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A dilatant, two‑layer debris flow model 
validated by flow density measurements 
at the Swiss illgraben test site

Abstract  We propose a dilatant, two-layer debris flow model vali-
dated by full-scale density/saturation measurements obtained from 
the Swiss Illgraben test site. Like many existing models, we suppose 
the debris flow consists of a matrix of solid particles (rocks and 
boulders) that is surrounded by muddy fluid. However, we split the 
muddy fluid into two fractions. One part, the inter-granular fluid, is 
bonded to the solid matrix and fills the void space between the solid 
particles. The combination of solid material and inter-granular fluid 
forms the first layer of the debris flow. The second part of the muddy 
fluid is not bonded to the solid matrix and can move independently 
from the first layer. This free fluid forms the second layer of the 
debris flow. During flow the rocky particulate material is sheared 
which induces dilatant motions that change the location of the 
center-of-mass of the solid. The degree of solid shearing, as well as 
the amount of muddy fluid and of solid particles, leads to different 
flow compositions including debris flow fronts consisting of pre-
dominantly solid material, or watery debris flow tails. De-watering 
and the formation of muddy fluid washes can occur when the solid 
material deposits in the runout zone. After validating the model on 
two theoretical case studies, we show that the proposed model is able 
to capture the streamwise evolution of debris flow density in time 
and space for real debris flow events.

Keywords  Debris flow hazards · Two-layer model · Dilatancy · 
Streamwise density distribution · Illgraben

Introduction
The assessment of debris flow hazard relies on both numerical sim-
ulation models [1–6] and empirical methods [7]. Most numerical 
approaches solve shallow-water type equations [8] and therefore 
can be effectively applied to predict flow heights and debris flow 
runout distances. Nonetheless, the application of numerical models 
in hazard engineering practice remains limited [9]. This is due to 
two salient problems. Firstly, it is difficult to quantify accurately the 
initial starting and entrainment masses for a specific torrent. And 
secondly, historical case studies are still necessary to calibrate the 
rheological parameters that govern debris flow motion at a spe-
cific site, and therefore possible inundation area [1, 3, 10]. Without 
this information, the motion of a debris flow is difficult to model 
because it depends strongly on the relative amounts of solid and 
fluid masses [11]. Typically, the front of the debris contains most 
of the rock material whereas the tail is more fluid like [12, 13], see 
Fig. 1. When the solid material stops in the runout zone, the muddy 
fluid de-waters from the rocky material, or is overrun by the fluid 
tail, creating muddy floods and channel outbreaks [14]. The vary-
ing solid/fluid composition of debris flows leads to a wide range of 

possible deposition behaviors, making the prediction of the hazard 
extent for a specific torrent highly uncertain; see [9].

Two-layer approaches that simulate both the motion of the 
rocky solid and muddy fluid would serve to alleviate many of 
these problems involved in modelling debris flows, including the 
specification of the initial conditions, modelling entrainment and 
selecting appropriate rheological parameters. This is evidenced by 
the recent development of several two-layer debris flow models 
[15–19]. To apply these two-layer debris flow models in practice 
we must first demonstrate that they predict the correct stream-
wise structure of the flow. It must be shown that the distribution 
of solid and fluid material from the debris flow front to tail can be 
accurately modelled. This is a difficult problem because it depends 
both on entrainment processes (the entrainment of solid material 
at the leading edge of the flow), detrainment (solid mass loses at 
the debris flow sides) as well as the momentum exchange between 
solid and fluid components [20]. In many ways, this problem can 
be considered experimental, in the sense that little data exists to 
substantiate/refute different model approaches that predict the evo-
lution of flow density in the streamwise direction. Once the rela-
tive amounts of solid and fluid are known, these must be linked 
to follow laws that govern the bulk speed of the flow, as well as 
important processes such as de-watering and the eventual separa-
tion of the solid and fluid components. Again, this problem is a 
large part experimental, since there are few basal shear measure-
ments of actual debris flows that would allow a testing of different 
modelling approaches.

