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Abstract  This paper proposes a new, physically based, and math-
ematically consistent method for predicting the evolution of exist-
ing landslides and first-failure phenomena based on slope displace-
ment measurements. The method is the latest step in a long-term 
research program and, as such, uses the preliminary framework 
introduced in two previous papers. The first characterizes slope 
movements through a limited number of displacement trends, and 
the second analyzes their dynamic characteristics. The approach 
is here extended to the prediction of landslide evolution and its 
validity and effectiveness are tested on landslides well known in the 
scientific literature for the accuracy of the studies carried out and, 
in some cases, for the consequences they have caused. Although 
the results obtained so far are very encouraging, in full awareness 
of the relevance and complexity of the subject matter, the authors 
emphasize that the method should be used, in the current state of 
knowledge, only by experienced professionals and especially for 
research purposes.

Keywords  Evolution · Forecasting · Displacement trends · 
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Introduction

Predicting the evolution of existing landslides and first-failure phe-
nomena is faced through many models that essentially belong to 
two broad categories, namely geotechnical models and phenom-
enological approaches. The former pursue several goals including 
the analysis of the temporal evolution of landslides and their insta-
bility (Duncan 1996; Alonso et al. 2010; Ferrari et al. 2011; Secondi 
et al. 2013; Crosta et al. 2014; Cotecchia et al. 2016; Soga et al. 2016; 
Bru et al. 2018), but the results obtained for a specific landslide are 
valid for that one and can hardly be extended to other, albeit simi-
lar, phenomena. Hence, for forecasting purposes, quite often the 
technicians make use of phenomenological approaches. These are 
essentially data-based models relating input and output variables 
through black-box procedures.

The first practical method, which pioneered phenomenologi-
cal approaches to predict the time of slope failure, was proposed 
by Saito (1965) on the basis of the tertiary creep theory. Later, 
observations of large-scale slope failure tests led Fukuzono (1985) 
to deduce a semi-empirical relationship between velocity and 
acceleration in the landslide accelerating stage and develop the so-
called inverse velocity method, the best-known phenomenologi-
cal approach for rocks. The method uses the displacement data to 
estimate the collapse time by assessing, through a linear regres-
sion tool, when the inverse of the slope velocity goes to 0. It was 
further generalized by Voight (1988, 1989), to account for different 

materials, and by Rose and Hungr (2007), to cover open pit insta-
bility. Being the original method and its generalizations based on 
accelerating creep theory, they are suitable for short-term predic-
tion during accelerating stages (Chen and Jiang 2020).

Recently, data-based models relying on artificial intelligence 
approaches, as machine learning models (Huang et al. 2017), have 
been applied to predict slope deformations on a limited number 
of displacement measures. These methods, based on statistical 
analysis of historical data, seek to minimize the error between the 
simulated and measured values in order to determine the optimal 
parameters for predicting deformations. They show potential appli-
cability to mid-/long-term prediction, especially for slope deforma-
tion with a periodic variation (Chen and Jiang 2020). However, cau-
tion is advised in selecting the most suitable artificial intelligence 
model for the case to be studied (Lian et al. 2015).

This paper proposes a new approach based on previous works 
that highlighted common kinematic characteristics for landslides 
sliding along a slip surface as firstly identified on a heuristic 
basis by  Leroueil et al. (1996). In particular, Grimaldi (2008) 
and Cascini et al. (2014) introduced, on a quantitative basis, three 
different trends: movements related to a stationary condition, 
as those in dry periods (Trend I); movements due to a recur-
rent perturbation as the seasonal increase in pore water pressure 
during the wet season (Trend II); and movements triggered by a 
significant perturbation, for instance an earthquake or a newly 
formed local slip surface connected with the main existing slip 
surface (Trend III). This approach has been enriched by Cascini 
et al. (2019) and Scoppettuolo et al. (2020), recognizing that the 
occasionally reactivated stages, formerly called Trend III, corre-
spond to two different stages, i.e., what we call as true Trend III, 
which is typical of accelerative but not catastrophic stages, and 
Trend IV, which can potentially end in failure. Further and final 
extension by Cascini et al. (2020) and Babilio et al. (2021) to five 
different stages is based on mechanical and stability arguments.

As a relevant result of these contributions, it is possible to cal-
culate piecewise smooth approximations of landslide displacement 
data, minimizing an appropriately defined error, whenever the 
record has been previously divided into monotonic stages (Babilio 
et al. 2021). Due to this feature, the main purpose of the approach 
was not prediction, but the search for the best fit of the data in a 
given class of functions.

