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Metaheuristic-based support vector regression
for landslide displacement prediction:

a comparative study

Abstract Recently, integrated machine learning (ML) metaheuris-
tic algorithms, such as the artificial bee colony (ABC) algorithm,
genetic algorithm (GA), gray wolf optimization (GWO) algorithm,
particle swarm optimization (PSO) algorithm, and water cycle algo-
rithm (WCA), have become predominant approaches for landslide
displacement prediction. However, these algorithms suffer from
poor reproducibility across replicate cases. In this study, a hybrid
approach integrating k-fold cross validation (CV), metaheuristic
support vector regression (SVR), and the nonparametric Fried-
man test is proposed to enhance reproducibility. The five previ-
ously mentioned metaheuristics were compared in terms of accu-
racy, computational time, robustness, and convergence. The results
obtained for the Shuping and Baishuihe landslides demonstrate
that the hybrid approach can be utilized to determine the optimum
hyperparameters and present statistical significance, thus enhanc-
ing accuracy and reliability in ML-based prediction. Significant dif-
ferences were observed among the five metaheuristics. Based on
the Friedman test, which was performed on the root mean square
error (RMSE), Kling-Gupta efficiency (KGE), and computational
time, PSO is recommended for hyperparameter tuning for SVR-
based displacement prediction due to its ability to maintain a bal-
ance between precision, computational time, and robustness. The
nonparametric Friedman test is promising for presenting statistical
significance, thus enhancing reproducibility.

Keywords Landslide displacement prediction - Support vector
regression (SVR) - Metaheuristics - Nonparametric Friedman test

Introduction

Landslide disasters have caused devastating damage to the environ-
ment, life, and property (Hong et al. 2020). Robust and accurate
displacement prediction is a key component of an early warning
system. Recently, machine learning (ML) algorithms have become
predominant approaches for landslide displacement prediction due
to their capacity to model nonlinear complex processes. Among
them, backpropagation (BP) neural networks have been extensively
utilized due to their simple structure and acceptable accuracy (Du
etal. 2013). In addition to BP, support vector machines (SVMs) (Liu
et al. 2014), extreme learning machines (ELMs) (Cao et al. 2016),
recurrent neural networks (Xing et al. 2020; Niu et al. 2021), and
their variants (Ma et al. 2020b) have also been utilized for landslide
displacement prediction.

Hyperparameter tuning is a crucial step for accurate and reli-
able ML (Yang and Shami 2020; Zhang et al. 2020c). However,

hyperparameter tuning in ML-based prediction models is usually
based on trial and error. Recently, as summarized in Table 7 in the
Appendix, modern metaheuristic algorithms have been extensively
utilized for hyperparameter optimization in ML-based landslide dis-
placement prediction. As shown, metaheuristic algorithms, includ-
ing artificial bee colony (ABC) optimization algorithms (Zhou et al.
20184, genetic algorithms (GAs) (Li and Kong 2014; Cai et al. 2016;
Miao et al. 2017), gray wolf optimization (GWO) algorithms (Guo
et al. 2020; Liao et al. 2020), particle swarm optimization (PSO)
algorithms (Zhou et al. 2016; Zhang et al. 2020b), and water cycle
algorithms (WCAs) (Zhang et al. 2021b), have been combined with
ML algorithms and extensively studied for landslide displacement
prediction. As shown in Table 7 in the Appendix, the performance
of hybrid metaheuristics and ML approaches has been proven to be
competitive. In particular, support vector regressions (SVRs), i.e.,
the use of SVM for regression, have been extensively integrated with
metaheuristics for landslide displacement prediction.

Despite their extensive application, these algorithms suffer from
poor reproducibility across replicate cases (Ma and Mei 2021). As
listed in Table 7 in the Appendix, in previous performance com-
parisons, only the deterministic optimal estimation was considered,
and only a single-run comparison was conducted. However, due to
the inherent stochastic nature of these algorithms (Gao et al. 2020;
Ahmed et al. 2021), the same metaheuristic algorithm may yield dif-
ferent optimal solutions in multiple runs (Ahmed et al. 2021). The
solutions in even superior models deviate strongly for a given case,
which means that ideal results from a single run are hard to repli-
cate on similar cases. For example, PSO-optimized SVR (PSO-SVR)
was found to be superior to GA-optimized SVR (GA-SVR) (Zhou
et al. 2016). However, completely opposite results were achieved in
the research of Miao et al. (2017), which raises questions concern-
ing the repeatability of trained models based on a single run. A
systematic comparison of benchmark cases and a presentation of
the statistical significance are recommended to increase the repeat-
ability (Ma and Mei 2021).