In this paper we address the important problem of the distri-
bution of solid/fluid mass in the debris flow body. Using density 
measurements captured at the Swiss Illgraben test site [21, 22], we 
model the streamwise structure of a series of debris flows. That 
is, we attempt to simulate the volumetric solid and fluid parts of 
the debris body, and therefore the flow density of the debris flow 
from initiation to runout. Similar to many existing approaches, 
we adopt a shallow-water approach because of its computational 
speed. Within the framework of the shallow-water approach, we 
must therefore divide the fluid part of the debris flow into inter-
granular and free parts in order to model the separation of the 
solid and muddy components, and therefore processes such as de-
watering and fluid flooding. The data and model results integrate 
a series of recent works that introduce dilatant flow mechanics 
[15, 23] into debris flow modelling. Although we present actual 
shear measurements showing how shear resistance decreases with 
increasing fluid content, we do not address the rheology problem 
here, concentrating first on capturing the streamwise variation of 
bulk flow density.
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The rest of this paper is organized as follows: in Sections 2 and 
3, we describe the basic ideas behind our two-layer model; in Sec-
tion 4, we present the governing equations of debris flows (mass 
and momentum conservation laws), and in Section 5, we show the 
numerical results. The comparison to Illgraben measurements is  
found in Section 6. The paper is rounded off with some concluding 
remarks and an outlook to future work in Section 7.

Debris flow density, solid particles and muddy fluid
We consider a debris flow to be constituted of two material compo-
nents: a solid component (subscript s) consisting of coarse granu-
lar sediment (e.g., boulders, cobbles, and gravel), associated with a 
density �s , and a fluid component (subscript m) consisting of fine 
sediment likely to behave as suspended sediment (e.g. sand, silt, 
clay), hereinafter referred to as the muddy fluid content denoted by 
�m . Although the grain-size distribution of the solid layer is likely 
to be important in the dynamics of debris flows [24], herein we do 
not consider grain size in our approach. We consider the individual 
solid particles to be undeformable; however, the ensemble of solid 
particles can be deformed and sheared, leading to different spac-
ings between the particles. Therefore, the local bulk density of the 
debris flow � varies because it consists of a mixture of solid parti-
cles combined with different amounts of muddy fluid. For now, we 
will always make the assumption that the solid component is fully 
saturated with muddy fluid. It contains no interstitial air.

Most existing debris flow models [15–17, 19, 25] consider the solid 
and fluid components to be two independent phases, moving with 
different velocities. They assume that the first phase/layer (sub-
script 1) is equal to the solid component and the second phase/layer 
(subscript 2) to be equivalent to the muddy component. Therefore, 
there can be no mass exchanges between the two phases/layer. 
Momentum can be exchanged between the two phases by shear-
ing and rubbing interactions between the solid particles and the 
fluid mud.

In our model, we make an alternative assumption: the first layer 
(subscript 1) consists of a mixture of solid particles and inter-gran-
ular muddy fluid that is bonded to the particle ensemble. The mass 
per unit area of this layer is denoted M1 . It consists of solid mass 
( Ms ) and inter-granular fluid mass ( Mb)

1. The second layer (sub-
script 2) consists only of the fluid that is free to move independently 
of the first layer. We term this second layer the free fluid (subscript 
f) which has a mass Mf  (also per unit of area), Figs. 2 and 3. These 
relations can be mathematically expressed as,

The heights hs and hb represent the height of the solid and inter-
granular fluid components; they can likewise be considered as 
volumetric parts of the debris flow mass. Be aware that even if hsb 
and h2 = hf  represent real heights of the first and second layers, 
this is not the case for hs and hb which represent the volumetric 
concentrations of solid and inter-granular fluid in the first layer, 
respectively. The same remark holds for h1 which does not have 
any physical meaning but is added to simplify the shallow water 
equations, Section 4. The total mass of the debris flow M is the sum 
of the mass of layer 1 (solid particles and inter-granular fluid) and 
mass of layer 2 (free fluid),

(1)
M1 =Ms +Mb = �shs + �mhb = �sb (hs + hb)

⏟⏞⏟⏞⏟
hsb

(2)
=�s (hs +

�m
�s

hb)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
h1

(3)M2 =Mf = �mhf .