The present work extends the approach to prediction of land-
slide evolution by exploiting the same approximation strategy. To 
this end, an automatic process is implemented to split the data by 
updating the approximation to the current data record. Therefore, 
the update frequency of the landslide displacement prediction cor-
responds to the sampling frequency.
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The displacement approximation passes through the evaluation 
of a dimensionless quantity, the displacement exponent, related to 
the signs and growth properties of the displacement itself, and its 
first three derivatives. Since the displacement (Chen et al. 2021), 
velocity (Chen and Jiang 2020), and acceleration (Xu et al. 2011) are 
recognized as useful indicators for characterizing slope failure, we 
argue that the displacement exponent could be profitably exploited 
in the prediction of the landslide evolution.

The validity and effectiveness of the method have been tested 
through the application to the landslides in the dataset collected 
by Scoppettuolo et al. (2020) and are here exemplified with the 
aid of four case studies, which are representative of all the activity 
stages introduced by Leroueil et al. (1996) and are among the best-
known case studies in the world.

The paper is organized as follows: “Materials” describes the 
materials underlying the method, explained in detail in “The pro-
posed method”, while “Explanatory examples of the displacement 
forecasting method” provides explanatory examples that give an 
idea of its applicability, discussed in “Applicability of the method”. 
Some remarks in “Concluding remarks” close the contribution.

Materials

The international literature provides interesting insight on slope 
movements but does not systematically analyze or compare the land-
slide displacements with the aim of finding common trends where 
present. In view of this gap, the implementation of an appropriate 
dataset was the first step taken from the early stages of the research. 
To this end, a thorough bibliographic research began on the most 
documented case studies in the scientific literature, selecting papers 
providing the most of the following information: the adopted classifi-
cation system; the size of the main landslide body, in terms of both the 
areal extension and depth, as well as its geological, geomorphological, 
and hydrogeological features; the triggering factors and the boundary 
conditions; the properties of soils involved in the sliding; the pore 
water pressure regime; significant displacement measurements and 
the experimental system used to acquire the experimental data; the 
interpretation of the landslide evolution provided by the those who 
acquired and interpreted the experimental data. The dataset currently 
collects eighteen landslides (Scoppettuolo et al. 2020), including cases 
of collapse of existing landslides as well as phenomena of first failure, 
such as those frequently occurring in open-pit mines, and thus allows 
for the analysis of all the stages defined by Leroueil et al. (1996).

The case studies selected are highly heterogeneous in terms of 
geological and hydrological contexts and triggering factors, which, 
depending on the case, are represented by the following: the vari-
ation of groundwater levels; climatic factors (rainfall and/or snow 
melt); the fluctuation of the level of the reservoir located at the foot 
of the landslide; excavation as in the case of open-cast mines, and 
so on. In most cases, landslides are translational and/or rotational 
phenomena involving clay, silt, limestone, debris, or rock. Sliding 
bodies have dimensions, i.e., length (L),  width (W), and thickness 
(H),  that vary over a wide range from landslide to landslide (L from 
340 up to 2000 m and H from 9.6 m to 250 m, respectively), and 
often contain smaller phenomena within them (see Fig. 1). Displace-
ment data records are acquired using various monitoring devices, 
such as inclinometers, extensometers, distometers, surface markers, 
and total station optical targets. Details about location, monitoring 

stations, length, depth and volume, composing material and move-
ment type of the landslide included in the dataset as well as ref-
erences used as the source of data are reported in (Scoppettuolo 
et al. 2020), where the case studies are also grouped in terms of the 
most relevant triggering factors.

An overview of the recorded displacement data is provided in 
Fig. 2, which highlights a variety of displacement trends that are 
not comparable to each other. Some details become apparent (see 
Figs. 3, 4, and 5) by grouping together, according to the proposal 
of Leroueil et al. (1996), the phenomena and by using a scale suitable 
for the order of magnitude of the displacement of a given landslide.

Looking at these diagrams, we observe that similar displacement 
patterns can be individuated for apparently different landslides; any 
single record can be subdivided in a sequence of stages; there are 
typical deformation values, which change from active landslides to 
failure phenomena (Scoppettuolo et al. 2020). We also observe that 
activity stages triggered by recurring factors, as seasonal rainfall, 
evolve through an alternation of linear or concave curves (Fig. 3), 
while occasional reactivations (Fig. 4) and failure events (Fig. 5) are 
characterized by convex curves.

The proposed method

The identification of common characteristics in the landslide dis-
placements and the knowledge subsequently acquired on this topic 
lead us to propose the flowchart shown in Fig. 6, which indicates 

Fig. 1   Typical geometry of the landslides in the dataset: plan (top 
panel) and longitudinal cross section (bottom panel). L,   W, and 
H stand for the length in the direction of motion, width, and thick-
ness of the main sliding body, respectively. Dot-dashed line and 
A-markers indicate the section plane and the section normal. Often, 
the selected papers analyze a smaller secondary landslide body of 
dimensions l,  w,  and h 
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the steps of a consistent procedure aimed at forecasting the evolu-
tion of landslides.