In the present study, a hybrid approach integrating k-fold
cross-validation (CV), metaheuristic SVR, and the nonparametric
Friedman test is proposed to enhance reproducibility by present-
ing the statistical significance. Observations from the Shuping and
Baishuihe landslides in the Three Gorges Reservoir area (TGRA)
are selected as benchmark datasets for the comprehensive com-
parison of SVRs optimized by metaheuristics, including ABC,
GA, GWO, PSO, and WCA. Nonparametric Friedman tests are
performed to reveal significant differences and to rank the five
metaheuristics.
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Methodology
SVR

SVM, which was proposed by Cortes and Vapnik (1995), is consid-
ered a powerful and robust ML algorithm for classification and
regression (Raghavendra and Deka, 2014; Malik et al. 2020). SVR is a
regression approach based on an SVM. For a set of landslide moni-
toring data {x;, y;}/, nonlinear SVR with a kernel function K(x;, x)
is formulated as follows:

y=f(x)= Z 0, K(x;,x)+ b (1)
i=1

where w and b are the weight vector and bias, respectively.
A nonlinear SVR form can be obtained by the following opti-
mization problem:

T
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where C, §;, and & are the penalty parameter and two slack vari-
ables, respectively.

By introducing the Lagrange multipliers 4} and a,, nonlinear SVR
can be converted to a dual problem and expressed as follows:

n

y=f@) = (a - a)K(x,x)+b (3)

i=1

Various kernels, including linear, polynomial, Gaussian, and
sigmoid kernels, have been proposed. Previous kernel research
(Ahmadi et al. 2015; Karasu et al. 2020) has already indicated that

the Gaussian kernel can be safely applied as it provides accurate
results. Thus, the most widely applied Gaussian kernel is adopted,
which is expressed as follows:
2
K x) = expl- 22 @)
202

where o is the width of the Gaussian kernel.

Gaussian kernel SVR is sensitive to the hyperparameters C and
o. In the present study, five metaheuristic algorithms, including
ABC, GA, GWO, PSO, and WCA, are applied for hyperparameter
tuning (Fig. 1a).

Metaheuristic algorithms for hyperparameter optimization of
SVR

Metaheuristic algorithms are often nature-inspired computa-
tional intelligence methods for optimal solution approximation
(Khan et al. 2021). Recently, various metaheuristics, such as ABC,
GA, GWO, PSO, and WCA, have been widely utilized for landslide
displacement prediction due to their optimization strengths. The
main characteristics of these algorithms are listed in Table 8 in
the Appendix. As shown in this appendix, the optimal processes
usually start with a random generation of possible solutions
called a population. Then, the generated population is randomly
and iteratively updated (i.e., the exploration and exploitation
phases) until the predetermined criteria are met. Exploration
and exploitation refer to encountering new regions and searching
within the corresponding neighborhood, respectively (Morales-
Castaneda et al. 2020). The stochastic nature of metaheuris-
tic algorithms makes it necessary to implement multiple runs
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(Eskandar et al. 2012; Babaoglu 2015; Bahreininejad 2019; Wang
et al. 2019a; Abderazek et al. 2020). Thus, in the present study, the
same metaheuristics were independently run 100 times.

1. ABC
ABC, a swarm-based metaheuristic algorithm, emulates the
foraging behavior of bees for optimization (Karaboga and Bas-
turk 2007). A typical ABC consists of two main components,
a food source and a bee colony, which consists of employed,
onlooker, and scout bees. The position of a food source repre-
sents a possible solution. Recently, ABC optimization has been
successfully applied for landslide displacement prediction
(Zhou et al. 2018a; Zhang et al. 2021a). The main procedure of
ABC is listed in Table 8 in the Appendix.

2. GA
As the name implies, the GA concept is inspired by the evolution
process and mainly involves crossover and mutation. GAs have
been extensively used for landslide displacement prediction (Li
and Kong 2014; Caij et al. 2016; Miao et al. 2017; Zhu et al. 2017).
The main procedure of the GA is listed in Table 8 in the Appendix.

3. GWO
GWO, a new swarm-based metaheuristic algorithm, mimics
the hunting behavior of gray wolves (Mirjalili et al. 2014). The
position of a gray wolf represents a possible solution. A gray
wolf group consists of alpha, beta, delta, and omega wolves,
which represent the best, second-best, third-best, and remain-
ing solutions, respectively. The positions are simultaneously
updated based on the three best solutions. The main procedure
of GWO is listed in Table 8 in the Appendix.

4. PSO
PSO is a swarm-based metaheuristic algorithm that simulates
the social behavior of bird flocking (Kennedy and Eberhart
1995) and has gained substantial attention for landslide dis-
placement prediction. The particle position, which represents
a possible solution, is updated based on the individual and

global optima. The main PSO procedure is listed in Table 8
in the Appendix.

5. WCA
WCA is a novel physical-based metaheuristic algorithm that
simulates the water cycle process (Eskandar et al. 2012), in
which water flows into the sea after water from precipitation,
streams, and rivers is combined. WCA starts with a random
generation of raindrops that represent possible solutions. In
addition, the best individual is chosen as the sea. The main
WCA procedure is listed in Table 8 in the Appendix.

