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A new method to detect changes  
in displacement rates of slow‑moving landslides 
using InSAR time series

Abstract Slow-moving landslides move downslope at veloci-
ties that range from mm  year−1 to m  year−1. Such deformations 
can be measured using satellite-based synthetic aperture radar 
interferometry (InSAR). We developed a new method to system-
atically detect and quantify accelerations and decelerations of 
slowly deforming areas using InSAR displacement time series. 
The displacement time series are filtered using an outlier detector 
and subsequently piecewise linear functions are fitted to identify 
changes in the displacement rate (i.e., accelerations or decelera-
tions). Grouped accelerations and decelerations are inventoried as 
indicators of potential unstable areas. We tested and refined our 
new method using a high-quality dataset from the Mud Creek land-
slide, CA, USA. Our method detects accelerations and decelerations 
that coincide with those previously detected by manual examina-
tion. Second, we tested our method in the region around the Mazar 
dam and reservoir in Southeast Ecuador, where the time series data 
were of considerably lower quality. We detected accelerations and 
decelerations occurring during the entire study period near and 
upslope of the reservoir. Application of our method results in a 
wealth of information on the dynamics of the surface displacement 
of hillslopes and provides an objective way to identify changes in 
displacement rates. The displacement rates, their spatial variation, 
and the timing of accelerations and decelerations can be used to 
study the physical behavior of a slow-moving slope or for regional 
hazard assessment by linking the timing of changes in displace-
ment rates to landslide causal and triggering factors.

Keywords InSAR time series analysis · Change detection 
method · Landslide acceleration · Landslide deceleration

Introduction

Landslides are a major natural hazard that occur worldwide and 
cause high economic losses and a large number of fatalities annu-
ally (Guzzetti et al. 2003; Petley 2012; Papathoma-Köhle et al. 2015; 
Froude and Petley 2018). To reduce and understand the effects of 
these hazards, many investigations have been focused on causes, 
triggers, and predictions of rapid or catastrophic landslides (Xu 
et al. 2017; Bogaard and Greco 2018; Monsieurs et al. 2019; Wang 
et al. 2020). These landslides have velocities that range from m  day−1 
to m  s−1 (Cruden and Varnes 1996; Hungr et al. 2014; Lacroix et al. 
2020b) and are characterized by the rapid downward motion of 
slope material. On the other hand, slow-moving landslides move 
downslope at velocities that range from mm  year−1 to m  year−1 for 
months to hundreds of years (Cruden and Varnes 1996; Lacroix 

et al. 2020b). Investigations of slow-moving landslides include 
landslide inventories (Lu et al. 2012; Borrelli et al. 2018; Zhang et al. 
2018), long-term monitoring (Parise et al. 2003; Macfarlane 2009; 
Kavoura et al. 2020), and case studies that define, characterize, and 
determine the conditions of slope movement (Tomás et al. 2016; 
Kang et al. 2017; Bounab et al. 2021; Dille et al. 2021; Li et al. 2021; 
Jacquemart and Tiampo 2021).

Slow-moving landslides are usually present in areas with 
mechanically weak soils, with intermittent layers of clay between 
weathered sedimentary or metamorphic rocks (Mainsant et al. 
2012; Schulz et al. 2018). Their constant movement over the years 
make them a key factor that influences the evolution of landscapes 
in mountainous areas (Roering et al. 2009; Mackey and Roering 
2011; Simoni et al. 2013). Although they are not characterized by high 
velocities or catastrophic failure, their occurrence affects infrastruc-
ture (Soto et al. 2017; Dille et al. 2019; Nappo et al. 2019) and agricul-
ture (Lacroix et al. 2020a; Garcia-Chevesich et al. 2021), and alters 
the normal development of communities. Slow-moving landslides 
often display a seasonal behavior, which means that their rate of 
movement is influenced by an external factor such as heavy rainfall 
(Handwerger et al. 2015, 2019a; Bayer et al. 2018; Finnegan et al. 2021).

Both remote sensing and in situ approaches can be used to mon-
itor slow-moving landslides. Remote sensing approaches include 
light detection and ranging (lidar) (Mackey and Roering 2011; 
Pirasteh et al. 2018; Jaboyedoff and Derron 2020), interferometric 
synthetic aperture radar (InSAR) (Strozzi et al. 2005; Handwerger 
et al. 2013; Bayer et al. 2018; Dai et al. 2020), and optical remote 
sensing (Bennett et al. 2016; Lacroix et al. 2020a). In situ approaches 
include the global navigation satellite system (GNSS) (Mulas et al. 
2018; Notti et al. 2020), terrestrial laser scanners (Rosser et al. 2007; 
Aryal et al. 2012; Booth et al. 2018; Huang et al. 2019), geophysical 
methods (Whiteley et al. 2019b, a), accelerometers (Bagwari et al. 
2021), slope deformation sensors (Askarinejad and Springman 
2017), inclinometers (Lollino et al. 2018), extensometers (Klimeš 
2018), and electronic distance measurement (EDM) (Petley et al. 
2005; Pecoraro et al. 2019). While the highest data quality comes 
from in situ measurements, these are limited to single locations 
within a landslide, can be challenging to install and maintain (espe-
cially in remote regions), and as a result fail to capture large-scale 
spatial and temporal changes in landslide behavior. Therefore,  
satellite-based data are a better approach to identify and moni-
tor large regions of active slow-moving landslides (Lu et al. 2012; 
Bianchini et al. 2018; Del Soldato et al. 2019; van Natijne et al. 2020).