The first step is to look for common kinematic patterns for each 
stage of the landslide. Once identified, the second step should be 
devoted to testing whether or not a well-defined dynamic equi-
librium condition can be associated with each of the recognized 
kinematic trends. In case of a positive answer to the previous 
steps, the common kinematic and dynamic characteristics of the 
displacement trends should be used to predict the landslide evolu-
tion, as the third step. The flowchart, the formalization of each step, 
and their use to predict landslide evolution are described in the 
remainder of this section.

Finding common kinematic features of landslides

In the authors’ opinion, several procedures can be followed to develop 
each step in the flowchart. During the research that led to the pro-
posal of Fig. 6, after collecting well-documented case studies, each 

single activity stage of the landslides in the dataset has been selected 
through the analysis of the factors that influenced their kinematic 
evolution. Then, an attempt was made to find a procedure to go from 
an apparently very large number of trends (Fig. 2) to a very small one.

Grimaldi (2008) has achieved this goal by selecting each activ-
ity stage of the available landslides and normalizing both time and 
displacement as

where t0,j , tn,j , ti,j d0,j , dn,j , and di,j are the initial, final, and current 
time and displacement of the jth stage (Fig. 7a). Equations (1) 
and (2) made it possible to identify three different dimensionless 
displacement-vs-time diagrams, each of which having a physical 

(1)Ti,j =
ti,j − t0,j

tn,j − t0,j
,

(2)Di,j =
di,j − d0,j

dn,j − d0,j
,
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Fig. 2   Displacement data for the eighteen landslides included in the 
collected dataset
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Fig. 3   Active landslides in the dataset
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Fig. 4   Landslides characterized by occasional reactivations
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Fig. 5   Landslides affected by failure events
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meaning (Grimaldi 2008; Cascini et al. 2014). Later, making use of 
the same procedure, Scoppettuolo et al. (2020) identified 102 activ-
ity stages for the curves in Fig. 2 that, in the dimensionless displace-
ment diagram, originate only 4 displacement classes (Fig. 7b). These 
typical dimensionless trends (TDTs) include landslides that move 
with constant velocity (Trend I); those mobilized by recurring trig-
gering factors (Trend II); occasional reactivations (Trend III); and 
failure events (Trend IV). However, Scoppettuolo et al. (2020) noted 
that, among those recognized as Trend IV stages, and thus expected 
to be failure events, the only exceptions were the first two stages of 

the Vajont landslide, both originating from reservoir filling, which 
veered towards Trend II after a subsequent reservoir lowering.

From the landslide displacement to the stability chart

Evaluation of the dynamic characteristics of the TDTs in Fig. 7b 
is the objective of the second phase of the proposed framework, 
which, at least in principle, can be pursued through geotechnical 
methods or reduced-order models. Unfortunately, neither category 
could be used. In fact, the methods of the former require the avail-
ability of large and accurate input data, which is not the case for 
all the landslides in the dataset, even if they are well monitored 
and studied in the literature, while those of the latter are based on 
complicated nonlinear equations, which are difficult to deal with 
for all case studies.

Instead, by paying attention to the displacement trends and their 
derivatives up to the third order, it was possible to analyze all the 
stages of activity shown in Fig. 7b. In fact, the displacement and its 
derivative of the first order (velocity) represent kinematic features 
of the landslide motion, while the derivative of the second order 
(acceleration) is proportional to the inertial forces acting on a mov-
ing body and, as such, can describe the dynamics of the system. In 
turn, the derivative of the third order (jerk) describes the varia-
tion of inertial forces over time (Chase et al. 2003; He et al. 2015; 
Noda et al. 2013) and can help in the dynamic analysis, even if this 
physical quantity is not commonly used in geology and geotechnics. 
The analysis is based on approximating the dimensionless trends 
in Fig. 7b with the power law D = Tx , suitable for interpreting all 
the experimental data (D,  T,  x stand for the dimensionless dis-
placement, time, and characteristic exponent of the stage), and the 
subsequent calculation of the dimensionless derivatives (Cascini 
et al. 2020; Babilio et al. 2021).

Stable trends are characterized by an acceleration that is 0  
(Trend I), negative (Trend II), or positive but decreasing to 0 (Trend 
III). In contrast, acceleration takes on a positive and increasing 
value for unstable ones (Trend IVa,b), which can be distinguished 
on the basis of jerk. In fact, Trend IVa is characterized by a decreas-
ing jerk, which indicates the possibility that the landslide may 

Fig. 6   A framework to forecast the landslide evolution

Fig. 7   Kinematic characteriza-
tion of the landslides through 
the dimensionless representa-
tion of cumulative displace-
ments: (a) data partition and 
selection of the single stage 
period and (b) definition of the 
nature of the system response. 
Lower graph in panel (a) and 
graph in panel (b) were first 
published in Mathematics 
and Mechanics of Complex 
Systems (Babilio et al. 2021), 
by Mathematical Sciences 
Publishers
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decelerate as a result of specific changes in boundary conditions, 
while Trend IVb has an increasing jerk indicating the attainment of 
a condition that definitely leads to failure, as summarized in Table 1, 
where vanishing, positive, and negative functions are marked by “ 0,”  
“ + ,” and “−,” respectively.

