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Metaheuristic‑based support vector regression 
for landslide displacement prediction: 
a comparative study

Abstract  Recently, integrated machine learning (ML) metaheuris-
tic algorithms, such as the artificial bee colony (ABC) algorithm, 
genetic algorithm (GA), gray wolf optimization (GWO) algorithm, 
particle swarm optimization (PSO) algorithm, and water cycle algo-
rithm (WCA), have become predominant approaches for landslide 
displacement prediction. However, these algorithms suffer from 
poor reproducibility across replicate cases. In this study, a hybrid 
approach integrating k-fold cross validation (CV), metaheuristic 
support vector regression (SVR), and the nonparametric Fried-
man test is proposed to enhance reproducibility. The five previ-
ously mentioned metaheuristics were compared in terms of accu-
racy, computational time, robustness, and convergence. The results 
obtained for the Shuping and Baishuihe landslides demonstrate 
that the hybrid approach can be utilized to determine the optimum 
hyperparameters and present statistical significance, thus enhanc-
ing accuracy and reliability in ML-based prediction. Significant dif-
ferences were observed among the five metaheuristics. Based on 
the Friedman test, which was performed on the root mean square 
error (RMSE), Kling-Gupta efficiency (KGE), and computational 
time, PSO is recommended for hyperparameter tuning for SVR-
based displacement prediction due to its ability to maintain a bal-
ance between precision, computational time, and robustness. The 
nonparametric Friedman test is promising for presenting statistical 
significance, thus enhancing reproducibility.

Keywords  Landslide displacement prediction · Support vector 
regression (SVR) · Metaheuristics · Nonparametric Friedman test

Introduction

Landslide disasters have caused devastating damage to the environ-
ment, life, and property (Hong et al. 2020). Robust and accurate 
displacement prediction is a key component of an early warning 
system. Recently, machine learning (ML) algorithms have become 
predominant approaches for landslide displacement prediction due 
to their capacity to model nonlinear complex processes. Among 
them, backpropagation (BP) neural networks have been extensively 
utilized due to their simple structure and acceptable accuracy (Du 
et al. 2013). In addition to BP, support vector machines (SVMs) (Liu 
et al. 2014), extreme learning machines (ELMs) (Cao et al. 2016), 
recurrent neural networks (Xing et al. 2020; Niu et al. 2021), and 
their variants (Ma et al. 2020b) have also been utilized for landslide 
displacement prediction.

Hyperparameter tuning is a crucial step for accurate and reli-
able ML (Yang and Shami 2020; Zhang et  al. 2020c). However, 

hyperparameter tuning in ML-based prediction models is usually 
based on trial and error. Recently, as summarized in Table 7 in the 
Appendix, modern metaheuristic algorithms have been extensively 
utilized for hyperparameter optimization in ML-based landslide dis-
placement prediction. As shown, metaheuristic algorithms, includ-
ing artificial bee colony (ABC) optimization algorithms (Zhou et al. 
2018a, genetic algorithms (GAs) (Li and Kong 2014; Cai et al. 2016; 
Miao et al. 2017), gray wolf optimization (GWO) algorithms (Guo 
et al. 2020; Liao et al. 2020), particle swarm optimization (PSO) 
algorithms (Zhou et al. 2016; Zhang et al. 2020b), and water cycle 
algorithms (WCAs) (Zhang et al. 2021b), have been combined with 
ML algorithms and extensively studied for landslide displacement 
prediction. As shown in Table 7 in the Appendix, the performance 
of hybrid metaheuristics and ML approaches has been proven to be 
competitive. In particular, support vector regressions (SVRs), i.e., 
the use of SVM for regression, have been extensively integrated with 
metaheuristics for landslide displacement prediction.

Despite their extensive application, these algorithms suffer from 
poor reproducibility across replicate cases (Ma and Mei 2021). As 
listed in Table 7 in the Appendix, in previous performance com-
parisons, only the deterministic optimal estimation was considered, 
and only a single-run comparison was conducted. However, due to 
the inherent stochastic nature of these algorithms (Gao et al. 2020; 
Ahmed et al. 2021), the same metaheuristic algorithm may yield dif-
ferent optimal solutions in multiple runs (Ahmed et al. 2021). The 
solutions in even superior models deviate strongly for a given case, 
which means that ideal results from a single run are hard to repli-
cate on similar cases. For example, PSO-optimized SVR (PSO-SVR) 
was found to be superior to GA-optimized SVR (GA-SVR) (Zhou 
et al. 2016). However, completely opposite results were achieved in 
the research of Miao et al. (2017), which raises questions concern-
ing the repeatability of trained models based on a single run. A 
systematic comparison of benchmark cases and a presentation of 
the statistical significance are recommended to increase the repeat-
ability (Ma and Mei 2021).

In the present study, a hybrid approach integrating k-fold 
cross-validation (CV), metaheuristic SVR, and the nonparametric 
Friedman test is proposed to enhance reproducibility by present-
ing the statistical significance. Observations from the Shuping and 
Baishuihe landslides in the Three Gorges Reservoir area (TGRA) 
are selected as benchmark datasets for the comprehensive com-
parison of SVRs optimized by metaheuristics, including ABC, 
GA, GWO, PSO, and WCA. Nonparametric Friedman tests are 
performed to reveal significant differences and to rank the five 
metaheuristics.