Satellite-based InSAR data have been used to monitor slow-
moving landslides around the world for several decades. Long-term 
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monitoring provides the opportunity to use cumulative displace-
ment time series to detect changes in the motion of a landslide 
(Cigna et al. 2012; Berti et al. 2013; Raspini et al. 2018) or to detect 
landslides over broad areas (Bordoni et al. 2018). To better under-
stand landslide processes, these prior studies have focused on dis-
placement time series evaluation, in comparison to external trig-
gering factors such as rainfall. Our new approach similarly focuses 
on long-term kinematic changes and, in addition, expands on prior 
work by incorporating the spatial variation and timing of such 
changes at a regional scale. This is a step forward for the regional 
evaluation of landslides, in particular, more broadly constraining 
landslide dynamics, physical behaviors, and trigger responses.

Here, we present a new method to detect, quantify, and inven-
tory changes in the surface displacement rate of slowly deforming 
areas, such as landslides, across regional scales. Our method uses 
InSAR displacement time series to identify slowly deforming areas 
and detect the moment that a deforming area begins to acceler-
ate or decelerate. All identified accelerations and decelerations are 
analyzed and inventoried to determine the timing and location of 
changes in the displacement rate of potential unstable areas. We 
first test and refine our new approach as a proof of concept at the 
well-studied and analyzed Mud Creek landslide, located on the 
Big Sur coast, CA, USA. Then, we apply our method to a regular, 
unscreened data set along a reservoir upstream of the Mazar Dam, 
Ecuador.

InSAR methods

InSAR processing for Big Sur, CA

For the California case study, we examined published InSAR time 
series from Handwerger et al. (2019b). This time series was made 
using data acquired by the Copernicus Sentinel-1 A/B (S1) satel-
lites. These data are freely available and are provided by the Euro-
pean Space Agency (Desnos et al. 2014). The S1 satellites operate 
with a C-band (5.6 cm) radar wavelength and acquire data with a 
minimum acquisition interval of 6 days at a given location. Data 
are collected in both ascending (flying north and looking east) and 
descending (flying south and looking west) flight geometries.

Handwerger et al. (2019b) processed data from descending track 
42 between March 2015 and May 2017 and applied corrections to 
their InSAR data by using a scalable deformation model to reduce 
and correct unwrapping errors. They also manually removed poor-
quality interferograms prior to performing the time series inver-
sion. These two steps were important for creating a high-quality 
InSAR dataset that was used to reveal complex landslide motions. 
Yet, this type of data correction is time-consuming and challenging 
and is therefore infeasible for regional investigations that may con-
sist of tens to hundreds of landslides and hundreds or thousands of 
interferograms. For the full InSAR processing details and analyses, 
please see Handwerger et al. (2019b).

InSAR processing for Southeast Ecuador

To identify and monitor active landslides near the Mazar Dam, 
Ecuador, we constructed differential interferograms from InSAR 
data collected by S1 satellites. We processed the S1 data acquired 

in the Interferometric Wide (IW) swath mode, which has a 250-
km wide swath and a pixel spacing size of ~ 2.3 m in the looking 
(i.e., range) direction and ~ 15.6 m in the along-flight (i.e., azimuth) 
direction. We processed 966 interferograms using the Jet Propul-
sion Laboratory (JPL) InSAR Scientific Computing Environment 
(ISCE) software package (Rosen et al. 2012). Our processing strategy 
was to construct interferogram pairs with two nearest neighbors. 
We processed 495 interferograms on ascending track 18 (T18A) 
and 471 interferograms on descending track 142 (T142D). All of 
the interferogram pairs used in this study are listed in Online 
Resources (ESM) 1 and 2. To geocode the data and remove topo-
graphic phase contributions, we incorporated a ~ 30-m DEM from 
the Shuttle Radar Topography Mission (SRTM) into our processing 
(Farr et al. 2007). To reduce noise, we multi-looked the interfero-
grams by taking 9 looks in the range direction and 2 looks in the 
along-flight direction and applied a standard power spectral filter 
with a value of 0.5 (Goldstein and Werner 1998).

Finally, we quantified the time-dependent behavior of active 
landslides by constructing time series with the open-access Miami 
InSAR time-series software in Python (MintPy) (Yunjun et al. 
2019). More specifically, we used the Small Baseline Subset (SBAS) 
technique (Berardino et al. 2002) weighted by the inverse of phase 
covariance (Tough et al. 1995; Guarnieri and Tebaldini 2008; Yunjun 
et al. 2019). We applied a coherence threshold mask and dropped 
noisy pixels with coherence less than 0.4. We also corrected for 
tropospheric delay using ERA5 data from the European Center for 
Medium‐Range Weather Forecasts (ECMWF) (Jolivet et al. 2011, 
2014). To reduce long-wavelength noise, we selected a local stable 
reference point near the active landslides. The additional InSAR 
processing steps (i.e., unwrapping error corrections) performed 
by Handwerger et al. (2019b) for the case of the Mud Creek land-
slide were not implemented for the Ecuador case study because 
our goal was to develop and test a InSAR processing strategy that 
does not require individual corrections such that it can be applied 
to regional landslide detection and monitoring. The final result is a 
time series of cumulative displacements measured along the satel-
lite line-of-sight (LOS) for each pixel.