Growth properties are indicated by arrows: two-headed hori-
zontal arrow (↔) represents a steady state, upward arrow (↗) rep-
resents growth, downward arrow (↘) stands for decrease. The last 
column reports the landslide signature, a compact indicator intro-
duced by Babilio et al. (2021) built as a compound of three sym-
bols, associated with velocity, acceleration, and jerk, in that order. 
Similarly to signs of functions discussed before, each symbol can 
assume one of the following values: “ 0 ” for a function that is either 
zero or constant; “−” for a positive and decreasing function, or a 
negative and increasing function; “ + ” for a positive and increas-
ing function. Based on these concepts, the stability chart shown 
in Fig. 8, which allows the quantitative assessment of the dynamic 
equilibrium of the landslides and is the end point of the step 2 
(Fig. 6), can be drawn (Babilio et al. 2021). In this chart, the stable 
trends are represented by x = 1 (Trend I), 0 < x < 1 (Trend II) and 
1 < x < 2 (Trend III). For unstable trends Trend IVa and Trend IVb, 
the exponent value is in the range 2 ≤ x < 3 or is equal to or greater 
than 3,  respectively.

We emphasize that the procedure illustrated so far, applied to all 
the 102 stages in the dataset collected by Scoppettuolo et al. (2020), 
led to satisfactory results, in terms of approximation of displace-
ment, velocity, acceleration, and jerk (Babilio et al. 2021). However, 
if the duration of a stage is not known in advance, which is the case 
of real-world applications, the perspective must change. Indeed, 
the prediction of the evolution of a landslide requires that both 
the trend type and the displacement have to be estimated on the 
basis of a limited number of displacement measures provided by a 
monitoring system, as shown in the following.

Forecasting the slope evolution through the displacement trends

The first block of tasks in step 3 in Fig. 6 involves the follow-
ing: (i) recording, at a given time-step, displacement data of the 
landslide whose evolution must be predicted, (ii) nondimen-
sionalization of data and assessing its kinematic and dynamic 
characteristics, and (iii) processing data to reconstruct landslide 
displacements. The next block uses the processed information 

to forecast the temporal evolution of a landslide during a single 
activity stage, which is an objective generally pursued by means 
of empirical approaches. For this purpose, two slightly different 
methods, one by Cascini et al. (2014), the other by Babilio et al. 
(2021), hereafter referred to as Approaches I and II, respectively, 
can be implemented as the block 2 in step 3.

According to Cascini et al. (2014), the displacement may be approx-
imated in the Approach I trough a function written as

with dref , tref , and Δtref the reference displacement, time, and time 
interval, respectively, and M and vmax a velocity coefficient and the 
peak velocity, both updated at the current data entry. The iterative 
procedure for computing the displacement from Eq. (3) has been 
tested on a specific case of Trend II movements, showing that reli-
able predictions of displacements can be obtained already from 
the early data records of the trend, provided few accurate measure-
ments are available.

In Approach II, once both t0 and d0 of the activity stage are indi-
viduated, monitored displacement and time are nondimensional-
ized through Eqs. (1) and (2), inserted into the chart of Fig. 8 to infer 
the stability of the stage and the displacement is approximated by 
using a power-law function, of exponent x. Once x is calculated, 
coherently with Eqs. (1) and (2), the dimensional displacement is 
computed as

(3)d(t) = dref + ΔtrefM

(

t − tref
Δtref

)

vmax
M

,

Table 1   Trend classification of the D(T) function and its derivatives 
up to the third order. Adapted from the table first published in Math-
ematics and Mechanics of Complex Systems  (Babilio et  al.  2021), by 
Mathematical Sciences Publishers