6. SVR optimized by metaheuristic techniques
The main procedures of SVR optimized by metaheuristic
techniques are as follows: first, the landslide observation is
divided into training and test datasets. Second, parameters
such as population size and the maximum number of itera-
tions are initiated, and possible solutions consisting of hyper-
parameters C and o are generated for training SVR. Third, the
fitness values of the trained SVR are calculated and evalu-
ated. Fourth, the hyperparameters of SVR are randomly and
iteratively updated according to the updating strategy until
the predetermined criteria are met. If the predetermined cri-
teria are satisfied, the best hyperparameters are output as the
optimal SVR.

k-fold CV

k-fold CV is the most popular approach for validation as it can
mitigate overfitting (Chou and Thedja 2016). In the k-fold CV
approach, the original training set is randomly divided into
k subdatasets. A new training dataset is formed based on k-1
subdatasets. The remaining dataset is adopted as the valida-
tion set. A model is trained based on the newly formed training
dataset and evaluated on the validation set. The performance
measure from the first round is computed. The above processes
are repeated k times. The performance measure from k-fold CV

Fig.2 Location of the case
studies (marked with a red
star) in the TGRA (marked in
gray), China
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Fig.3 aPhotograph, b 3D
topographic map with instru-
mentation, and c geological
profile of the Shuping land-
slide, TGRA. The inset graph in
(c) shows lateral displacements
from inclinometers QZK3 and
QZK4
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is the average value computed in the loop (schematically illus-
trated in Fig.1).

Evaluation criteria

The representative equations, features, and characteristics of com-
mon statistical indices (e.g., the mean absolute error (MAE), root

mean square error (RMSE), and correlation coefficient (R)) are
summarized in Table 9 in the Appendix. Previous studies (Yang
et al. 2020) have shown that the utilization of square values can
enhance the evaluation of model performance. Therefore, the
evaluation criteria, including the RMSE and Kling-Gupta efficiency
(KGE) from 100 runs, were obtained and applied to compare model
performance.
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Fig.5 Scatter matrix showing the pairwise correlations of the land-
slide displacement at ZG88 (y) with rainfall (x 1 andx2), reservoir
water level (x3), variation in the reservoir level (x4), and evolution

Nonparametric Friedman test

In the present study, the aim of the nonparametric Friedman test
is to present significant differences among the five metaheuristic
algorithms to increase the repeatability. The steps in the nonpara-
metric Friedman test are mainly summarized as follows (Ganaie
and Tanveer 2020; Banaie-Dezfouli et al. 2021):

1. Gather evaluation criteria for each metaheuristic algorithm
over 100 runs.

2. For the ith run, the tested metaheuristic algorithms are ranked
from best to worst as 1 to k, which is denoted as r{

0
-160
y [5100
MIC=0.636 I
11700

L0

T T -
0.52 0.68 ) 1.00

state (x5,x6, andx 7). The panels in the lower left panels show the
MIC, and the upper right half shows the corresponding data points

3. For the jth algorithm, average the obtained ranks over 100 runs:
i
1
Ri=22r
1

4. The nonparametric Friedman statistic F, is expressed as follows:

k(k + 1)
12n1)[sz2_ (k+ )]
i

B= et 4 )

In the nonparametric test,a p value is used to determine the probabil-
ity of rejecting the null hypothesis. A p value < 0.05 indicates that the null
hypothesis should be rejected, which reveals a statistically significant dif-
ference among the tested metaheuristic algorithms (Korkmaz et al. 2021).
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Table 1 Comparison of the performance of the metaheuristic-based SVR methods for the Shuping landslide data
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The best results are shown in bold italics

CV-metaheuristic-SVR and nonparametric Friedman test for
enhancing the ML model

The main steps of CV-metaheuristic-SVR and the nonparametric
Friedman test for enhancing ML (illustrated in Fig.1) are as follows:

1. Data preparation: Based on previous studies listed in Table 7
in the Appendix (Zhou et al. 2016; Ma et al. 2018, 2020a), the
widely applied inputs, including accumulated precipitation in
the current month and over the past 2 months (X1 and X 2,
respectively), average reservoir level in the current month
(x 3), variation in the reservoir level in the current month
(x 4),and displacement in the past 1,2, and 3 months (X 5,X 6,
and X 7, respectively), were selected as candidate input pools.
The key variables with a maximum information coefficient
(MIC) greater than 0.3 (Wang et al. 2019b, 2021) were adopted
to remove redundant and irrelevant variables from the candi-
date pool (Ma et al. 2022). The ratio of training to testing data
was set as 80 to 20%, respectively.

2. k-fold cross-validation: Based on previous studies of k-fold
cross-validation in geohazards (Ghorbanzadeh et al. 2020;
Meena et al. 2021), fourfold CV was adopted in the present
study.

3. Parameter initialization: The parameters were initiated, and
possible solutions consisting of the hyperparameters C and
o were generated. The search ranges for the penalty factor
and width of the Gaussian kernel were set to [0, 100] and
[0, 100], respectively (Miao et al. 2017). For the metaheuris-
tics compared in the present study, the population size and
the maximum number of iterations were set to 50 and 200,
respectively. For ABC, the percentages of onlooker and
employed bees were each 50%. In addition, the number of
scout bees was set to one. For GA, the crossover and muta-
tion probabilities were set to 0.85 and 0.05, respectively. For
PSO, the inertia weight was set to linearly decrease from 0.9
to 0.4. Two coefficient values were both set to 2 (Ahmed et al.
2021). For WCA, the total number of rivers and seas and the
maximum allowable distance between the river and sea were
set to 10 and 1e-3 (Eskandar et al. 2012; Zhang et al. 2021b),
respectively.