Methodology for the detection of accelerations 
and decelerations

We developed a method to identify and quantify changes in the 
displacement rate over time of slowly deforming areas by evaluat-
ing the InSAR cumulative deformation time series of each pixel 
in our study areas. We assume that the deforming areas identified 
with InSAR are slope movement, but they could also be related 
to deforming structures in the area. Ultimately, we do not expect 
InSAR signals based on anything else than surface displacement. 
Our method consists of four steps (Fig. 1). First, we select pixels in 
the area of interest that show a significant movement (the “Pixel 
selection” section). Second, we perform outlier detection on the 
time series of each selected pixel (the “Outlier detection” section). 
Third, we fit a piecewise-linear function model to each selected 
cumulative displacement time series to identify accelerations and 
decelerations (the “Model fitting, evaluation, and selection” sec-
tion). Fourth, we perform a spatial analysis on the detected accel-
erations and decelerations by identifying neighboring pixels with 
similar accelerations and decelerations (the “Spatial analysis:  
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detection of accelerations and decelerations” section). Our final 
result is a monthly inventory of the change points in the displace-
ment time series corresponding to accelerations and decelerations. 
This information can be used to identify and monitor active slow-
moving landslides and other localized ground deformations.

Pixel selection

The pixel selection is performed by analyzing the InSAR data in 
the area of interest. To identify the areas that most likely represent 
slope movement, we define our selection criterion based on the 

Fig. 1   Flow chart showing the workflow of the method and the relationship among the steps involved
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magnitude of the movement of pixels. We select pixels that exhibit 
the largest magnitude of displacement, above a specified percentile, 
for further analysis. It is recommended that the selected thresh-
old percentile includes the largest displacement magnitude pixels 
without including noisy pixels (i.e., isolated pixels that are not likely 
representing slope movement). A lower threshold may include such 
isolated pixels, while a larger threshold would avoid noisy pixels, 
but it would also exclude pixels that belong to potential deforming 
areas. A preliminary inspection of the data results in a balanced 
threshold selection. The selected pixels for the case studies in Cali-
fornia and Ecuador are presented in the “Pixel selection, case 1” and 
“Pixel selection, case 2” sections, respectively.

Outlier detection

The cumulative displacement time series from the InSAR data  
may contain outliers, and we use the Hampel method (Pearson 
2005, 2011) to identify them. The Hampel method uses a sliding 
window that scans the data and identifies an outlier when a data 
point differs from the median in the sliding window by a specified 
number of standard deviations. The sliding window is the window 
size (W) on each side of the evaluated point, so the total sliding 
window size is 2 W + 1. The value of the window size is based on 
the temporal sampling of the InSAR data. Datasets with a lower 
temporal sampling require a smaller window size to avoid includ-
ing more than one season in the sliding window. A higher temporal 
sampling allows a larger window size. A lower number of standard 
deviations result in a stricter filter and in the identification of more 
outliers, while a higher number of standard deviations result in a 
coarser filter and fewer outliers. All identified outliers are removed 
from the time series. Outlier detection is applied to the case studies  
in California and Ecuador in the “Outlier detection, case 1” and 
“Outlier detection, case 2” sections, respectively.

Model fitting, evaluation, and selection

After the outliers are identified and removed, a piecewise linear 
function is fitted to each cumulative displacement time series. A 
piecewise linear function consists of a number of straight segments 
where the slope of each segment represents a period of movement 
at a constant velocity. The specific time at which the slope (i.e., 
velocity) of the linear segment changes is called a breakpoint, and 
these breakpoints represent the timing of a change in velocity 
resulting from an acceleration or deceleration. We apply the PWLF 
Python package (Jekel and Venter 2019), which was developed to fit 
continuous piecewise linear functions, provided that the number 
of breakpoints is specified.

We fit multiple piecewise linear function models to each time 
series. Each model has m breakpoints, where m ranges from 1 
to the maximum number of breakpoints. Model m has 2 m + 2 
parameters: m breakpoints, m + 1 slopes, and an intercept. The 
maximum number of breakpoints may be set based on the 
timespan of the dataset and the expected maximum number 
of accelerations and decelerations in a given time frame. For 
example, in regions where landslides have documented seasonal 
velocity changes related to wet and dry seasons, we expect two 

breakpoints (1 acceleration and 1 deceleration) per year (e.g., 
Handwerger et al. 2019b; Bayer et al. 2018).

The InSAR displacement time series indicate deformation in 
the LOS direction, and can be positive or negative (depending 
on the direction of motion relative to the satellite look direc-
tion). In order to simplify the analysis, we converted the negative 
LOS values to positive LOS values since our objective is to detect 
changes in the time series. Yet, the piecewise linear fit may return 
sections with negative slopes that correspond to motion with a 
LOS direction that is opposite a landslides’ downslope motion. 
For landslides, we assume that they are always moving in the 
same downslope direction within the period of study and there 
is no obvious physical explanation as to how the sign of the LOS 
can switch from positive to negative (or vice versa) during a short 
sliding period. Therefore, we assume that negative slopes are a 
result of inversion or unwrapping errors and remove linear fits 
with negative slopes unless it is the first or last segment. In this 
latter case, slopes with LOS opposite of the downslope direction 
are likely an artifact of a limited number of data points when 
breakpoints occur near the beginning or end of the time series.