Fig. 1   A debris front passes 
a concrete check dam at the 
Illgraben test site on August 
20, 2020. Note the blocky 
front and watery tail. The 
front appears to dam the 
muddy fluid flowing behind; 
the rocks in the tail appear-
ing completely submerged in 
the muddy fluid. Saturation 
increases from front to tail. 
Photograph WSL

1  The index ’b’ stand for ’bonded’.
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where hm defines the total amount of fluid in the flow. In order to 
completely define our mass in a given volume, the last step is to dif-
ferentiate the inter-granular and the free fluid. This is accomplished 
by assuming that the separation between the inter-granular and the 
free fluid is given by the location of the highest solid particle. We 
suppose that the solid content is homogeneously distributed in the 
first layer. Therefore, the center of mass of the solid is hsb

2
 . Moreover, 

all the fluid which fills the void space is considered as bonded (it 
forms the inter-granular fluid component) and all the remaining 
fluid, is considered as free (see Figs. 2 and 3). All the fluid which 
flows above the first layer is considered free, and subsequently it 
can escape the matrix of solid particles, allowing the debris flow 
to de-water. Thus, fluid can escape from the solid part of the flow.

Finally, we denote the velocity of layer 1 as �1
2; the velocity of the sec-

ond layer is �2 . The velocity is a vector quantity as we consider velocity 
to be in two plane-parallel directions given by the digital terrain model.

(4)
M =M1 +M2 = Ms +Mb +Mf

⏟⏞⏟⏞⏟
Mm

= �shs + �m (hb + hf )
⏟⏞⏟⏞⏟

hm

Dilatancy in the solid boulder matrix
The basic idea behind our model is to describe the debris flow as 
a dilating mixture of solid particles (boulders, rocks) and muddy 
fluid. Because of shearing interactions between the individual par-
ticles and the ground, the solid matrix dilates; that is, the spacing 
between the particles can increase or decrease, changing the overall 
volume of the first layer, [26]. More precisely, in our model, dilatancy 
will be responsible of fluid mass exchanges between the two layers. 
These mass exchanges will change the flow composition and allow 
us to have a varying density profile inside the flow. Indeed, without 
dilatancy, our model would be closer to two independent one-layer 
model than a real two-layer model with interactions. Therefore, the 
density evolution in our model is the consequence of dilatancy.

We define three variables associated with the solid mass, hs , h0 
and hsb . The height hs is the volume of the solid particles in the flow,  

h

The yellow dashed line represents the separation

between the first layer (solid particles/boulders and

The debris flow is divided into a serie of volumes V (red dashed lines) for the numerical simulations

interstitial muddy fluid
Solid particles/boulders

inter−granular fluid) and the second layer (free fluid)

h sb

2

Fig. 2   The debris flow is divided into a serie of volumes V. The flow-
ing material is separate into two layers. The first layer is composed 
by all the solid mass (particles and boulders) and inter-granular fluid 
( hsb ), while the second layer is only composed by free fluid, ( hf  ), flow-

ing on top of the first one. The density of the first layer can vary from 
dense flowing configurations (front of the debris flow) to wet flow-
ing configurations (tail of the debris flow) under dilatancy, see Sec-
tion 3 and Fig. 3

z

h

0= hb
+ h

Dilated configuration Co−volume configuration

s= hsbh

h 2 = h f

sb = h s + h
b > h 0

h 2 = h f

The yellow dashed line represents the separation between the two layers

First layer
(solid with interstitial fluid)

Second layer (free fluid)

First layer

Second layer (free fluid)

(solid with interstitial fluid)