4. Fitness evaluation: The average value of the normalized mean
square error (NMSE) from fourfold CV was adopted as the fit-
ness and evaluated before the optimization process started.

5. Parameter updating: The hyperparameters C and o were
iteratively updated with for ABC, GA, GWO, PSO, and WCA
methods until the predetermined stopping criteria were met.
The best hyperparameters C and o were output for optimal
SVR modeling. Considering the inherent stochastic nature of
these methods, the metaheuristic-based SVRs were indepen-
dently run 100 times. The metaheuristic-based SVR methods
were implemented using Python 3.8 in the Windows Subsys-
tem for Linux (WSL) with Ubuntu 20.04 with an Intel Core
i9-10900 K@3.7 GHz and 64 GB of RAM.

6. Nonparametric Friedman test: The RMSE, KGE, and computa-
tional time for each run were recorded. Nonparametric Fried-
man tests were performed based on the obtained RMSEs, KGEs,
and computational times.
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Case study 1: Shuping landslide
Feathers of the Shuping landslide

The Shuping landslide, an ancient landslide, is situated in Zigui
County, Yichang, TGRA, China (Figs. 2 and 3); this landslide has a
length of 800 m, width of 700 m, and average thickness of 50 m.
The landslide volume is approximately 27.5 million m3. The eleva-
tions of the landslide toe and crown are 60 and 400 m, respectively.
The field investigation and borehole drilling show that the landslide
materials are silty clay with gravel clasts underlaid by marlstone and
siltstone of the Triassic Badong Formation (Fig. 3c). A monitoring
system consisting of a GPS and an inclinometer was installed for
landslide monitoring (see Fig. 3b for the GPS and inclinometer loca-
tions). The sliding surface was observed at depths of 70 and 30 m

from inclinometers QZK3 and QZK4, respectively. These results cor-
respond well with the borehole data.

The Shuping landslide has been widely utilized as a case study
for landslide displacement prediction (Ren et al. 2014; Wen et al.
2017; Ma et al. 2018; Zhou et al. 2018a; Wang et al. 2019b). The
widely applied monitoring data from ZG88, the rainfall inten-
sity, and the reservoir level from January 2007 to December 2012
(Fig. 4) indicate step-like movement patterns. Further details of
the geological setting and deformation characteristics were pro-
vided in previous research by Ma et al. (2018).

Input variable selection

The pairwise correlations of the landslide displacement at ZG88
with candidate variables are shown in Fig. 5. As shown, the MICs
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Table 2 Performance comparison of various prediction models for the Shuping landslide data

Model R RMSE Model R RMSE
WT-ABC-KELM (Zhou et al. 2018a) 0.991 GA-SVR (Wen et al. 2017) / 87.7215
ABC-KELM (Zhou et al. 2018a) 0.980 GRNN (Wen et al. 2017) 134.6764
SVR (Zhou et al. 2018a) 0.959 BP (Wen et al. 2017) / 123.1948

Wavelet-PSO-SVR (Ren et al. 2014) 0.981

CV+ABC-SVR (current study)

[0.9977,0.9978] [49.0751, 49.1974]

WT-ELM (Zhou et al. 2018)

CV+GA-SVR (current study)

[0.9977,0.9979] [47.6701, 49.4400]

ELM (Zhou et al. 2018) 0.977

CV+PSO-SVR (current study)

[0.9977,0.9979]  [49.0223, 49.2010]

CEEMD-DTW-GA-SVR (Zhang et al. 2020a)  0.917

CV+GWO-SVR (current study)

[0.9977,0.9979] [49.4794, 49.6539]

Wavelet-SVR (Ren et al. 2014) 0.945

CV+WCA-SVR (current study)

[0.9962,0.9977] [49.4946, 63.2305]

/
/
/
/
0.989 /
/
/
/
/

CEEMD-DTW-SVR (Zhang et al. 2020a) 0.952

ABC, artificial bee colony; BP, backpropagation (neural network); CEEMD, complete ensemble empirical mode decomposition; CV, cross-validation;
DTW, dynamic time warping; ELM, extreme learning machine; GA, genetic algorithm; GRNN, generalized regression neural network; GS, grid search;
GWO, gray wolf optimization; KELM, kernel-based extreme learning machine; PSO, particle swarm optimization; SVR, support vector regression;

WCA, water cycle algorithm; WT, wavelet transform

of all candidate variables with landslide displacement are greater
than 0.3. Moreover, the strongest correlation was observed between
the average reservoir water level and landslide displacement, fol-
lowed by the correlation between the variation in the reservoir
level and landslide displacement. These findings correspond well
with previous research (Wang et al. 2022). Therefore, the key vari-
ables, including rainfall (X1 and X 2), reservoir water level (x 3),
variation in the reservoir level (X 4), and evolution state (X 5,X 6,
and X 7), were set as the final inputs for model training.