Next, each estimated breakpoint is evaluated using two crite-
ria: the uncertainty of the breakpoint, referred to as the break-
point criterion, and the estimated confidence intervals of the 
slopes of the segments on the two sides of each breakpoint, 
referred to as the slope criterion. The breakpoint criterion is 
assessed by evaluating the standard error of the estimated timing 
of the breakpoint. The standard error of the estimated breakpoint 
must be lower than a predefined threshold, which is set based 
on the temporal sampling of the InSAR data. The slope criterion 
considers the confidence intervals of the slopes of two consecu-
tive segments in a model. We estimated the 95% confidence inter-
val of a particular slope as ± 1.96 times the standard error of the 
estimated slope. A change in slope is considered significant when 
the confidence intervals of two consecutive slopes do not overlap.

All models that meet both the breakpoint criterion and the 
slope criterion are further evaluated using the Akaike informa-
tion criterion (AIC) to determine the optimal number of break-
points. The AIC criterion is used to assess the overall fit of a 
model and penalizes for the number of estimated parameters, 
which prevents overfitting (Burnham and Anderson 2002). The 
AIC is computed as follows:

where SSR is the sum of squared residuals, n is the number of data 
points, and k is the number of parameters (Burnham and Anderson  
2002). A smaller AIC indicates a better model fit. The model with 
the optimal number of breakpoints has the lowest AIC. Model fit-
ting, evaluation, and selection are applied to the case studies in Cal- 
ifornia and Ecuador in the “Model fitting, evaluation, and selection,  
case 1” and “Model fitting, evaluation, and selection, case 2” sections, 
respectively.

Spatial analysis: detection of accelerations and decelerations

After the breakpoints (i.e., points of acceleration/deceleration) are 
identified, a monthly spatial analysis is performed. Because of the 
uncertainty in the estimated timing of a breakpoint, a breakpoint is 

(1)AIC = n ×

[

ln

(

SSR

n

)]

+ 2k
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partly counted in the month of the estimated timing and partly in 
the months before and after. The distribution across the 3 months 
is based on the estimated standard error of the breakpoint as fol-
lows. A breakpoint is assigned to the middle of a month and the 
probability that it occurs in that month is estimated using a Nor-
mal distribution with the estimated standard error as the standard 
deviation. The remaining probability (i.e., the probability that the 
breakpoint does not occur on the estimated month) is distributed 
equally over the months before and after. As a result, the number of 
accelerations or decelerations in a month is not an integer and the 
total number of accelerations and decelerations sums to the total 
number of detected breakpoints.

Finally, a spatial analysis is performed to identify neighboring 
pixels exhibiting similar time series behaviors. We used the Python 
implementation of the density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm (Ester et al. 1996; Schubert 
et al. 2017) to identify pixels that belong to clusters with similar 
behavior (accelerations or decelerations). The algorithm uses two 
parameters: the maximum distance between pixels in a cluster  
and the minimum number of pixels in a cluster (Boeing 2018). 
These two parameters are set based on the InSAR data density. 
More details in the “Spatial analysis: detection of accelerations and 
decelerations, case 1” and “Spatial analysis: detection of accelera-
tions and decelerations, case 2” sections.

Our final product is an inventory of the timing of the changes in 
the displacement rate of pixels within a cluster of pixels that show 
similar behavior. The inventory is accompanied by multitemporal 
maps of grouped pixels corresponding to areas with similar behav-
ioral patterns, likely representing slope movement. Note that in this 
paper, we focus on identifying and quantifying the accelerations 
and decelerations that we find within pixels that are part of a cluster 
per month. The grouped pixels are indicators of deforming areas.

Case study 1: Mud Creek landslide

We tested and refined our new method to detect the timing of 
accelerations and decelerations from InSAR time series on data of 
the Mud Creek landslide. Mud Creek was a landslide that moved 
slowly for at least 8 years (likely much longer) before accelerating 
rapidly and failing catastrophically on 20 May 2017 (Warrick et al. 
2019; Handwerger et al. 2019b; Jacquemart and Tiampo 2021). This 
landslide had a pre-catastrophic failure area of approximately 0.23 
 km2 (Handwerger et al. 2019b) and a mean slope angle of 38 degrees 
(Warrick et al. 2019). The landslide’s bedrock geology is composed 
of the Franciscan mélange rock, which is characterized by a clayey 
granular matrix with highly sheared sandstone, siltstone, meta-
sandstone, shale, serpentinite, and blueschist (McLaughlin et al. 
1982, 2000). The average precipitation is around 1000 mm/year and 
occurs primarily between October and May. The Mud Creek land-
slide experienced periods of extreme drought and extreme rainfall 
during our study period. A historic drought lasted from 2012 to 
2016, while 2017 was one of the wettest years on record. Previous 
work by Handwerger et al. (2019b) and Jacquemart and Tiampo 
(2021) used InSAR time series to detect changes in landslide motion 
and found that seasonal rainfall drives these changes. This landslide 
was selected as a proof of concept for our new method due to its 
high-quality time series (as described in the “InSAR processing for 
Big Sur, CA” section) and its documented seasonal behavior. We 

examined the period of slow landslide motion captured by the S1 
InSAR time series between 2015 and 2017.