Trend Displacement Velocity Acceleration Jerk Signature

I + ↗ + ↔ 0 ↔ 0 ↔ 000

II + ↗ + ↘ − ↗ + ↘− − −

III + ↗   + ↗ + ↘ − ↗+ − −

IVa + ↗   + ↗ + ↗ + ↘+ + −

IVb + ↗   + ↗ + ↗ + ↗+ + +

I
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weakly stable
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strongly unstable
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Fig. 8   Stability chart obtained by approximating dimensionless data 
from landslides in Fig.  2 through the power-law function D = Tx . 
The colored curves represent the thresholds between fields with 
different stability, characterized by the exponents of the power law: 
x = 1 corresponds to Trend I, x ∈ (0, 1) to Trend II, x ∈ (1, 2) to Trend 
III, x ∈ [2, 3) to Trend IVa, and x ≥ 3 to Trend IVb. Adapted from the 
graph first published in Mathematics and Mechanics of Complex Sys-
tems (Babilio et al. 2021), by Mathematical Sciences Publishers
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where d
n
 stands for the current displacement read at time t

n
. Both 

x and d
n
 are updated as t

n
 changes, that is the procedure is repeated 

as any new monitoring data record is acquired. Therefore, the esti-
mated curve of the corresponding dimensional displacements gets 
closer and closer to monitored data and its extrapolation progres-
sively provides an increasingly accurate estimate of the landslide 
temporal evolution. Furthermore, considering that, in the stability 
chart, the exponent x assumes well-defined values passing from 
one sub-domain to another, the landslide stability is automatically 
assessed.

The validity and effectiveness of the method, both implemented 
as Approach I or II, were tested by applying it to the landslides of 
the dataset. Noteworthy the considered records are historical data. 
However, by loading data entries into the procedure one by one, in 
order to simulate an actual forecasting application, the behavior 
of the tool as a blind predictor has been assessed. The obtained 
results allow arguing that both capture the actual shape of single-
activity-stage displacement and can be exploited to draw sequences 
of stages as those reported in Fig. 9. Four explanatory examples 
will be described in detail below, in “Explanatory examples of the 
displacement forecasting method”.

It must be noted that if the procedure here proposed is adopted 
as a framework, but Eq. (3) or (4) are substituted by any possible 
other function approximating experimental data, it is appropriate 
to recommend caution in choosing target function. Finally, with 
appropriate redefinition of the velocities vmax and M and choice 
of the set of constants, Eq. (3) converges to Eq. (4), leading to the 
conclusion that the two approaches can be made equivalent.

(4)d(t) = d0 +

(

t − t0
tn − t0

)x
(

dn − d0
)

,
Explanatory examples of the displacement forecasting method

The method has been applied to all case studies in the dataset. In 
addition to the approximations of displacements and evaluations 
of corresponding velocity, acceleration, and jerk, also the stability 
of each of the 102 stages has been assessed and error estimates 
have been considered. We refer the reader to (Babilio et al. 2021) 
and in particular to the Appendix therein where all test results are 
documented.

Here, for the sake of brevity, we detail about only four renowned 
landslides, namely Vallcebre, La Clapière, Vajont, and La Saxe. These 
case studies were selected as they (i) exhibit all the stability trends 
in Figs. 7b, 8, and 9, (ii) have a different size in terms of areal exten-
sion and volume, (iii) involve different geological contexts and soils, 
and (iv) are triggered by different external and internal factors. 
Indeed, the variety of types of motion (translational and rota-
tional slides, toppling), volume sizes (from 8 up to 270 million m 3 ), 
involved materials (clays, marls, limestone, rock) of such examples, 
and the underlying nature of the analysis based on dimensionless 
quantities prove that the approach is not dependent on the type or 
scale of the landslide analyzed.

The monitoring data of Vallcebre, La Clapière, and Vajont landslides 
are retrieved from scientific papers, whereas La Saxe landslide data 
was kindly provided by the Geological Survey of Valle d’Aosta Region.

The obtained results can be easily replicated and compared with 
those arising from different procedures; moreover, the method can 
be tested in the field and analyzed in the light of a debate that, as 
for the Vajont landslide, is still alive today.

Fig. 9   Typical sequences of 
kinematic stages described in 
terms of (from top to bottom) 
displacement, velocity, accel-
eration, and jerk
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Vallcebre case study

The Vallcebre landslide is in Northeastern Pyrenees, 140 km from 
Barcelona (Spain), and it develops in stiff clays with shale and 
gypsum layers over a limestone bedrock. The experimental data 
of this well-monitored landslide come from wire extensometers 
and electronic piezometers that show a close correlation between 
displacements and groundwater level, in turn associated with rain-
fall (Corominas et al. 2005).

This originates over the years a sequence of Trends I and II (Fig. 9a) 
which during the observation period represents a stable condition 
since both acceleration and jerk vanish (Trends I) or acceleration is 
negative and jerk decreases (Trends II).

The landslide temporal evolution in terms of measured displace-
ment and velocity (Fig. 10a and b, respectively), with reference to 
a single activity stage, has been analyzed by employing Approach 
I. The feasibility of the method (Cascini et al. 2014) is testified by 
Fig. 10, where power-law functions calibrated on the first 3,  5,  7, 
and 86 available data are compared with the monitored data. As 
is evident, the calibration with the first 7 data, that is 80 days in 
advance with respect to the total duration of the considered activ-
ity stage, provides a very satisfactory result. Moreover, it must be 
observed that the results obtained by Cascini et al. (2014) agree well 
with findings by Ferrari et al. (2011), who analyzed the Vallcebre 

landslide through the solution of equilibrium equations consider-
ing proper boundary conditions.