Results comparison
Comparison of single predictions

The predictions from 100 separate runs and their correspond-
ing mean values from metaheuristic-based SVR methods for the
testing data are shown in Fig. 6a-f. Clearly, as shown in Fig. 6,
the same metaheuristics yield different results for multiple runs
due to their inherent stochastic nature. Attentional biases were

Fig.9 aPhotograph, b3D
topographic map with instru-
mentation, and c geological
profile of the Baishuihe land-
slide, TGRA. The inset graph in
(c) shows lateral displacements
from inclinometer ZK05
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Fig. 10 Observations of land- Date
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observed among 100 separate runs. The statistics for the 100 runs
listed in Table 1 show that for the best single prediction, by using
the RMSE criterion, GA provides the best prediction with the
lowest RMSE. WCA yields the worst results. However, considering
the KGE criterion, WCA outperforms the rest of the metaheuristic
methods. As shown in Fig. 6 and Table 4, in terms of the RMSE

Date

and KGE criteria, the mean prediction from GA outperforms the
other metaheuristic methods.

In summary, based on a single prediction, there is no guaran-
tee for identifying one method as the best for the displacement
prediction of the Shuping landslide, and further evaluations are
needed.
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Nonparametric statistical analysis

The Friedman test results for the metaheuristic-based SVR
methods are listed in Table 1. As shown in this table, the p val-
ues for the Friedman tests of RMSE, KGE, and computational
time are 5.53 X 1074, 7.09 X 10™%, and 2.62 X 107, respectively.
These results clearly demonstrate that for the five compared
metaheuristic methods, there are significant differences in terms
of precision and computational time. The corresponding rank-
ings are depicted in Table 1. As shown in this table, the rankings
based on the Fj of the RMSE and KGE criteria exhibit the same
pattern. GA and PSO ranked first and second, respectively, and
WCA ranked last. The low rank of WCA may be due to trapping
at local optima, which leads to premature convergence.

In summary, inconsistency from single-run comparisons has
been addressed by the nonparametric Friedman test. Significant
performance differences were revealed among the metaheuristic
methods. GA achieves superior performance.

For the computational time, the metaheuristic-based SVRs
ranked from fastest to slowest as follows: WCA, PSO, GA, ABC,
and GWO. These results indicate that WCA is capable of finding
the optimal result at the lowest computational cost. Both ABC and
GWO are computationally demanding.

Sensitivity analysis

Model stability is another essential factor that should be consid-
ered in model comparison. The evaluation metrics (RMSE, KGE,
and computational time) from 100 runs of the metaheuristic-
based SVR methods are presented in Fig. 7. The metaheuristic-
based SVR methods and corresponding evaluation metrics are
shown on the vertical and horizontal axes, respectively. The sta-
tistical results, including the 10th and goth percentile values and
mean values, are shown with boxes and red lines, respectively. As
shown, the WCA- and GA-based SVR methods provide signifi-
cantly different results when run multiple times, which indicates
that those two algorithms suffer from instability. It is evident that
the evaluation metrics from the PSO-, ABC-,and GWO-based SVR
methods over 100 runs exhibit narrow ranges of RMSE and KGE
values. The predictions from the PSO-, ABC-, and GWO-based
SVR methods shown in Fig. 6 are generally concentrated around
the observations, indicating stable performance. However, WCA
suffers from serious robustness issues, as further confirmed its
standard deviation, which was the largest among all methods
(listed in Table 1). This result is mainly due to the unsatisfac-
tory balance between exploitation and exploration, which leads
to trapping at local optima and premature convergence. In fact,
the exploration phase may not play a role in determining the final
solution (Xu and Mei 2018; Nasir et al. 2020), which increases the
burden of exploration.

Convergence analysis

The convergence fitness from the best runs (i.e., the lowest NMSE)
and mean fitness value from 100 runs of different metaheuristic
methods are shown in Fig. 8. The convergence curves display the
following trends.
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Table 3 Comparison of the performance of the metaheuristic-based SVR methods for the Baishuihe landslide data
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Table 4 Performance comparison of various prediction models for the Baishuihe landslide data

odel R Model R Model R Model R
ANN (Liu et al. 0.9703 ELM (Zhu et al. 0.984 SVR (Zhou et al. 0.965 CV+GWO-SVR [0.9924,
2014) 2018b) 2018b) (current study) 0.9928]
Univariate chaotic  0.8130 GS-SVR (Miao etal. 0.8689 CV+ABC-SVR (cur- [0.9924, 0.9925] CV+PSO-SVR (cur- [0.9924, 0.9925]
ELM (Huang et al. 2017) rent study) rent study)
2017)
PSO-KELM (Zhou 0.969 PSO-SVR (Miao 0.8718 CV+GA-SVR (cur-  [0.9916,0.9929] CV+WCA-SVR (cur- [0.9903,0.9932]
etal. 2018b) etal. 2017) rent study) rent study)

ABC, artificial bee colony; ANN, artificial neural network; CV, cross-validation; ELM, extreme learning machine; GA, genetic algorithm; GWO,
gray wolf optimization; KELM, kernel-based extreme learning machine; PSO, particle swarm optimization; SVR, support vector regression;

WCA, water cycle algorithm

The convergence curve of the mean fitness value of GA remains
far from the horizontal axis, which indicates that information car-
riers are still far from each other until the optimization process
ends. This result is mainly caused by the poor local search capa-
bility of GAs (Belhaiza et al. 2019). The convergence curves of the
swarm-based algorithms, including ABC, PSO, and GWO, reach
near-optimal solutions after 120 iterations, which reflects prema-
ture convergence, as noted in previous research (Malik et al. 2015;
Yang et al. 2020). WCA can converge to the optimal solution soonest
based on the initial iterative process.