DOI 10.1007/s10346-022-01923-6

Technical Note

Received: 6 April 2022 
Accepted: 16 June 2022 

© The Author(s) 2022

Landslides (2022) 19:2489 2511–

Published online: 30 June 2022

2489

http://orcid.org/0000-0001-8408-2821
http://crossmark.crossref.org/dialog/?doi=10.1007/s10346-022-01923-6&domain=pdf


   Landslides 19 · (2022)   

Technical Note

Methodology

SVR

SVM, which was proposed by Cortes and Vapnik (1995), is consid-
ered a powerful and robust ML algorithm for classification and 
regression (Raghavendra and Deka, 2014; Malik et al. 2020). SVR is a 
regression approach based on an SVM. For a set of landslide moni-
toring data {xi , yi}

n
i
 , nonlinear SVR with a kernel function K(xi , x) 

is formulated as follows:

where � and b are the weight vector and bias, respectively.
A nonlinear SVR form can be obtained by the following opti-

mization problem:

where C , �t , and �∗
t
 are the penalty parameter and two slack vari-

ables, respectively.
By introducing the Lagrange multipliers a∗

i
 and ai , nonlinear SVR 

can be converted to a dual problem and expressed as follows:

Various kernels, including linear, polynomial, Gaussian, and 
sigmoid kernels, have been proposed. Previous kernel research 
(Ahmadi et al. 2015; Karasu et al. 2020) has already indicated that 

(1)y = f (x) =

n∑

i=1

�iK(xi , x) + b

(2)min
�,b

1

2
‖�‖2 + C

T�

t=1

���t + �∗
t
��

(3)y = f (x) =

n∑

i=1

(a∗
i
− ai)K(xi , x) + b

the Gaussian kernel can be safely applied as it provides accurate 
results. Thus, the most widely applied Gaussian kernel is adopted, 
which is expressed as follows:

where � is the width of the Gaussian kernel.
Gaussian kernel SVR is sensitive to the hyperparameters C and 

� . In the present study, five metaheuristic algorithms, including 
ABC, GA, GWO, PSO, and WCA, are applied for hyperparameter 
tuning (Fig. 1a).

Metaheuristic algorithms for hyperparameter optimization of 
SVR

Metaheuristic algorithms are often nature-inspired computa-
tional intelligence methods for optimal solution approximation 
(Khan et al. 2021). Recently, various metaheuristics, such as ABC, 
GA, GWO, PSO, and WCA, have been widely utilized for landslide 
displacement prediction due to their optimization strengths. The 
main characteristics of these algorithms are listed in Table 8 in 
the Appendix. As shown in this appendix, the optimal processes 
usually start with a random generation of possible solutions 
called a population. Then, the generated population is randomly 
and iteratively updated (i.e., the exploration and exploitation 
phases) until the predetermined criteria are met. Exploration 
and exploitation refer to encountering new regions and searching 
within the corresponding neighborhood, respectively (Morales-
Castañeda et al. 2020). The stochastic nature of metaheuris-
tic algorithms makes it necessary to implement multiple runs 

(4)K(x, xi) = exp[−
(x − xi)

2

2�2
]

Fig. 1   Flowchart of enhancing the ML-based prediction model of landslide displacement using CV-metaheuristic-SVR and the nonparametric 
Friedman test
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(Eskandar et al. 2012; Babaoglu 2015; Bahreininejad 2019; Wang 
et al. 2019a; Abderazek et al. 2020). Thus, in the present study, the 
same metaheuristics were independently run 100 times.

1.	 ABC
ABC, a swarm-based metaheuristic algorithm, emulates the 
foraging behavior of bees for optimization (Karaboga and Bas-
turk 2007). A typical ABC consists of two main components, 
a food source and a bee colony, which consists of employed, 
onlooker, and scout bees. The position of a food source repre-
sents a possible solution. Recently, ABC optimization has been 
successfully applied for landslide displacement prediction 
(Zhou et al. 2018a; Zhang et al. 2021a). The main procedure of 
ABC is listed in Table 8 in the Appendix.

2.	 GA
As the name implies, the GA concept is inspired by the evolution 
process and mainly involves crossover and mutation. GAs have 
been extensively used for landslide displacement prediction (Li 
and Kong 2014; Cai et al. 2016; Miao et al. 2017; Zhu et al. 2017). 
The main procedure of the GA is listed in Table 8 in the Appendix.

3.	 GWO
GWO, a new swarm-based metaheuristic algorithm, mimics 
the hunting behavior of gray wolves (Mirjalili et al. 2014). The 
position of a gray wolf represents a possible solution. A gray 
wolf group consists of alpha, beta, delta, and omega wolves, 
which represent the best, second-best, third-best, and remain-
ing solutions, respectively. The positions are simultaneously 
updated based on the three best solutions. The main procedure 
of GWO is listed in Table 8 in the Appendix.

4.	 PSO
PSO is a swarm-based metaheuristic algorithm that simulates 
the social behavior of bird flocking (Kennedy and Eberhart 
1995) and has gained substantial attention for landslide dis-
placement prediction. The particle position, which represents 
a possible solution, is updated based on the individual and 

global optima. The main PSO procedure is listed in Table 8 
in the Appendix.

5.	 WCA​
WCA is a novel physical-based metaheuristic algorithm that 
simulates the water cycle process (Eskandar et al. 2012), in 
which water flows into the sea after water from precipitation, 
streams, and rivers is combined. WCA starts with a random 
generation of raindrops that represent possible solutions. In 
addition, the best individual is chosen as the sea. The main 
WCA procedure is listed in Table 8 in the Appendix.