By adopting the Approach II, the stages of the landslide are suit-
ably approximated by power laws having exponent lower than or 
equal to 1, both in the dimensionless and in the dimensional repre-
sentation, so confirming the stability of the landslide motion.

La Clapière case study

La Clapière landslide is a large rockslide in the southern French 
Alps, which mobilizes a volume of approximately 55 million m 3 in 
a gneissic rock slope covered by a forest. According to Helmstetter 
et al. (2004), the landslide probably started to move before the 
beginning of the twentieth century, although the first changes 
in slope geometry were estimated only in the period 1950–1980,  
through an aerial photogrammetric survey. A displacement moni-
toring of the slope started in 1982 with the aid of topographic 
measurements that highlighted a complex sequence of Trend I 
and II and an accelerating stage, represented by a Trend III, in 
the period 1986–1987 (Scoppettuolo et al. 2020). The slope dis-
placements appear related to river flow fluctuations, snow melt-
ing, and rainfalls, while Follacci et al. (1988) relate the previously 
mentioned occasional reactivation with the failure of the gneissic 
bedrock in the northwestern block.

Fig. 10   Forecasting the evolu-
tion of the Vallcebre land-
slide (Corominas et al. 2005) 
calibrated with increasing 
number of recorded data. 
Time in days (abscissas); 
displacements in mm, panel 
a, velocity in mm/day, panel 
b (ordinates). The top panels 
show the data recorded over 
the whole stage (86 observa-
tions in total). From the sec-
ond to the last row of panels, 
from top to bottom, the pre-
dicted displacement (column 
a) and velocity (column b), 
calculated considering 3,  5,  
7, and 86 records, are shown. 
Reproduced from (Cascini 
et al. 2014), with permission
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Focusing on this stage, Fig. 11 shows the results obtained by 
applying the Approach II to data from a surface marker considered 
representative of the landslide motion.

It can be noted that the limited number of experimental meas-
ures, taken with a time step of 3 months, leaves uncertainty in the 
individuation of the onset of the occasional reactivation, although 
the displacement trend is still correctly estimated.

In fact, the displacement exponent is 1 < x < 2 during the 
entire time period, testifying the occurrence of a Trend III that 
corresponds to a weakly stable condition for the landslide (Babilio 
et al. 2021).

Vajont case study

The Vajont landslide is one of the most studied slope instabil-
ity in the literature (Nonveiller 1987; Semenza 2001; Kilburn and 
Petley 2003). Available data from monitoring stations cover the 
period 1960–1963. In 1960 and 1962, two fillings of the dam reser-
voir were responsible for two accelerating stages of the existing 
landslide along Monte Toc. Both those stages were followed by 
a deceleration stage just after the lowering of the water level in 
the reservoir. In 1963,  a third filling, with the water table in the 
reservoir at its maximum level, was followed by a catastrophic 
reactivation of the landslide, which mobilized 270 million m 3 of 
rocks. These huge masses entered into the reservoir generating a 
220-m-high wave that overtopped the dam and caused the death 
of 1917 people in the valley below, as well as huge damages.

Figure 12 shows the estimated exponent versus time referring to a 
time window of 1126 days, from 8 September 1960 to 9 October 1963.

Among the six individuated stages, those corresponding to 
the filling phases are the first, the fourth, and the sixth ones. 
The latter one, from 8 April to the day of the collapse, is associ-
ated with a Trend IVb. In that stage, the exponent increased with 
time, passing the threshold between Trend III and Trend IVa on 
24 August (46 days before the collapse), and that between Trend 
IVa and Trend IVb on 20 September (19 days before the collapse), 
finally taking the value of 5.347.

Considering that Trend IVb is strongly unstable and implies that 
it is impossible to prevent landslide collapse, we argue that the use of 

Approach II would have allowed critical information to be obtained 
early enough to apply an emergency plan to protect the people at risk.

La Saxe case study

La Saxe rockslide (Fig. 13a) is located on the left-hand side of Ferret 
Valley, Valle d’Aosta Region (Northern Italy), where a deep-seated 
gravitational slope deformation can be recognized. It extends 
between 1870 m and 1400 m above sea level (a.s.l.) over an area of 
150,000 m 2 , involves a total volume of about 8 million m 3 and is 
characterized by an average slope angle of 37◦ , a maximum length 
of 550 m, and a maximum width of 420 m (Crosta et al. 2014).