Fig. 3   Sketch of two different debris flow configurations, possess-
ing the same amount of solid and fluid mass. The left one is a dilated 
configuration, happening during flowing, while the right one is the 
reference configuration, called the co-volume configuration, typi-
cally when the flow is at rest. The different heights we have defined 

in Sections 2 and 3 are depicted here. The red dots show the center 
of mass of the corresponding configuration. The parameters z, intro-
duced in Eq. 6, is the difference between the centers of mass of the 
dilated and co-volume configuration

2  We assume zero slip between the granules and the inter-granular 
fluid.
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h0 represents the reference height of the non-dilated mass3, whereas 
hsb represents the dilated height of the solid mass, Section 2 (see 
Fig. 3). We refer to h0 as the co-volume, in an analogy to Van der 
Waals work on non-ideal gasses with large molecules and cohe-
sion [27]. Note that, even if the solid mass is conserved, the first 
layer density can vary, according to Eq. 1, if the inter-granular fluid 
concentration evolves :

The potential energy D (per unit area) associated with the dilata-
tion of solid material is

where z is the distance between the center of mass of the dilated 
configuration and the co-volume one, Fig. 3. Because the configu-
ration of the particles in the dilated volume defines the potential 
energy D, we sometimes refer to the energy D as the configurational 
energy of the debris flow [28–30]. Importantly, we are making the 
following physical assumption: the potential energy is associ-
ated with the buoyant weight of the solid particles immersed in 
the inter-granular fluid. Any change in z implies a change in the 
potential energy, ΔD ∝ Δz.

For a debris flow, changes in void space are always associated 
with movement of the interstitial muddy fluid. When the void space 
between particles increases, fluid will fill the space between par-
ticles, or conversely, when the void space decreases, fluid will be 
squeezed out. Fluid mass that fills the void space will eventually 
move at the same speed as the particles and therefore becomes 
inter-granular, whereas fluid that is squeezed out becomes free to 
move independent of the particulate mass. This implies there is a 
mass exchange between the inter-granular and the free fluid com-
ponents, that depends on the void space of the solid mass. If the flow 
is dilating, typically just after the release, free fluid is transformed 
into inter-granular fluid. Inversely, if the solid void space is decreas-
ing (e.g. in the run-out area) the rate of fluid exchange changes, 
and inter-granular fluid becomes free (de-watering). To model this 
effect, we let q̇ denote the rate of the fluid mass exchanges. It can 
be calculated directly from any change in the distance between the 
center-of-masses of the reference and dilated configurations Δz,

In this paper the configurational energy D is governed by a simple 
production (parameter � ) and decay (parameter � ) term, similarly 
to what has been used for snow avalanches, see [26]:

The quantity Wf  represents the shear work. That is, the change in 
the energy of configuration D (dilatation) is directly related to the 
shear work, in accordance with Reynolds [31]. The parameter � 

(5)�sb =
�shs + �mhb
hs + hb

(6)
D =

[
�s − �m

]
hs

⏟⏞⏞⏞⏟⏞⏞⏞⏟
buoyant mass

g
1

2

[
hsb − h0

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

z

.

(7)q̇Δt = Δz.

(8)
𝜕D

𝜕t
+ ��⃗∇ ⋅ (D�1) = 𝛼Ẇf − 𝛽D.

defines the fraction of the shear work that produces a dilatation, 
whereas the parameter � defines how quickly the dilatation col-
lapses in the absence of shear, due to energy dissipation caused by 
shearing between particles. The balance between the production of 
D and its decay essentially defines the degree of saturation in the 
debris flow, as this defines the amount of void space (inter-granular 
water) in the moving solid. As we will show in the final section, the 
parameters � and � can be determined from experimental measure-
ments such as the ones in Illgraben.

An important fact is that mass exchanges between the inter-
granular and free fluid components are also associated with a trans-
fer of momentum ( �⃗P ) between the two debris layers.