Pixel selection, case 1

For the Mud Creek landslide, we selected the 2% of pixels with 
the largest (absolute) displacement (147.4 mm) resulting in 1124 
of 93,590 pixels. This 2% threshold selected pixels that are part 
of the deforming area (Fig. 2). In the case of Mud Creek, a higher 
percentile (> 2%) would include pixels that may represent noise, 
and not real displacement. A lower percentile (< 2%) would leave 
out important pixels that may be part of an unstable area. A pre-
liminary evaluation of the pixels is advised to select the threshold 
that captures most pixels within moving areas without noisy pixels. 
All selected pixels are entirely within the boundaries of the pre-
catastrophic polygon mapped by Handwerger et al. (2019b).

Outlier detection, case 1

We used the Hampel method to identify outliers as described in 
the “Outlier detection” section with a sliding window size of 7 data 
points (representing ~ 84 days) and 2 as the number of standard 
deviations. Very few outliers were detected and removed from this 
high-quality data set. In total, 335 outliers were found and removed 
from 244 time series (0.47% of all data points), with a maximum 
of 4 outliers in one time series. In Fig. 3, we show some examples of 
the application of the outlier filter to the displacement time series 
of the Mud Creek landslide.

Model fitting, evaluation, and selection, case 1

We identified the number of breakpoints in each filtered time series 
using the method described in the “Model fitting, evaluation, and 
selection” section. We used a threshold standard error value of 
30 days for the breakpoint criterion. The maximum number of 
breakpoints in a time series is set to four because the displacement 
time series are available for 1 year and 9 months, where we can 
observe two rainy seasons (October to May each year). Based on 
the typical landslide behavior in coastal California (e.g., Handw-
erger et al. 2019a, b), we expect at most two accelerations and two 
decelerations. A total of 1120 out of the 1124 time series were fitted 
successfully. We identified 2967 breakpoints in total: 121 time series 
(i.e., pixels) with 1 breakpoint, 315 time series with 2 breakpoints, 
520 time series with 3 breakpoints, and 164 time series with 4 break-
points (see Fig. 4).

Spatial analysis: detection of accelerations and decelerations, case 1

We detected the timing of accelerations and decelerations of the 
fitted time series, as described in the “Spatial analysis: detection of 
accelerations and decelerations” section. We determined the location 
of the pixels of the 1120 fitted time series and we used the DBSCAN 
algorithm to identify and select pixels within a cluster, using 12 m as 
the maximum distance between pixels and 4 pixels as the minimum 
number of pixels that form a cluster. The maximum distance between 
pixels is the space between the edges of 2 pixels, and is set to 12 m, 
which is the spacing of the digital elevation model that was used 
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to geocode the interferograms (Handwerger et al. 2019b). We then 
compiled an inventory of the total number of accelerations and decel-
erations detected from pixels within a cluster per month. For Mud 
Creek, the number of breakpoints after clustering remains the same. 
All pixels are part of a cluster during the studied period. In Fig. 4a, 
the results show that there are two clear periods of an increased num-
ber of accelerations (from November 2015 to March 2016 and from 
October 2016 to April 2017), and one period of an increased number 
of decelerations (from May 2016 to September 2016).

We compared our breakpoint detection inventory to the local pre-
cipitation patterns known to have controlled the behavior of Mud 
Creek. We found very little activity between July and October 2015 
(i.e., there are no accelerations and only a few decelerations). This 
period is at the end of the dry season of a historic drought period. The 
landslide behavior changed when the 2015–2016 rainy season began 
and we detected many acceleration breakpoints between October 2015 
and February 2016. Figure 4b shows that a large portion of the land-
slide was accelerating in February 2016 (rainy season). This period of 
acceleration was followed by a period of deceleration during the 2016 
dry season. Figure 4c shows the spatial distribution of deceleration 
points within the landslide occurring in June 2016. Comparison with 
the November 2016 map shows that there are spatial differences in 
the timing of accelerations and decelerations within the landslide.

The landslide then started to accelerate again shortly after 
the onset of seasonal rainfall in the wet season of 2016–2017. We 
found that the largest number of accelerations recorded in a month 
occurred earlier (2 months after the onset of the rainy season) and 
was higher than the previous 2015–2016 wet season (Fig. 4a). This 
change in behavior was presumably driven by the large changes 
in rainfall that occurred during the study period and our findings 
agree with the detailed analysis presented by Handwerger et al. 
(2019b). We found that almost all pixels within the landslide are 
accelerating in November 2016 (Fig. 4d). Accelerations occurred dur-
ing the entire wet season until the catastrophic failure in May 2017.