6.	 SVR optimized by metaheuristic techniques
The main procedures of SVR optimized by metaheuristic 
techniques are as follows: first, the landslide observation is 
divided into training and test datasets. Second, parameters 
such as population size and the maximum number of itera-
tions are initiated, and possible solutions consisting of hyper-
parameters C and � are generated for training SVR. Third, the 
fitness values of the trained SVR are calculated and evalu-
ated. Fourth, the hyperparameters of SVR are randomly and 
iteratively updated according to the updating strategy until 
the predetermined criteria are met. If the predetermined cri-
teria are satisfied, the best hyperparameters are output as the 
optimal SVR.

k‑fold CV

k-fold CV is the most popular approach for validation as it can 
mitigate overfitting (Chou and Thedja 2016). In the k-fold CV 
approach, the original training set is randomly divided into 
k subdatasets. A new training dataset is formed based on k-1 
subdatasets. The remaining dataset is adopted as the valida-
tion set. A model is trained based on the newly formed training 
dataset and evaluated on the validation set. The performance 
measure from the first round is computed. The above processes 
are repeated k times. The performance measure from k-fold CV 

Fig. 2   Location of the case 
studies (marked with a red 
star) in the TGRA (marked in 
gray), China
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is the average value computed in the loop (schematically illus-
trated in Fig. 1).

Evaluation criteria

The representative equations, features, and characteristics of com-
mon statistical indices (e.g., the mean absolute error (MAE), root 

mean square error (RMSE), and correlation coefficient (R)) are 
summarized in Table 9 in the Appendix. Previous studies (Yang 
et al. 2020) have shown that the utilization of square values can 
enhance the evaluation of model performance. Therefore, the 
evaluation criteria, including the RMSE and Kling-Gupta efficiency 
(KGE) from 100 runs, were obtained and applied to compare model 
performance.

Fig. 3   a Photograph, b 3D 
topographic map with instru-
mentation, and c geological 
profile of the Shuping land-
slide, TGRA. The inset graph in 
(c) shows lateral displacements 
from inclinometers QZK3 and 
QZK4

Fig. 4   Observations of land-
slide displacement at ZG88, 
the reservoir level, and the 
rainfall intensity in the Shuping 
landslide area from January 
2007 to December 2012
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Nonparametric Friedman test

In the present study, the aim of the nonparametric Friedman test 
is to present significant differences among the five metaheuristic 
algorithms to increase the repeatability. The steps in the nonpara-
metric Friedman test are mainly summarized as follows (Ganaie 
and Tanveer 2020; Banaie-Dezfouli et al. 2021):

1.	 Gather evaluation criteria for each metaheuristic algorithm 
over 100 runs.

2.	 For the ith run, the tested metaheuristic algorithms are ranked 
from best to worst as 1 to k, which is denoted as rj

i
.

3.	 For the jth algorithm, average the obtained ranks over 100 runs: 

Rj =
1

n

j∑
i

r
j

i
.

4.	 The nonparametric Friedman statistic Ff  is expressed as follows:

In the nonparametric test, a p value is used to determine the probabil-
ity of rejecting the null hypothesis. A p value < 0.05 indicates that the null 
hypothesis should be rejected, which reveals a statistically significant dif-
ference among the tested metaheuristic algorithms (Korkmaz et al. 2021).

(5)Ff =
12n

k(k + 1)
[
∑

j

R2
j
−

k(k + 1)2

4
]

Fig. 5   Scatter matrix showing the pairwise correlations of the land-
slide displacement at ZG88 (y) with rainfall (× 1 and × 2), reservoir 
water level (× 3), variation in the reservoir level (× 4), and evolution 

state (× 5, × 6, and × 7). The panels in the lower left panels show the 
MIC, and the upper right half shows the corresponding data points
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Fig. 6   a–e Predictions of landslide displacement for ZG88 by a ABC-SVR, b GA-SVR, c GWO-SVR, d PSO-SVR, and e WCA-SVR on the test data-
set; f comparison of mean prediction from the metaheuristic-based SVR methods
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CV‑metaheuristic‑SVR and nonparametric Friedman test for 
enhancing the ML model

The main steps of CV-metaheuristic-SVR and the nonparametric 
Friedman test for enhancing ML (illustrated in Fig. 1) are as follows:

1.	 Data preparation: Based on previous studies listed in Table 7 
in the Appendix (Zhou et al. 2016; Ma et al. 2018, 2020a), the 
widely applied inputs, including accumulated precipitation in 
the current month and over the past 2 months (× 1 and × 2, 
respectively), average reservoir level in the current month 
(× 3), variation in the reservoir level in the current month 
(× 4), and displacement in the past 1, 2, and 3 months (× 5, × 6, 
and × 7, respectively), were selected as candidate input pools. 
The key variables with a maximum information coefficient 
(MIC) greater than 0.3 (Wang et al. 2019b, 2021) were adopted 
to remove redundant and irrelevant variables from the candi-
date pool (Ma et al. 2022). The ratio of training to testing data 
was set as 80 to 20%, respectively.

2.	 k-fold cross-validation: Based on previous studies of k-fold 
cross-validation in geohazards (Ghorbanzadeh et al. 2020; 
Meena et al. 2021), fourfold CV was adopted in the present 
study.