Furthermore, the prediction models with the integration of
CV and metaheuristic-based SVR were compared with exist-
ing models on the Shuping landslide (Table 2). As shown, the
models based on CV-metaheuristic-SVR provide the best pre-
diction with the largest R and lowest RMSE. These comparative
results clearly indicate that CV and metaheuristic SVR can be
employed to improve model performance by determining the
optimal hyperparameters.

Case study 2: Baishuihe landslide
Feathers of the Baishuihe landslide

The Baishuihe landslide (Fig. 9), an ancient landslide, is situated on
the south bank of the Yangtze River (see Fig. 2 for the location of
this landslide). The Baishuihe landslide has an estimated volume
of 12.6 million m?, with an average thickness of 30 m. The landslide
covers an area of 0.42 km?, with a length of 600 m and a width of
7oo m (Fig. 9). The landslide encompasses an active block and
a relatively stable block (Fig. 9a-b). The field investigation and
borehole drilling show that the landslide materials are silty clay
with gravel clasts (Fig. 9c). A monitoring system consisting of a
GPS and an inclinometer was installed (see Fig. gb—c) for locations
of the GPS and inclinometer). The observed lateral displacement
from ZKos indicates shallow and deep sliding surfaces at depths
of 13 and 23 m.

The Baishuihe landslide has been widely selected as a case
for landslide displacement prediction (Miao et al. 2017; Zhou
et al. 2018b; Ma et al. 2022; Wang et al. 2022). In the present study,
the widely applied monitoring data for XDo1 were selected for

training the landslide displacement model. The cumulative dis-
placement of XD-o1, the reservoir level, and the rainfall intensity
in the Baishuihe landslide area from January 2007 to December
2011 are shown in Fig. 10. The landslide displacement is charac-
terized by step-like movement patterns.

Input variable selection

The pairwise correlations of the landslide displacement at XDo1
with candidate variables are shown in Fig. 11. As shown in this
figure, the MICs of all candidate variables with landslide dis-
placement at XDo1 are greater than o.3. Moreover, the strongest
correlation (i.e., a displacement greater than 0.6) was observed
between the variation in the reservoir level and landslide dis-
placement. These findings correspond well with current research,
which has indicated that the movement of XDo1 is more sensitive
to variations in the reservoir (Miao et al. 2017; Ma et al. 2022).
Therefore, the key variables, including rainfall (X1 and x 2), res-
ervoir water level (x 3), variation in the reservoir level (X 4), and
evolution state (X 5,X 6, and X 7), were set as the final inputs for
model training.

Results comparison
Comparison of single predictions

The prediction for the test dataset from 100 runs is shown in
Fig. 12a-e. The average values from 100 runs were computed and
are shown in Fig. 12f. As shown in this figure, due to their inherent
stochastic nature, different predictions with attentional biases were
observed among 100 separate runs. According to the statistics for
the 100 runs, the following results can be obtained:

For the best prediction, by using the RMSE criterion, WCA pro-
vides the best prediction with the lowest RMSE. GA outperforms
the rest of the metaheuristics when considering the KGE criterion.

For mean prediction, in terms of the RMSE criterion, the mean
prediction using WCA outperforms the rest of the metaheuristic
methods. In terms of the KGE criterion, GA provides the best mean
prediction. The performance rankings are different from those of
the Shuping landslide.
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Fig. 13 Comparison of metaheuristic-based SVR methods for XD01 in terms of the a RMSE, b KGE, and ¢ computational time

In summary, the performance ranking from a single run highly

was dependent on the selected evaluation criteria and case. There

is no guarantee that one algorithm will outperform all others in all
cases. Further evaluations among the five metaheuristic methods

are needed.

0.06

Nonparametric statistical analysis

Model ranks of the metaheuristic-based SVR methods using Friedman
test results are listed in Table 3. p values much lower than 0.05 were

obtained, which clearly indicates significant differences in terms of

0.054

Fitness value

—=— ABC,ina
—— ABC,,...
T GAgsima
— 7 GAn
GWO,yima
—— GWO,..,
PSO,pima
—— PSO,..,
—*— WCA i
—— WCA,..,

50

100
Iteration

150 200

Fig. 14 Comparison of the optimal and mean fitness values for XD01 of different metaheuristic methods

2502 ‘ Landslides 19 - (2022)



Table 5 Performance
comparison for PSO-SVR

with different kernel types for Computational RMSE Computational

displacement prediction of time (s) time (s)

7G88 and XDo1
Linear 59.998 0.987 70.563 86.582 0985 62.683
Polynomial 487.730 0.876 117.283 527462 0.841  201.581
Gaussian 54.163 0.988 14.842 85.824 0991 15.653
Sigmoid 60.131 0.984 12442 104759 0.984  13.223

The best results are shown in bold italics

precision and computational time. The rankings based on Fyare listed
in Table 3. As shown in this table, based on the Ffof the KGE and RMSE
criteria, the compared models are ranked as follows: GA, WCA, PSO,
ABC, and GWO. Although some differences in model rankings were
observed with the Shuping landslide, GA ranks first for both cases.
WCA is the most effective method for both cases.