We also compared our inventory of accelerations and decel-
erations to the velocity time series of Handwerger et al. (2019b) 
for 36 pixels within an area of 60 × 60 m in the landslide (Fig. 2). 
The timing of accelerations and decelerations found with our 
method matches those found by Handwerger et al. (2019b). 
Accelerations detected with our method correspond to periods 
of increasing velocities, while decelerations were detected dur-
ing the period of decreasing velocities (see Fig. 5). We observe 
that 32 out of 36 pixels accelerated from December 2016 to March 
2017, 31 out of 36 pixels decelerated from May 2016 to August 
2016, and 35 out of 36 pixels accelerated again from October 
2016 to January 2017. Only 2 pixels decelerated in this last period.

Fig. 2   Selected pixels showing InSAR cumulative displacement in 
Mud Creek between 2015 and 2017. The pink polygon shows the 
pre-catastrophic collapse polygon from Handwerger et al. (2019b). 

The green box indicates a representative area of 60 × 60 m used by 
Handwerger et al. (2019b) to derive landslide velocities
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Case study 2: Mazar Region

Our second study site is the region surrounding the Mazar 
hydroelectric power plant and its reservoir in southeast Ecua-
dor (Fig. 6). Here, a major hydroelectric complex extends from 
the Andes to the Amazonian region. The area is known to have 
several deep-seated landslides (e.g., Nicole 2015; Urgilez Vinueza 
et al. 2020). Around the reservoir, seventeen slow-moving land-
slides have been identified by the electrical corporation of Ecua-
dor (CELEC). CELEC identified the unstable areas during the 
construction of the Mazar dam and has been monitoring them 
because they are a threat to sustainable hydropower generation. 
The lithology of the landslide area is composed of two geologi-
cal units: Alao Paute and El Pan, characterized by metamorphic 
rocks, overlain by colluvium deposits ranging from 2 to 28 m 
(Nicole 2015). The precipitation in the area is around 3000 mm/
year and occurs primarily between April and August.

Pixel selection, case 2

For the Mazar region, we selected an area of 211  km2 around the res-
ervoir to examine the InSAR displacement time series from October 
2016 to August 2020. Our pixel selection resulted in 3230 pixels with 
an absolute displacement value above the 98th percentile (99.9 mm). 
Twenty-eight percent of the selected pixels fall within the boundaries 
of the ground-based landslide inventory carried out by CELEC, while 
72% fall outside the boundaries of the identified unstable areas.

Outlier detection, case 2

We used the Hampel method as described in the “Outlier detection” 
section with a sliding window size of 7 data points and 2 as the 
number of standard deviations. Factors such as the vegetated soil 
cover and atmospheric disturbances resulted in noisy displacement 
time series. Additionally, and contrary to the case of the Mud Creek 
landslide, a prior quality control of the data was not conducted 
for the Mazar landslides. One of the main objectives of our new 
detection method is to process large quantities of data at a regional 
spatial scale and in a relatively fast and semi-automated manner. 
In total, 25,860 outliers were found in 2268 time series, each time 
series with 1 to 24 outliers. A total of 4.7% of the data points were 
identified as outliers and removed from the time series. In Fig. 7, 
we show two examples of the application of the outlier filter to the 
displacement time series of the pixels in the Mazar region.

Model fitting, evaluation, and selection, case 2

We identified the breakpoints in each time series using a thresh-
old standard error value of 30 days for the breakpoint criterion. 
In the case of the Mazar region, we set the maximum number of 
breakpoints to eight due to the expected number of accelerations 
and decelerations that can occur over the course of 3 years and 
6 months under the influence of the rainy season (April–August). 
Our method was able to fit 2273 out of the 3230 time series success-
fully. We identified 3397 breakpoints in total: 1155 time series with 1 

Fig. 3   Examples of displacement time series and the identified outli-
ers for pixels P639 (3 outliers) and P938 (1 outlier) in a and b and the 
fitted breakpoints of pixels P639 (3 breakpoints) and P938 (1 break-

point) in c and d in the Mud Creek landslide. Pink points are the ini-
tial and final data points of the time series and are not considered as 
breakpoints
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Fig. 4   Inventory of monthly 
accelerations and decelera-
tions for the Mud Creek land-
slide (a) and the location of the 
pixels showing accelerations 
and decelerations and the 
pre-fail polygon on Febru-
ary 2016 (b), June 2016 (c), 
November 2016 (d), and March 
2017 (e). The color bar on the 
side of b, c, d, and e indicate 
the probability of occurrence 
of acceleration (in blue) or 
deceleration (in red) shown in 
the map. A 100% probability of 
acceleration is indicated by 1 
in blue, while a 100% probabil-
ity of deceleration is indicated 
by 1 in red

Fig. 5   Velocity time series of Mud Creek landslide for the water years 
of 2016 (black dots) and 2017 (yellow dots) for a representative area 
(averaged over 60 × 60 m, shown in Fig. 2) (modified from Handw-
erger et al. 2019b). Blue and red bars represent our detected number 

of accelerations and decelerations, respectively. April 2016 and Sep-
tember 2016 show no accelerations and decelerations because there 
are no clustered responses at those times
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breakpoint, 725 time series with 2 breakpoints, 237 time series with 
3 breakpoints, 107 time series with 4 breakpoints, 41 time series with 
5 breakpoints, and 8 time series with 6 breakpoints. Two example 
fits are shown in Fig. 7c, d.