Fig. 11   Forecasting displace-
ments with an increasing 
number of observations. The 
approximation of the stage 
record (red points) improves 
as any new displacement is 
acquired (a) through the esti-
mates of exponent x updated 
at any new data entry (b). 
Graphs refer to the 4th activity 
stage, from 1 July 1986 to 25 
September 1987 of La Clapière 
landslide. Smaller insets report 
the whole data record (a) and 
the exponent time evolution 
(b), from 17 January 1983 to 31 
August 1994
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Fig. 12   The variation of the exponent x of the power law function 
approximating the dimensionless data for the last 1126 days before 
the Vajont landslide collapse
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The landslide threatens the Entreves and La Palud villages, in 
the Courmayeur municipality, and part of the route E25 near the 
access to Mont Blanc Tunnel that represents a fundamental con-
nection between Italy and France. Indeed, social and economic 
potential damage is very high, due to the losses in case of clo-
sure of the tunnel and for the touristic activities in Courmayeur 
area. For such a reason, after a local collapse of the slope, in 2014 
the Italian Civil Protection classified the landslide as a national 
emergency.

As discussed by Alberti (2019), the monitoring system of the 
slope collects many and detailed information on displacements 
through inclinometers, wire-extensometers, Differential Monitor-
ing System columns (by CSG s.r.l.), GPS network devices, a GB-
InSAR LiSALabTM system (by Ellegi s.r.l.), a high-frames camera, 
and a Leica TCA robotic total station (Fig. 13b), surveying 31 optical 
targets, and other devices. Groundwater level, snow melting, and 
other physical quantities affecting the slope motion, including tem-
perature and frost level, are also systematically monitored.

Data records are regularly updated and uploaded in a website 
designed by Valle d’Aosta Region that is available for the sake of 
early warning, emergency procedures, and communication strat-
egy (Giordan et al. 2015).

Based on the experimental data, the landslide body can be 
divided into five sectors: we call “1” the active sector, “2” the sec-
tor dragged by the active sector, “3” the upper sector, “4” the lower 
sector, and “5” the external side sector (Fig. 13a). The movement 
of one or more of these sectors is mainly associated to snow melt-
ing that occurs during the spring season, causing water infiltration 
and fluctuations in groundwater level. Figure 14 reports cumulative 
displacements for the period in between October 2010 and January 
2019 from five targets, one for each mentioned sector (for complete-
ness, the positions are approximately shown in Fig. 13a).

From the displacement plots, we observe the common shape of 
diagrams, even if a significant difference, in terms of magnitude, 
characterizes the cumulated displacements (Fig. 14a). Among the 
most significant events, we observe the following: two accelerations 
of the sector 2 (see displacement from T3 in Fig. 14b) caused by 
the snow melting, dating back to March–May 2012 and April 2013; 
and two collapses involving limited portions of the main landslide 
body in the sector 1 (see displacement from B4 in Fig. 14a) that took 
place on 17 and 21 April 2014 (Manconi and Giordan 2015). After 
this last event, accelerations were characterized by smaller values 
also thanks to the stabilization works (drainage systems) carried 
out along the slope.

Fig. 13   Front view of the La 
Saxe rockslide, from the loca-
tion of the robotic total station 
(a), and Leica TCA robotic 
total station (b). Photographs 
taken on 3 October 2019 by 
M.R. Scoppettuolo. Texts and 
landslide sector boundaries in 
panel (a) by E. Babilio

Fig. 14   Cumulative displace-
ment over time for optical tar-
gets (a) with a close-up of T3, 
A2, C1, and E1 targets (b). The 
large displacement recorded 
by target B4 corresponds to 
the collapse of April 2014. 
Positions of targets and sector 
boundaries are approximately 
shown in Fig. 13a
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To test the reliability of the proposed method, by referring 
to B4 optical target in Fig. 13a, Approach II was applied to back-
analyze the evolution of sector 1 during the springs of 2012, 2013, 
and 2014. Figure 15 shows as the exponent of the approximating 
function changes in between 1 March to 10 May 2012 and 3 April to 
1 May 2013. With reference to the collapse mentioned above, Fig. 16 
shows that the collapse recorded on 17 April 2014 could have been 
considered very probable 10 days in advance, the exponent x = 2 
having been reached on 7 April (lower bound of Trend IVa), and 
inevitable 5 days in advance of 17 April, x = 3 (lower bound of 
Trend IVb) having been reached on 12 April and having a greater 
value thereafter.

Applicability of the method

The success of a method depends on several factors, including the 
coherence of rationale behind it, the reliability of the predictions, 
and its performance in comparison with other available methods 
in the literature. The first two issues are discussed in the previous 

sections. As it concerns the third one, we observe that methods to 
compare must be carefully individuated by excluding those appar-
ently similar, but actually designed to pursue different purposes.