Sensitivity analysis

As shown in Table 3 and Fig. 13, predictions with significant bias were
provided by the WCA and GA-based SVR methods during multiple runs
with a wider range of RMSE and KGE and a larger value of the standard
deviation. These results demonstrate the poor stability of WCA- and GA-
based SVRs. In particular, WCA suffers from the most serious robustness
issues with the widest range of RMSE and KGE and the largest standard
deviation. PSO-, ABC-, and GWO-based SVRs achieve better stability
during 100 runs with narrow ranges of RMSE and KGE values and lower
standard deviations. Among them, the PSO-based SVR is the most stable
with the lowest standard deviation (Table 3).

Convergence analysis

The following trends were observed from the optimal and mean fitness
values shown in Fig. 14: the mean fitness value from GA remained far

from the horizontal axis until the optimization process ended. The
optimal fitness value from WCA converged to the optimal solution
soonest (after 8o iterations). Equal fitness values were reached among
the swarm-based algorithms, including the ABC, PSO, and GWO
algorithms.

The prediction from the present research has been further
compared with various prediction models for the Baishuihe
landslide. It was shown that the hybrid approach integrating CV
and metaheuristic-based SVR had the largest R, outperforming
those methods reported in previous research.

In summary, based on a single-run comparison, the perfor-
mance ranking of metaheuristic optimized SVRs was highly
dependent on the selected evaluation criteria and case. WCA-
SVR achieved the best single prediction, while GA-SVR pro-
vided superior mean prediction. Based on Friedman tests of
the KGE and RMSE criteria, GA ranks first for both the Shuping
and Baishuihe landslides with its superior performance. The
Friedman test of computational time demonstrates that WCA is
the most effective method as it is capable of finding the optimal
solution soonest. The best stability was achieved from PSO-
based SVR. Such findings prove that the hybrid approach based
on PSO and SVR is a promising tool for predicting landslide
displacement with a high level of precision, speed convergence,
and stability.

Table 6 Summary of the Metaheuristic Strengths Weaknesses
strengths and weaknesses of method
the metaheuristic methods
considered for landslide ABC Strong robustness and high accuracy Computationally demanding
displacement prediction Premature convergence
GA Acceptable accuracy Easily converges to local optima
GWO Strong robustness High computational complexity
Premature convergence
PSO High computational efficiency Premature convergence
Strong robustness
WCA Low computational cost Trapping at local optima
Premature convergence
Poor robustness
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Discussion

In summary, metaheuristic methods can provide satisfactory
predictions. Based on a single-run comparison, the performance
ranking was highly dependent on the selected evaluation crite-
ria and case. Based on the Friedman tests of RMSE, KGE, and
computational time from multiple runs, significant differences
were observed. The experimental results for the Shuping and
Baishuihe landslide data indicate that GA and PSO are capable
of providing reliable predictions with high precision. In terms
of computational time, WCA and PSO are effective. In addition,
PSO and ABC exhibit good robustness. Moreover, compared with
evolution-based algorithms such as GA, swarm-based algorithms
have fewer parameters and do not require crossover and muta-
tion probabilities (Abderazek et al. 2020). In summary, PSO
is competitive in terms of precision, computational time, and
robustness.

In the present study, the Gaussian kernel was chosen based
on previous recommendations. Furthermore, the performance
comparison of PSO-SVR among different kernel types was con-
structed. The evaluation criteria of ZG88 and XDo1 were com-
puted and are listed in Table 5. As shown in this table, PSO-SVR
with a Gaussian kernel provides the best performance with the
lowest RMSE and highest KGE for both ZG88 and XDoz1. These
results correspond with previous findings, which reveal that the
Gaussian kernel can be safely applied as it provides accurate
results (Ahmadi et al. 2015; Karasu et al. 2020). PSO-SVR with
a polynomial kernel is computationally demanding, while PSO-
SVR with a sigmoid kernel is the most effective, followed by the
Gaussian kernel.

The strengths and weaknesses of the compared metaheuristic
methods for landslide displacement prediction are summarized in
Table 6. However, as stated in the “no free lunch” theorem (Wolpert
and Macready 1997), although one algorithm may perform best for
a specific problem, it may not perform best for other types of prob-
lems. Therefore, it is worth noting that the rankings obtained in
the present study are only valid for a specific set of algorithms for
landslide displacement prediction. For other sets of metaheuristic
methods, the rankings would be significantly different. In different
scenarios, it is recommended to run the nonparametric Friedman
test.

Conclusion

In the present study, a hybrid approach integrating the k-fold CV,
metaheuristic SVR, and nonparametric Friedman test was pro-
posed to enhance reproducibility by presenting the statistical sig-
nificance. Five metaheuristic methods, including ABC, GA, GWO,
PSO, and WCA, were utilized for hyperparameter optimization in
SVR for displacement prediction and compared on the benchmark
datasets from the Shuping and Baishuihe landslides. Nonparametric
Friedman tests were performed to reveal significant differences.
The following conclusions were obtained:

Based on a single-run comparison, the performance ranking
was highly dependent on the selected evaluation criteria and case.