Spatial analysis: detection of accelerations and decelerations, case 2

We performed the spatial analysis using the pixels of the 2273 fitted 
time series per month, using 30 m (i.e., DEM pixel spacing) as the 
maximum distance between pixels and 4 pixels as the minimum 
number of pixels that create a cluster. In the case of the Mazar 
region, the number of breakpoints after clustering diminished. 
There are 2793 of 3397 breakpoints in total: 561 time series with 
1 breakpoint, 566 time series with 2 breakpoints, 186 time series 
with 3 breakpoints, 90 time series with 4 breakpoints, 34 time series 
with 5 breakpoints, and 2 time series with 6 breakpoints. In Fig. 8, 
we present a spatio-temporal inventory of the number of detected 
acceleration and deceleration points within a cluster, and the loca-
tion of the corresponding pixels for four periods. Figure 8a and b 
show a seasonal and yearly distribution of the monthly number of 
accelerations and decelerations, respectively. Figure 8a shows that 

the number of decelerations is higher than the number of accelera-
tions in the first months of the year. There is a modest increase in 
the number of accelerations and a modest decrease in the number 
of decelerations once the wet season starts. However, we observe 
that by the end of the wet season and after, both accelerations and 
decelerations occur. Figure 8b indicates that the number of acceler-
ations increases throughout the study period, while the number of 
decelerations decreases. In the year 2020, the number of accelera-
tions is higher than the number of decelerations. Figure 8c–f shows 
the location of pixels with a mild to high probability of occurrence 
of accelerations and decelerations.

By examining the spatial variability of accelerations and decel-
erations over the area around the Mazar reservoir, we find that 
most of the activity occurs on the south side of the reservoir, where 
two reservoir tributaries meet. Some activity is observed near the 
dam, on the north side, and on the central-east side of the reservoir. 
Our inventory reveals that accelerations and decelerations occur 
throughout the year and are sparse around the reservoir. These are 
concentrated in specific locations at the end of the study period. 
This variability of accelerations and decelerations occurs within 
groups of pixels as well as between groups of pixels.

Fig. 6   Location of the Mazar landslides, the Mazar dam, and the selected pixels around the Mazar reservoir. In addition, we show the 2% pix-
els with the largest cumulative displacement over 4 years over an area of 211 km.2 around the reservoir
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Discussion

In this study, we developed a systematic method to detect, quantify, 
and inventory changes in the surface deformation rate of slowly 
deforming areas at a local and regional scale to investigate their 
temporal and spatial dynamics. Slow-moving landslides have been 
studied prior to this work using satellite data to identify ground 
motion areas and shifts in the displacement time series (Cigna et al. 
2012; Berti et al. 2013; Raspini et al. 2019). Our method differs from 
previous work in that our InSAR detection analysis provides an 
objective way to construct multitemporal maps of unstable areas 
and an inventory of the timing of changes in deformation rate of 
unstable areas.

Due to the nature of the InSAR data, the time series we used 
for the analysis often contained outliers. These outliers are usually 
related to specific data acquisitions in the time series and impede 
the fitting of the piecewise linear functions. For the Mud Creek 
landslide, there were very few outliers because analyses of a sin-
gle landslide allow for more in-depth quality control measures. For 
Mazar, there were many outliers because we did not carefully inspect 
individual interferograms or perform unwrapping error corrections. 
This was intentional as one of our main goals is to develop a method 
to analyze large quantities of regional slope deformation data where 
it is infeasible to inspect and/or make corrections to thousands of 
interferograms. Therefore, we opted for the Hampel method as a 
filter routine to identify and remove the outliers, while at the same 
time, avoiding the exclusion of important data.

The optimization of the Hampel parameters was carried out 
considering the temporal sampling of the InSAR data. Smaller 
window sizes will not detect the short-term outliers, while larger 
window sizes fail to identify outliers within a small portion of the 
window due to a higher median value. In our case, we used a win-
dow size of seven data points, representing a period of ~ 90 days 
and the number of standard deviations was set to two. Moreover, 
we found that using a standard deviation smaller than 2 tends to 
over-smooth the time series, while using a standard deviation over 
3 did not identify all outliers.

We evaluated the uncertainty of the timing of the breakpoints 
using the breakpoint criterion and decided on a threshold standard 
error value of 30 days. A smaller threshold value leads to a stricter 
algorithm, so that very few breakpoints are accepted. On the con-
trary, a higher threshold value allows more breakpoints to be identi-
fied, but then, the time frame when accelerations and decelerations 
occur becomes too large, and becomes meaningless with respect to 
slow-moving landslide dynamics. Any threshold that yields a time 
frame larger than the duration of a (wet) season will not give use-
ful information about the temporal dynamics of the slow-moving 
slopes. Therefore, we used a threshold standard error of 30 days and 
a monthly temporal resolution.

We selected our pixels considering the 98th percentile of the 
absolute cumulative displacement of the InSAR data. Some of the 
selected pixels that comply with this condition were isolated and 
did not have an immediate neighboring pixel that also showed 
significant displacement. We assumed that isolated pixels do not 

Fig. 7   Examples of displacement time series and the identified outli-
ers for pixels P18 (11 outliers) and P1410 (12 outliers) in a and b and 
the fitted breakpoints of P18 (3 breakpoints) and P1410 (4 break-

points) in c and d in the Mazar region. Pink points are the initial and 
final data points of the time series and are not considered as break-
points
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correspond to landslides. Several studies have shown that clus-
ters of pixels with relatively high LOS displacement can be used 
to identify active landslides (e.g., Bekaert et al. 2020). Therefore, 
we selected pixels that belong to a cluster that showed activity 
(acceleration or deceleration) in the same month. We followed 
this approach in order to achieve spatial consistency and temporal 
persistency (pixels with a significant change in displacement rate) 
(Raspini et al. 2018).