3.	 Parameter initialization: The parameters were initiated, and 
possible solutions consisting of the hyperparameters C and 
� were generated. The search ranges for the penalty factor 
and width of the Gaussian kernel were set to [0, 100] and 
[0, 100], respectively (Miao et al. 2017). For the metaheuris-
tics compared in the present study, the population size and 
the maximum number of iterations were set to 50 and 200, 
respectively. For ABC, the percentages of onlooker and 
employed bees were each 50%. In addition, the number of 
scout bees was set to one. For GA, the crossover and muta-
tion probabilities were set to 0.85 and 0.05, respectively. For 
PSO, the inertia weight was set to linearly decrease from 0.9 
to 0.4. Two coefficient values were both set to 2 (Ahmed et al. 
2021). For WCA, the total number of rivers and seas and the 
maximum allowable distance between the river and sea were 
set to 10 and 1e-3 (Eskandar et al. 2012; Zhang et al. 2021b), 
respectively.

4.	 Fitness evaluation: The average value of the normalized mean 
square error (NMSE) from fourfold CV was adopted as the fit-
ness and evaluated before the optimization process started.

5.	 Parameter updating: The hyperparameters C and � were 
iteratively updated with for ABC, GA, GWO, PSO, and WCA 
methods until the predetermined stopping criteria were met. 
The best hyperparameters C and � were output for optimal 
SVR modeling. Considering the inherent stochastic nature of 
these methods, the metaheuristic-based SVRs were indepen-
dently run 100 times. The metaheuristic-based SVR methods 
were implemented using Python 3.8 in the Windows Subsys-
tem for Linux (WSL) with Ubuntu 20.04 with an Intel Core 
i9-10900 K@3.7 GHz and 64 GB of RAM.

6.	 Nonparametric Friedman test: The RMSE, KGE, and computa-
tional time for each run were recorded. Nonparametric Fried-
man tests were performed based on the obtained RMSEs, KGEs, 
and computational times.
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Case study 1: Shuping landslide

Feathers of the Shuping landslide

The Shuping landslide, an ancient landslide, is situated in Zigui 
County, Yichang, TGRA, China (Figs. 2 and 3); this landslide has a 
length of 800 m, width of 700 m, and average thickness of 50 m. 
The landslide volume is approximately 27.5 million m3. The eleva-
tions of the landslide toe and crown are 60 and 400 m, respectively. 
The field investigation and borehole drilling show that the landslide 
materials are silty clay with gravel clasts underlaid by marlstone and 
siltstone of the Triassic Badong Formation (Fig. 3c). A monitoring 
system consisting of a GPS and an inclinometer was installed for 
landslide monitoring (see Fig. 3b for the GPS and inclinometer loca-
tions). The sliding surface was observed at depths of 70 and 30 m 

from inclinometers QZK3 and QZK4, respectively. These results cor-
respond well with the borehole data.

The Shuping landslide has been widely utilized as a case study 
for landslide displacement prediction (Ren et al. 2014; Wen et al. 
2017; Ma et al. 2018; Zhou et al. 2018a; Wang et al. 2019b). The 
widely applied monitoring data from ZG88, the rainfall inten-
sity, and the reservoir level from January 2007 to December 2012 
(Fig. 4) indicate step-like movement patterns. Further details of 
the geological setting and deformation characteristics were pro-
vided in previous research by Ma et al. (2018).

Input variable selection

The pairwise correlations of the landslide displacement at ZG88 
with candidate variables are shown in Fig. 5. As shown, the MICs 

Fig. 7   Comparison of metaheuristic-based SVR methods for ZG88 in terms of the a RMSE, b KGE, and c computational time

Fig. 8   Comparison of the 
optimal and mean fitness 
values for ZG88 of different 
metaheuristic methods
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of all candidate variables with landslide displacement are greater 
than 0.3. Moreover, the strongest correlation was observed between 
the average reservoir water level and landslide displacement, fol-
lowed by the correlation between the variation in the reservoir 
level and landslide displacement. These findings correspond well 
with previous research (Wang et al. 2022). Therefore, the key vari-
ables, including rainfall (× 1 and × 2), reservoir water level (× 3), 
variation in the reservoir level (× 4), and evolution state (× 5, × 6, 
and × 7), were set as the final inputs for model training.

Results comparison

Comparison of single predictions

The predictions from 100 separate runs and their correspond-
ing mean values from metaheuristic-based SVR methods for the 
testing data are shown in Fig. 6a–f. Clearly, as shown in Fig. 6, 
the same metaheuristics yield different results for multiple runs 
due to their inherent stochastic nature. Attentional biases were 

Table 2   Performance comparison of various prediction models for the Shuping landslide data

ABC, artificial bee colony; BP, backpropagation (neural network); CEEMD, complete ensemble empirical mode decomposition; CV, cross-validation; 
DTW, dynamic time warping; ELM, extreme learning machine; GA, genetic algorithm; GRNN, generalized regression neural network; GS, grid search; 
GWO, gray wolf optimization; KELM, kernel-based extreme learning machine; PSO, particle swarm optimization; SVR, support vector regression; 
WCA​, water cycle algorithm; WT, wavelet transform

