturbances (Parra et al. 2021).

Hence, while the different classes of LULC can be analysed sepa-
rately, they are also often interconnected, which may compromise 
some statistical models in terms of collinearity. Furthermore, when 
analysing LUCC, not only will the change be a determining factor 
of landslide occurrences, but also the relative gains and losses for 
a given LULC class (Liu et al. 2021). For example, replacing for-
ests for agriculture may promote more slope instability (Lehmann 
et al. 2019), whereas cultivating previously abandoned areas may 
decrease landslide susceptibility (Pisano et al. 2017). Scenario-based 
approaches to LUCC (Promper et al. 2014; Malek et al. 2015; Pisano 
et al. 2017; Shu et al. 2019) can guide future actions for reducing 
landslide disaster risk.

Countries’ contribution and landslide disasters

The pattern of countries with more publications in landslide 
research differs from other reviews (Carrión-Mero et al. 2021; 
Huang et al. 2022) because only articles that included LULC data 
in landslide susceptibility analysis were considered. Nonetheless, 
many studies agree that the countries with the most publications 
about landslides tend to be from Asia (Pourghasemi et al. 2018; 
Reichenbach et al. 2018). For example, South Korea has the highest 
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number of researchers per million inhabitants (R/MI), whereas 
China and the USA have the highest total number of researchers 
(TR) (Table 1). On the other hand, Greece, Norway, and Austria had 
the lowest TR, probably because of their small populations.

While the susceptibility to landslides may be a strong incen-
tive for landslide research, it is also the government investment 
in research and science (Habib et al. 2019). For example, India has 
the second-highest population in the world and presents low TR, 
possibly related to the low investment in research and development 
(R&D) (UNESCO Institute for Statistics 2021). Furthermore, some 
countries that suffered disasters, such as Afghanistan, Colombia, 
and Ecuador, hardly published, at least internationally (Fig. 6). For 
example, Colombia and Ecuador presented low investments in R&D 
(UNESCO Institute for Statistics 2021) and few researchers (there is 
no available data for Afghanistan). On the other hand, the authors’ 
affiliations that studied the aforementioned countries are related 
to China, the Czech Republic, Germany, and Canada, which cor-
roborate the importance of investment in R&D to encourage more 
studies on the landslide topic.

Some of the most productive countries, in terms of publication 
numbers (Table 1), suffered from recent landslide disasters (Fig. 5). 
The landslide disaster occurrence may be related to the difficulty 
of establishing official regulations and strategies for landslide risk 
reduction due to budgetary constraints or cultural factors, among 
other causes (Winter and Bromhead 2012). For example, Mateos 
et al. (2020) indicated that even in Europe, there are no general 
regulations for landslide risk reduction, and not all European coun-
tries have official landslide guidelines for territorial planning or 
methodological guides.

Limitations and future trends

The selection of the scholarly database and the search keywords 
might add some limitations to this study. The focus on WoS may 
render a one-sided perspective. For example, Valdés Carrera et al. 
(2021) used multiple database platforms (WoS, Scopus, SciELO, 
REDIB, and Redalyc) of Latindex to analyse landslide studies in 
Latin America. Hence, the low number of studies from South Amer-
ica, Central America, and the Caribbean might be an artefact of the 
database choice.

Moreover, our analysis focused on articles that considered 
LULC as a conditioning factor in landslide susceptibility assess-
ment; yet, LULC classes are diverse and multiple and sometimes 
non-exclusive. Then, limitations on the keywords used in the first 
search criteria might result in a limited articles database. As we con-
sidered only words directly related to LULC (land cover, land use, 
land use cover change, LULC, and LUCC) on the first search, it may 
result in not including relevant articles in our database (Guns and 
Vanacker 2013). For example, the road was not taken into account as 
a keyword in the first search, which generally appears as a specific 
conditioning factor (Jaafari et al. 2015), such as distance or proxim-
ity to roads (Brenning et al. 2015).

Some publications were excluded from the database because of 
keyword choices (e.g., landslide susceptibility vs. mass movement 
susceptibility). Preliminary searches did not include studies with 
terms such as “landslide occurrence” (Van Beek and Van Asch 2004; 
Wasowski et al. 2010; Promper et al. 2014; Cohen and Schwarz 2017; 
Gariano et al. 2018; Vuillez et al. 2018; Knevels et al. 2021), “debris 

flow” (Rogelis and Werner 2014; He et al. 2018), or “rockfall” (Lopez-
Saez et al. 2016; Farvacque et al. 2019) or articles published after 
2020 (Knevels et al. 2021; Rabby et al. 2022).

Furthermore, it is worth mentioning that the analysis of the 
influence of LULC on landslide susceptibility is a theme of expand-
ing interest and interdisciplinary relevance and is still in need of 
studies. We identify several challenges for the future:

(i)	 Bibliometric studies: executing a comprehensive search, 
including specific LULC classes and landslide occurrence, may 
provide a complete database. For example, including the LULC 
keywords “roads” and “forest” may provide specific articles 
which analyse the relationship between landslides and these 
land cover classes;

(ii)	 Review articles: since reviews tend to be applied to a small 
number of papers, the limitation of the preliminary search 
to the article title may generate a more restricted database 
focused on LULC in landslide analysis;

(iii)	 Research articles—modelling performance: there is an 
increasing interest in studies that apply hybrid models in 
landslide susceptibility analysis, which may focus more on 
LULC effects on landslide occurrence;

(iv)	 Research articles—LULC influence: simulating LULC future 
scenarios and evaluating how it modifies the landslide sus-
ceptibility seems to be a potential hotspot in landslide top-
ics. This mapping is interesting to show for public managers 
which changes in LULC increase and which of them decrease 
the landslide susceptibility;

(v)	 Research articles—other topics: the inclusion of possible cli-
mate change impacts; the consideration of variations in rain-
fall conditions; the root reinforcement according to different 
plant species and LULC classes.

Conclusions
This study explored the use of LULC data on landslide susceptibil-
ity assessment through bibliometric and review approaches. The 
literature database was composed of 536 articles, which revealed 
that most publications focused on landslide susceptibility model-
ling using LULC data as a conditioning factor. The lion’s share of 
scientific research was on model performance, varying from statis-
tical and index-based models to deep learning and machine learn-
ing algorithms. In addition, we found that countries most affected 
by landslides were not necessarily the most productive in terms 
of international authorship quantities, likely reflecting national 
imparity in investment in research and development. Notably, 
South American and African nations seem strikingly absent from 
the international community of authors. Our analysis emphasises 
how LULC and LUCC influence on landslide susceptibility has 
become more common only gradually since 2016 onwards. The first 
approach focused on how LULC mapping influences landslide sus-
ceptibility, especially classification method, scale, and spatial reso-
lution. More recent works consider the simulation of future LULC 
scenarios and how this changed landslide susceptibility. The future 
landslide susceptibility scenarios may provide helpful information 
for landslide risk management and land use planning. In conclu-
sion, the analysis of LULC influence on landslide susceptibility is an 
expanding theme, which has the potential to be explored for future 
scenario analysis and to close gaps in study areas.
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