2504 ‘ Landslides 19 - (2022)

The hybrid approach based on the k-fold CV, metaheuris-
tic SVR, and nonparametric Friedman test can be employed
to enhance accuracy and reliability in ML-based prediction
by tuning the optimum hyperparameters and presenting the
statistical significance. The p values of nonparametric Fried-
man tests confirmed the existence of significant differences
in terms of precision and computational time. GA is best for
landslide displacement prediction in terms of precision, and
WCA is the most effective algorithm in terms of computational
time but suffers from serious robustness issues. PSO can main-
tain a balance between the precision, computational time, and
robustness.

The nonparametric Friedman test can serve as a useful basis for
presenting the statistical significance comparison of metaheuristic
algorithms. Notably, the rankings may also be suitable for displace-
ment prediction for landslides with step-like movement patterns
in the TGRA based on the specific set of algorithms considered.
Thus, for different scenarios, the nonparametric Friedman test is
recommended.
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Table 8 The main characteristics of the metaheuristic algorithms

Algorithm Information Solution Optimization Main procedure
carrier carrier approach
ABC Foraging Food-source Combines the The ABC process (Babaoglu 2015) begins with the generation of a
bees positions exploration and random population of solutions (food source)
exploitation of Then, a cycle containing two inner loops starts and continues until
food sources the maximum cycle number is reached. The first loop considers
the generation of new solutions by the employed bees by using
the assigned food sources. The second nested loop includes the
selection of better food sources by the onlooker bees and the
generation of new solutions. Finally, the scout bees replace the
abandoned solutions by generating new ones
GA Individuals ~ Chromo- Performing selec- The GA process can be summarized as follows (Arik 2020):
some tion, crossover, 1. Generate a random population of solutions (chromosomes and
codings and mutation on genes)
individuals 2. Evaluate each solution in the current population using a fitness
function
3. Check the predetermined stopping criteria
4. Produce a new generation by applying reproduction, crossover,
and mutation operations
5. Repeat steps 2 to 4 until the predetermined stopping criteria are
satisfied
GWO Gray wolves Positions Mimicking the The GWO process can be summarized as follows (Abderazek et al.
of gray leadership and 2020):
wolves hunting behaviors 1. Generate a random population of solutions (gray wolves)
of gray wolves 2. Evaluate each solution in the current population using a fitness
function
3. Check the predetermined stopping criteria
4. Update the positions of the alpha, beta, and delta wolves
5. Update the positions of search agents, including omegas
6. Repeat steps 2 to 5 until the predetermined stopping criteria are
satisfied
PSO Particles Particle posi- Combining global ~ The PSO process can be summarized as follows (Kaveh and Zolghadr
tions and local experi- 2014):
ence to modify 1. Generate a random population of solutions (particles)
particle move- 2. Evaluate each solution in the current population using a fitness
ment function
3. Check the predetermined stopping criteria
4. Produce a new generation by updating the velocity vector
5. Repeat steps 2 to 4 until the predetermined stopping criteria are
satisfied
WCA Raindrops Sea Simulates the The WCA process can be summarized as follows (Eskandar et al. 2012):
process of streams 1. Generate a random population of solutions (raindrops), and form
and rivers flowing the initial set of streams (raindrops), rivers, and seas
into the sea 2. Evaluate each solution in the current population using a fitness
function
3. Determine the intensity of flow for rivers to the sea
4. Check the predetermined stopping criteria
5. The stream flow to rivers and the river flow to the sea are calculated
6. Exchange the positions of streams and rivers and rivers and seas
7. Form new streams or rivers based on the rainfall trend
8. Repeat steps 4 to 7 until the predetermined stopping criteria are
satisfied
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Table 9 Summary of evaluation criteria

Representative equation Absolute value Square (including vari-

Characteristics
ance and standard devia-

tion)

RE = 100% X Ypret —Yobst

Yobst

Relative error

Smaller is better

Mean absolute error (MAE) MAE = Sty [Yores Yo | Yes Smaller is better
Yobst
Mean absolute percentage 1N | YoresYobse | YES Smaller is better
MAPE = Lot Yot
error (MAPE) N Zeey Yobsy
Root mean square error (RMSE) IZN Oner—aone): Yes Smaller is better
RMSE = t=1 prle\,’r obs,t
Correlation coefficient (R) é abs t—Hobs) pre=Hore) Yes Bigger is better (maximum=1)
R= Oobs*Opre
Kling-Gupta efficiency (KGE) KGE=1-+(R—-12+(@—-12+(—1?2 Yes Bigger is better (maximum=1)

Yobst @nd Y, are the measured and predicted values of landslide displacement, respectively; N is the quantity of landslide displacement; 4,
and p,,, are the mean values of observations and predictions, respectively; o,y,; and o, represent the standard deviations of observations and
predictions, respectively; @ = o,,,, /Gops is the relative variability between a prediction and observation; and f = Hpre / Hops is the bias between

the average prediction and the average observation.
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