Model R RMSE Model R RMSE

WT-ABC-KELM (Zhou et al. 2018a) 0.991 / GA-SVR (Wen et al. 2017) / 87.7215

ABC-KELM (Zhou et al. 2018a) 0.980 / GRNN (Wen et al. 2017) 134.6764

SVR (Zhou et al. 2018a) 0.959 / BP (Wen et al. 2017) / 123.1948

Wavelet-PSO-SVR (Ren et al. 2014) 0.981 / CV + ABC-SVR (current study) [0.9977, 0.9978] [49.0751, 49.1974]

WT-ELM (Zhou et al. 2018) 0.989 / CV + GA-SVR (current study) [0.9977, 0.9979] [47.6701, 49.4400]

ELM (Zhou et al. 2018) 0.977 / CV + PSO-SVR (current study) [0.9977, 0.9979] [49.0223, 49.2010]

CEEMD-DTW-GA-SVR (Zhang et al. 2020a) 0.917 / CV + GWO-SVR (current study) [0.9977, 0.9979] [49.4794, 49.6539]

Wavelet-SVR (Ren et al. 2014) 0.945 / CV + WCA-SVR (current study) [0.9962, 0.9977] [49.4946, 63.2305]

CEEMD-DTW-SVR (Zhang et al. 2020a) 0.952 /

Fig. 9   a Photograph, b 3D 
topographic map with instru-
mentation, and c geological 
profile of the Baishuihe land-
slide, TGRA. The inset graph in 
(c) shows lateral displacements 
from inclinometer ZK05
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observed among 100 separate runs. The statistics for the 100 runs 
listed in Table 1 show that for the best single prediction, by using 
the RMSE criterion, GA provides the best prediction with the 
lowest RMSE. WCA yields the worst results. However, considering 
the KGE criterion, WCA outperforms the rest of the metaheuristic 
methods. As shown in Fig. 6 and Table 4, in terms of the RMSE 

and KGE criteria, the mean prediction from GA outperforms the 
other metaheuristic methods.

In summary, based on a single prediction, there is no guaran-
tee for identifying one method as the best for the displacement 
prediction of the Shuping landslide, and further evaluations are 
needed.

Fig. 10   Observations of land-
slide displacement at XD01, 
the reservoir level, and the 
rainfall intensity in the Baishu-
ihe landslide area from January 
2007 to December 2011

Fig. 11   Scatter matrix showing 
the pairwise correlations of 
the landslide displacement 
at XD01 (y) with rainfall (× 1 
and × 2), reservoir water level 
(× 3), variation in the reservoir 
level (× 4), and evolution state 
(× 5, × 6, and × 7). The panels in 
the lower left panels show the 
MIC, and the upper right half 
shows the corresponding data 
points
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Fig. 12   a–e Predictions of landslide displacement for XD01 by a ABC-SVR, b GA-SVR, c GWO-SVR, d PSO-SVR, and e WCA-SVR on the test data-
set; f comparison of mean prediction from the metaheuristic-based SVR methods
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Nonparametric statistical analysis

The Friedman test results for the metaheuristic-based SVR 
methods are listed in Table 1. As shown in this table, the p val-
ues for the Friedman tests of RMSE, KGE, and computational 
time are 5.53 × 10−49, 7.09 × 10−49, and 2.62 × 10−66, respectively. 
These results clearly demonstrate that for the five compared 
metaheuristic methods, there are significant differences in terms 
of precision and computational time. The corresponding rank-
ings are depicted in Table 1. As shown in this table, the rankings 
based on the Ff of the RMSE and KGE criteria exhibit the same 
pattern. GA and PSO ranked first and second, respectively, and 
WCA ranked last. The low rank of WCA may be due to trapping 
at local optima, which leads to premature convergence.

In summary, inconsistency from single-run comparisons has 
been addressed by the nonparametric Friedman test. Significant 
performance differences were revealed among the metaheuristic 
methods. GA achieves superior performance.

For the computational time, the metaheuristic-based SVRs 
ranked from fastest to slowest as follows: WCA, PSO, GA, ABC, 
and GWO. These results indicate that WCA is capable of finding 
the optimal result at the lowest computational cost. Both ABC and 
GWO are computationally demanding.

Sensitivity analysis

Model stability is another essential factor that should be consid-
ered in model comparison. The evaluation metrics (RMSE, KGE, 
and computational time) from 100 runs of the metaheuristic-
based SVR methods are presented in Fig. 7. The metaheuristic-
based SVR methods and corresponding evaluation metrics are 
shown on the vertical and horizontal axes, respectively. The sta-
tistical results, including the 10th and 90th percentile values and 
mean values, are shown with boxes and red lines, respectively. As 
shown, the WCA- and GA-based SVR methods provide signifi-
cantly different results when run multiple times, which indicates 
that those two algorithms suffer from instability. It is evident that 
the evaluation metrics from the PSO-, ABC-, and GWO-based SVR 
methods over 100 runs exhibit narrow ranges of RMSE and KGE 
values. The predictions from the PSO-, ABC-, and GWO-based 
SVR methods shown in Fig. 6 are generally concentrated around 
the observations, indicating stable performance. However, WCA 
suffers from serious robustness issues, as further confirmed its 
standard deviation, which was the largest among all methods 
(listed in Table 1). This result is mainly due to the unsatisfac-
tory balance between exploitation and exploration, which leads 
to trapping at local optima and premature convergence. In fact, 
the exploration phase may not play a role in determining the final 
solution (Xu and Mei 2018; Nasir et al. 2020), which increases the 
burden of exploration.