Indeed, being both Approaches I and II tailored to predict land-
slide evolution over a single stage of activity, the comparison of 
their results with those coming from tools aimed at forecasting 
the landslides evolution over many stages becomes meaningless. 
This is, for example, the case of the Ruinon landslide that Crosta 
and Agliardi (2003) analyzed to verify the possibility of its collapse 
after a certain number of single landslide evolution stages. How-
ever, looking at the theoretical framework of the proposed method, 
we argue that in the future it could also be implemented to provide 
an insight on the evolution of landslides in the medium–long term.

Limiting ourselves to the forecasting of a single stage of 
activity at a time, a comparison is here proposed with the INV 
method (Fukuzono 1985, 1990; Voight 1988, 1989) for two cases of 
failure in an open pit mine, namely no. 3 and no. 4 among those 
reported by Carlà et al. (2017) (Fig. 17).

A comparison of the results for failure no. 3 is provided in Fig. 18 
that highlights a good performance for both INV (a) and present 

Fig. 15   Back-analyzed time 
evolution of the exponent of 
the approximating function in 
between 1 March–10 May 2012 
(a) and 3 April–1 May 2013 (b)

Fig. 16   Forecasting the col-
lapse in the sector 1 of the La 
Saxe landslide (time window 
lasting 32 days, from 16 March 
to 17 April 2014). Panel (a): 
the displacement data record, 
adaptation of approximation 
curves for increasing size of 
the data record (gray-shaded 
curves) and final estimate 
(solid black curve). Panel (b): 
the time evolution of the esti-
mated exponent
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Fig. 17   Time histories of 
failures no. 3 (a) and no. 4 (b) 
in a mine of classified place 
for the owner’s convenience. 
Data retrieved from (Carlà 
et al. 2017)

Fig. 18   Collapse time of failure 
no. 3 estimated through the 
INV method (a) and the pro-
posed method (b)

Fig. 19   Collapse time of failure 
no. 4 estimated through the 
INV method (a) and the pro-
posed method (b)
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method (b) although the latter allows defining an alert threshold 
(at x > 2 ) 1 h in advance respect to the former. For failure no. 4 
(Fig. 19), the Fukuzono-Voight method fails the prediction while 
the proposed method provides an alert threshold (x > 2) about 2 h 
in advance with respect to the collapse of the slope.

It can be observed that processing the inverse of the velocity indi-
rectly means to analyze Trends III and IV without discriminating 
between them. The relevance of acceleration is indirectly discussed 
by Segalini et al. (2018), who analyze several slope failures through the 
normalized velocity vs time observing that the collapse is recorded for 
trends that are similar to those here classified as IVa and IVb. This topic 
is also discussed by Federico et al. (2012), who relate velocity and accel-
eration to failures of a significant number of slopes and the correspond-
ing diagram they obtain appears strictly related to Trends IVa and IVb.

A further observation concerns the estimate of the time evolu-
tion of the exponent through displacement records which, being 
discrete in time, require a sequence of approximations of the 
available experimental data. In the early phase of any landslide 
evolution stage, due to several factors, a small number of data 
may give rise to possible noise amplification, as observed in 
Fig. 15a. However, in all the case studies analyzed, this noise phe-
nomenon is reduced as the size of the dataset increases.

Finally, we note that two of the explanatory examples we 
considered, namely Vallcebre and Vajont, have been analyzed in 
the past through reduced-order models by Ferrari et al. (2011) 
and Alonso et al. (2010), respectively. In our opinion, this repre-
sents an interesting starting point for a future and comprehensive 
understanding of the factors underlying the different dynamic 
equilibria of the displacement trends we have considered in the 
present work.

Concluding remarks

In this paper, a method to forecast the landslide evolution is pro-
posed. The basic theoretical principles come from previously pub-
lished works devoted to analyze common features emerging from 
landslides that are different in terms of size, mechanical properties 
of materials involved in the landslide, groundwater regime, and so on.

The developed strategy allows properly approximating displace-
ment records and assessing the stability properties of a limited 
number of landslide stages, which are able to represent the large 
variety of actual landslides. The approach is based on a prelimi-
nary and technically informed partitioning of the data into differ-
ent landslide stages.

Since in real-time analysis of a landslide, the duration of a given 
stage is not known in advance, the present contribution proposes 
an automatic strategy for data partitioning, based on updating the 
approximation to the current record. This implies generating a new 
approximation as soon as a new data is acquired, from which a new 
prediction of the landslide displacement is extrapolated.

The procedure has been tested as a blind predictor by using 
historical data in a one-by-one uploading process. Data, available in 
the scientific literature, come from well-known landslides and the 
results of the simulations trace what actually happened.

We close with the hope and idea for future work to consider 
other well-documented case studies and an experimental campaign 
on simplified scale models that would further confirm the validity 

of a method whose results to date already seem to point to it as an 
excellent candidate for predicting landslide evolution.
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