Our method identified breakpoints that show clear changes in 
deformation velocity that can be related to seasonal rainfall. In the 
Mud Creek landslide, accelerations take place during the rainy sea-
son, while decelerations occur during the dry season, as has been 
shown by hundreds of landslides in coastal California (Handwerger 
et al. 2019a). Previous work on the Mud Creek landslide showed that 

the slope dynamics are directly related to large changes in seasonal 
rainfall (Warrick et al. 2019; Handwerger et al. 2019b; Jacquemart 
and Tiampo 2021). Our change detection approach captured the 
seasonal kinematics of Mud Creek and allowed us to explore spatial 
trends and accelerations and decelerations by fully utilizing the rich 
information provided by InSAR. During the time period between 
Feb and May 2017, the landslide was likely moving faster than InSAR 
is able to detect, as the landslide approached catastrophic collapse. 
This causes phase-bias, an additional unwrapping challenge, that 
obscures the true deformation rate and was not possible to manu-
ally correct. However, it is encouraging that our method detected 
the overall change in the signal of the data, dominated by accelera-
tions, and did not capture the small apparent deceleration in the 
months prior to failure (Fig. 5).

Fig. 8   Spatio-temporal inven-
tory of accelerations and 
decelerations for the Mazar 
region. a and b indicate sea-
sonal and yearly distribution 
of monthly accelerations and 
decelerations, respectively. 
The location of the pixels 
showing accelerations and 
decelerations for four periods 
is shown in panels c, d, e, and 
f. Panels c and e are during the 
rainy season of 2018 and 2019, 
respectively, with an average 
of 704 mm of rainfall over 
5 months. Panels d and f occur 
during the dry season of 2018 
and 2019, respectively, with an 
average of 557 mm of rainfall 
over 7 months. The color bars 
on the side of c, d, e, and f 
indicate the probability of 
occurrence of the acceleration 
(in blue) or deceleration (in 
red) shown in the map. A 100% 
probability of acceleration is 
indicated by 1 in blue, while a 
100% probability of decelera-
tion is indicated by 1 in red. 
The black polygon shows the 
outline for the Mazar reservoir
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For the Mazar region, we observed more complex behavior 
resulting from analyses of numerous large and spatially variable 
deforming areas. We found that the accelerations and decelerations 
occurred during the entire period of study and are distributed over 
the area around the reservoir. In Fig. 8a and b, we showed that both 
accelerations and decelerations occurred during the entire period, 
and that in 2020, the number of accelerations was higher than the 
number of decelerations. The high number of unstable areas that 
were identified using our method may have caused this somewhat 
less predictable behavior, which can be related to lagged responses 
of deep-seated landslides in the area, as well as to creep behavior 
of more surficial landslides. Local factors such as slope, distance to 
the reservoir, specific land use, irrigation, and local geomorphol-
ogy may influence these different behaviors and the occurrence of 
accelerations and decelerations at different times. This behavior 
is also captured at Mud Creek, where even a single landslide can 
show spatial variation on the timing of accelerations and decel-
erations. The overall behavior of the Mazar region is complex and 
needs further in-depth analysis, such as a hydro-meteorological 
and geotechnical analysis of the larger Mazar region, which is out 
of the scope of this paper and is part of our next follow up study.

Conclusions
We developed an objective and systematic method for the detection 
of accelerations and decelerations of slowly deforming areas from 
InSAR data. Our method consists of InSAR time series analyses 
corresponding to the selected pixels (with the highest cumulative 
displacement). These time series are filtered, and breakpoints are 
detected using piecewise linear functions fitted to the time series. 
These breakpoints represent the times when the displacement rate 
changes significantly. We analyzed the spatial distribution of the 
successfully modeled pixels and inventoried the accelerations and 
decelerations that showed similar spatial behavior.

We tested our method on the high-quality InSAR dataset of 
the Mud Creek landslide, CA. Our method successfully detected 
the timing of accelerations and decelerations at Mud Creek that 
were driven by changes in seasonal rainfall. Next, we investigated 
a landslide prone area impacting a hydropower area in southeast 
Ecuador. Although the time series data were of significantly lower 
quality (compared to Mud Creek), we identified deforming areas 
with complex patterns of accelerations and decelerations, both 
within and between groups of pixels that did not always coincide 
with wet and dry seasons.

We conclude that our method is able to identify changes in the 
ground surface displacement rate of deforming areas that can be 
used to examine this behavior, and inventory these changes in an 
objective and straightforward manner. The ability to determine the 
temporal and spatial variation of velocity changes is a step forward 
in the large-scale interpretation of the physical behavior of slow-
moving deforming areas. Ultimately, our inventory of accelerations 
and decelerations can be used as a tool to shed light on the dynam-
ics of slow-moving landslides at both sub-landslide and regional 
scales with high spatial and temporal resolution.
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