Convergence analysis

The convergence fitness from the best runs (i.e., the lowest NMSE) 
and mean fitness value from 100 runs of different metaheuristic 
methods are shown in Fig. 8. The convergence curves display the 
following trends.
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The convergence curve of the mean fitness value of GA remains 
far from the horizontal axis, which indicates that information car-
riers are still far from each other until the optimization process 
ends. This result is mainly caused by the poor local search capa-
bility of GAs (Belhaiza et al. 2019). The convergence curves of the 
swarm-based algorithms, including ABC, PSO, and GWO, reach 
near-optimal solutions after 120 iterations, which reflects prema-
ture convergence, as noted in previous research (Malik et al. 2015; 
Yang et al. 2020). WCA can converge to the optimal solution soonest 
based on the initial iterative process.

Furthermore, the prediction models with the integration of 
CV and metaheuristic-based SVR were compared with exist-
ing models on the Shuping landslide (Table 2). As shown, the 
models based on CV-metaheuristic-SVR provide the best pre-
diction with the largest R and lowest RMSE. These comparative 
results clearly indicate that CV and metaheuristic SVR can be 
employed to improve model performance by determining the 
optimal hyperparameters.

Case study 2: Baishuihe landslide

Feathers of the Baishuihe landslide

The Baishuihe landslide (Fig. 9), an ancient landslide, is situated on 
the south bank of the Yangtze River (see Fig. 2 for the location of 
this landslide). The Baishuihe landslide has an estimated volume 
of 12.6 million m3, with an average thickness of 30 m. The landslide 
covers an area of 0.42 km2, with a length of 600 m and a width of 
700 m (Fig. 9). The landslide encompasses an active block and 
a relatively stable block (Fig. 9a–b). The field investigation and 
borehole drilling show that the landslide materials are silty clay 
with gravel clasts (Fig. 9c). A monitoring system consisting of a 
GPS and an inclinometer was installed (see Fig. 9b–c) for locations 
of the GPS and inclinometer). The observed lateral displacement 
from ZK05 indicates shallow and deep sliding surfaces at depths 
of 13 and 23 m.

The Baishuihe landslide has been widely selected as a case 
for landslide displacement prediction (Miao et al. 2017; Zhou 
et al. 2018b; Ma et al. 2022; Wang et al. 2022). In the present study, 
the widely applied monitoring data for XD01 were selected for 

training the landslide displacement model. The cumulative dis-
placement of XD-01, the reservoir level, and the rainfall intensity 
in the Baishuihe landslide area from January 2007 to December 
2011 are shown in Fig. 10. The landslide displacement is charac-
terized by step-like movement patterns.

Input variable selection

The pairwise correlations of the landslide displacement at XD01 
with candidate variables are shown in Fig. 11. As shown in this 
figure, the MICs of all candidate variables with landslide dis-
placement at XD01 are greater than 0.3. Moreover, the strongest 
correlation (i.e., a displacement greater than 0.6) was observed 
between the variation in the reservoir level and landslide dis-
placement. These findings correspond well with current research, 
which has indicated that the movement of XD01 is more sensitive 
to variations in the reservoir (Miao et al. 2017; Ma et al. 2022). 
Therefore, the key variables, including rainfall (× 1 and × 2), res-
ervoir water level (× 3), variation in the reservoir level (× 4), and 
evolution state (× 5, × 6, and × 7), were set as the final inputs for 
model training.

Results comparison

Comparison of single predictions

The prediction for the test dataset from 100 runs is shown in 
Fig. 12a–e. The average values from 100 runs were computed and 
are shown in Fig. 12f. As shown in this figure, due to their inherent 
stochastic nature, different predictions with attentional biases were 
observed among 100 separate runs. According to the statistics for 
the 100 runs, the following results can be obtained:

For the best prediction, by using the RMSE criterion, WCA pro-
vides the best prediction with the lowest RMSE. GA outperforms 
the rest of the metaheuristics when considering the KGE criterion.

For mean prediction, in terms of the RMSE criterion, the mean 
prediction using WCA outperforms the rest of the metaheuristic 
methods. In terms of the KGE criterion, GA provides the best mean 
prediction. The performance rankings are different from those of 
the Shuping landslide.

Table 4   Performance comparison of various prediction models for the Baishuihe landslide data

ABC, artificial bee colony; ANN, artificial neural network; CV, cross-validation; ELM, extreme learning machine; GA, genetic algorithm; GWO, 
gray wolf optimization; KELM, kernel-based extreme learning machine; PSO, particle swarm optimization; SVR, support vector regression; 
WCA​, water cycle algorithm

Model R Model R Model R Model R

ANN (Liu et al. 
2014)

0.9703 ELM (Zhu et al. 
2018b)

0.984 SVR (Zhou et al. 
2018b)

0.965 CV + GWO-SVR 
(current study)

[0.9924, 
0.9928]

Univariate chaotic 
ELM (Huang et al. 
2017)

0.8130 GS-SVR (Miao et al. 
2017)

0.8689 CV + ABC-SVR (cur-
rent study)

[0.9924, 0.9925] CV + PSO-SVR (cur-
rent study)

[0.9924, 0.9925]

PSO-KELM (Zhou 
et al. 2018b)

0.969 PSO-SVR (Miao 
et al. 2017)

0.8718 CV + GA-SVR (cur-
rent study)

[0.9916, 0.9929] CV + WCA-SVR (cur-
rent study)

[0.9903, 0.9932]
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In summary, the performance ranking from a single run highly 
was dependent on the selected evaluation criteria and case. There 
is no guarantee that one algorithm will outperform all others in all 
cases. Further evaluations among the five metaheuristic methods 
are needed.

Nonparametric statistical analysis

Model ranks of the metaheuristic-based SVR methods using Friedman 
test results are listed in Table 3. p values much lower than 0.05 were 
obtained, which clearly indicates significant differences in terms of 

Fig. 13   Comparison of metaheuristic-based SVR methods for XD01 in terms of the a RMSE, b KGE, and c computational time

Fig. 14   Comparison of the optimal and mean fitness values for XD01 of different metaheuristic methods
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precision and computational time. The rankings based on Ff are listed 
in Table 3. As shown in this table, based on the Ff of the KGE and RMSE 
criteria, the compared models are ranked as follows: GA, WCA, PSO, 
ABC, and GWO. Although some differences in model rankings were 
observed with the Shuping landslide, GA ranks first for both cases. 
WCA is the most effective method for both cases.

Sensitivity analysis

As shown in Table 3 and Fig. 13, predictions with significant bias were 
provided by the WCA and GA-based SVR methods during multiple runs 
with a wider range of RMSE and KGE and a larger value of the standard 
deviation. These results demonstrate the poor stability of WCA- and GA-
based SVRs. In particular, WCA suffers from the most serious robustness 
issues with the widest range of RMSE and KGE and the largest standard 
deviation. PSO-, ABC-, and GWO-based SVRs achieve better stability 
during 100 runs with narrow ranges of RMSE and KGE values and lower 
standard deviations. Among them, the PSO-based SVR is the most stable 
with the lowest standard deviation (Table 3).

Convergence analysis

The following trends were observed from the optimal and mean fitness 
values shown in Fig. 14: the mean fitness value from GA remained far 

from the horizontal axis until the optimization process ended. The 
optimal fitness value from WCA converged to the optimal solution 
soonest (after 80 iterations). Equal fitness values were reached among 
the swarm-based algorithms, including the ABC, PSO, and GWO 
algorithms.

The prediction from the present research has been further 
compared with various prediction models for the Baishuihe 
landslide. It was shown that the hybrid approach integrating CV 
and metaheuristic-based SVR had the largest R, outperforming 
those methods reported in previous research.

In summary, based on a single-run comparison, the perfor-
mance ranking of metaheuristic optimized SVRs was highly 
dependent on the selected evaluation criteria and case. WCA-
SVR achieved the best single prediction, while GA-SVR pro-
vided superior mean prediction. Based on Friedman tests of 
the KGE and RMSE criteria, GA ranks first for both the Shuping 
and Baishuihe landslides with its superior performance. The 
Friedman test of computational time demonstrates that WCA is 
the most effective method as it is capable of finding the optimal 
solution soonest. The best stability was achieved from PSO-
based SVR. Such findings prove that the hybrid approach based 
on PSO and SVR is a promising tool for predicting landslide 
displacement with a high level of precision, speed convergence, 
and stability.

Table 5   Performance 
comparison for PSO-SVR 
with different kernel types for 
displacement prediction of 
ZG88 and XD01

The best results are shown in bold italics

Kernel type ZG88 ZD01

RMSE KGE Computational 
time (s)

RMSE KGE Computational 
time (s)

Linear 59.998 0.987 70.563 86.582 0.985 62.683

Polynomial 487.730 0.876 117.283 527.462 0.841 201.581

Gaussian 54.163 0.988 14.842 85.824 0.991 15.653

Sigmoid 60.131 0.984 12.442 104.759 0.984 13.223

Table 6   Summary of the 
strengths and weaknesses of 
the metaheuristic methods 
considered for landslide 
displacement prediction

Metaheuristic 
method

Strengths Weaknesses

ABC Strong robustness and high accuracy Computationally demanding
Premature convergence

GA Acceptable accuracy Easily converges to local optima

GWO Strong robustness High computational complexity
Premature convergence

PSO High computational efficiency
Strong robustness

Premature convergence

WCA​ Low computational cost Trapping at local optima
Premature convergence
Poor robustness
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Discussion

In summary, metaheuristic methods can provide satisfactory 
predictions. Based on a single-run comparison, the performance 
ranking was highly dependent on the selected evaluation crite-
ria and case. Based on the Friedman tests of RMSE, KGE, and 
computational time from multiple runs, significant differences 
were observed. The experimental results for the Shuping and 
Baishuihe landslide data indicate that GA and PSO are capable 
of providing reliable predictions with high precision. In terms 
of computational time, WCA and PSO are effective. In addition, 
PSO and ABC exhibit good robustness. Moreover, compared with 
evolution-based algorithms such as GA, swarm-based algorithms 
have fewer parameters and do not require crossover and muta-
tion probabilities (Abderazek et  al. 2020). In summary, PSO 
is competitive in terms of precision, computational time, and 
robustness.

In the present study, the Gaussian kernel was chosen based 
on previous recommendations. Furthermore, the performance 
comparison of PSO-SVR among different kernel types was con-
structed. The evaluation criteria of ZG88 and XD01 were com-
puted and are listed in Table 5. As shown in this table, PSO-SVR 
with a Gaussian kernel provides the best performance with the 
lowest RMSE and highest KGE for both ZG88 and XD01. These 
results correspond with previous findings, which reveal that the 
Gaussian kernel can be safely applied as it provides accurate 
results (Ahmadi et al. 2015; Karasu et al. 2020). PSO-SVR with 
a polynomial kernel is computationally demanding, while PSO-
SVR with a sigmoid kernel is the most effective, followed by the 
Gaussian kernel.

The strengths and weaknesses of the compared metaheuristic 
methods for landslide displacement prediction are summarized in 
Table 6. However, as stated in the “no free lunch” theorem (Wolpert 
and Macready 1997), although one algorithm may perform best for 
a specific problem, it may not perform best for other types of prob-
lems. Therefore, it is worth noting that the rankings obtained in 
the present study are only valid for a specific set of algorithms for 
landslide displacement prediction. For other sets of metaheuristic 
methods, the rankings would be significantly different. In different 
scenarios, it is recommended to run the nonparametric Friedman 
test.

Conclusion

In the present study, a hybrid approach integrating the k-fold CV, 
metaheuristic SVR, and nonparametric Friedman test was pro-
posed to enhance reproducibility by presenting the statistical sig-
nificance. Five metaheuristic methods, including ABC, GA, GWO, 
PSO, and WCA, were utilized for hyperparameter optimization in 
SVR for displacement prediction and compared on the benchmark 
datasets from the Shuping and Baishuihe landslides. Nonparametric 
Friedman tests were performed to reveal significant differences. 
The following conclusions were obtained:

Based on a single-run comparison, the performance ranking 
was highly dependent on the selected evaluation criteria and case.

The hybrid approach based on the k-fold CV, metaheuris-
tic SVR, and nonparametric Friedman test can be employed 
to enhance accuracy and reliability in ML-based prediction 
by tuning the optimum hyperparameters and presenting the 
statistical significance. The p values of nonparametric Fried-
man tests confirmed the existence of significant differences 
in terms of precision and computational time. GA is best for 
landslide displacement prediction in terms of precision, and 
WCA is the most effective algorithm in terms of computational 
time but suffers from serious robustness issues. PSO can main-
tain a balance between the precision, computational time, and 
robustness.

The nonparametric Friedman test can serve as a useful basis for 
presenting the statistical significance comparison of metaheuristic 
algorithms. Notably, the rankings may also be suitable for displace-
ment prediction for landslides with step-like movement patterns 
in the TGRA based on the specific set of algorithms considered. 
Thus, for different scenarios, the nonparametric Friedman test is 
recommended.
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Table 8   The main characteristics of the metaheuristic algorithms

Algorithm Information 
carrier

Solution 
carrier

Optimization 
approach

Main procedure

ABC Foraging 
bees

Food-source 
positions

Combines the 
exploration and 
exploitation of 
food sources

The ABC process (Babaoglu 2015) begins with the generation of a 
random population of solutions (food source)

Then, a cycle containing two inner loops starts and continues until 
the maximum cycle number is reached. The first loop considers 
the generation of new solutions by the employed bees by using 
the assigned food sources. The second nested loop includes the 
selection of better food sources by the onlooker bees and the 
generation of new solutions. Finally, the scout bees replace the 
abandoned solutions by generating new ones

GA Individuals Chromo-
some 
codings

Performing selec-
tion, crossover, 
and mutation on 
individuals

The GA process can be summarized as follows (Arık 2020):
1. Generate a random population of solutions (chromosomes and 

genes)
2. Evaluate each solution in the current population using a fitness 

function
3. Check the predetermined stopping criteria
4. Produce a new generation by applying reproduction, crossover, 

and mutation operations
5. Repeat steps 2 to 4 until the predetermined stopping criteria are 

satisfied

GWO Gray wolves Positions 
of gray 
wolves

Mimicking the 
leadership and 
hunting behaviors 
of gray wolves

The GWO process can be summarized as follows (Abderazek et al. 
2020):

1. Generate a random population of solutions (gray wolves)
2. Evaluate each solution in the current population using a fitness 

function
3. Check the predetermined stopping criteria
4. Update the positions of the alpha, beta, and delta wolves
5. Update the positions of search agents, including omegas
6. Repeat steps 2 to 5 until the predetermined stopping criteria are 

satisfied

PSO Particles Particle posi-
tions

Combining global 
and local experi-
ence to modify 
particle move-
ment

The PSO process can be summarized as follows (Kaveh and Zolghadr 
2014):

1. Generate a random population of solutions (particles)
2. Evaluate each solution in the current population using a fitness 

function
3. Check the predetermined stopping criteria
4. Produce a new generation by updating the velocity vector
5. Repeat steps 2 to 4 until the predetermined stopping criteria are 

satisfied

WCA​ Raindrops Sea Simulates the 
process of streams 
and rivers flowing 
into the sea

The WCA process can be summarized as follows (Eskandar et al. 2012):
1. Generate a random population of solutions (raindrops), and form 

the initial set of streams (raindrops), rivers, and seas
2. Evaluate each solution in the current population using a fitness 

function
3. Determine the intensity of flow for rivers to the sea
4. Check the predetermined stopping criteria
5. The stream flow to rivers and the river flow to the sea are calculated
6. Exchange the positions of streams and rivers and rivers and seas
7. Form new streams or rivers based on the rainfall trend
8. Repeat steps 4 to 7 until the predetermined stopping criteria are 

satisfied
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