Model equations
Depth-averaged mass conservation equations can be written for the 
three material components hb (inter-granular fluid), h1 (first layer) 
and h2=hf  (free fluid),

where ��⃗∇ is the divergence operator in Cartesian coordinates. The 
right-hand side of the inter-granular fluid and free fluid equations 
contains the term q̇ , Eq. 7, which is the mass exchange rate between 
the inter-granular and free fluid because of dilatant actions in the 
solid matrix. In Eq. 10, as well as in Eq. 12, we include the density 
as the left hand side contains the density �s , Eq. 2, while the right 
hand side contains the density of the muddy fluid. Here we assume 
no entrainment of solid material from the mountain torrent. Note 
that in Eq. 10, as well as in Eq. 12, we use h1 instead of hsb . Indeed, h1 
has a constant density, which allows us to simplify the equations. 
In this form, the equations are mass conservative. Note also that it 
is possible to find the equation for the boulders/solid content of the 
flow combining Eq. 9 and 10 together with Eq. 2.

We have in total four momentum conservation equations, viz. 
two equations for each of the two layers. If b ∶= b(x, y) denotes the 
bottom topography, they can be written in vectorial form as [32, 33]:

The first, resp. second, equation represents the first, resp. second, 
layer. The symbol ⊗ denotes the tensor product and I is the two-
dimensional unity matrix. The left side is the total variation of the 
momentum with respect to time, including the effect of gravitation 
and the influence on one phase to the other, [32, 33]. The right side 
represents the change in momentum due to external forces (exclud-
ing gravitation). �⃗Si is the shearing forces acting on the ith layer. As 

(9)
𝜕hb
𝜕t

+ ��⃗∇ ⋅ (hb �⃗v1) =q̇ inter-granular fluid

(10)
𝜕h1
𝜕t

+ ��⃗∇ ⋅ (h1 �⃗v1) =
𝜌m
𝜌s

q̇ first layer

(11)
𝜕h2
𝜕t

+ ��⃗∇ ⋅ (h2 �⃗v2) = − q̇ free fluid

(12)

𝜕t(h1 �⃗v1) + ��⃗∇ ⋅

(
h1 �⃗v1 ⊗ �⃗v1 +

gh2
1

2
I

)
+ gh1 ��⃗∇

(
b +

𝜌m
𝜌s

h2

)
= − �⃗S1 +

𝜌m
𝜌s

�̇⃗P

(13)

𝜕t(h2 �⃗v2) + ��⃗∇ ⋅

(
h2 �⃗v2 ⊗ �⃗v2 +

gh2
2

2
I

)
+ gh2 ��⃗∇

(
b + h1

)
= − �⃗S2 − �̇⃗P

3  It is different from hs , because we consider that, even in the non-
dilated configuration, the void space is not zero.
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we are using the Voellmy–Salm model [34], the shearing forces (per 
unit of area A) can be expressed as:

where êi is the unit vector along the flowing direction : 
êi = (

vi,x

||vi ||
,

vi,y

||vi ||
)T . The gravity component gz is the slope-perpendic-

ular acceleration due to gravity, gz = g sin(�) where � is the slope 
angle of the corresponding cell. We emphasize that we neglect the 
shearing between the two layers. Indeed, we can consider the shear-
ing processes acting at the interface between the two layers as a 
Coulomb type friction. However, we use a value of the fluid Cou-
lomb coefficient close to zero ( �2 ≈ 0.01 ). Therefore, the shearing 
between the two layers can be assumed negligible.

Finally, Ṗ is the rate of momentum exchange associated with the 
mass exchange. Because Eq. 12 is defined per unit of �s , while Eq. 13 
is defined per unit of �m . Together, these terms invoke Newtons’ 
third law of action and reaction between the layers. The momentum 
exchange rate can be expressed as:

Numerical validation
Various numerical schemes for depth-averaged shallow-water type 
equations can be applied to solve numerically this system of equa-
tions [8, 35, 36]. We numerically solve equations Eqs. 8 -13 using 
finite volume schemes within the RAMMS avalanche software [37]. 
The equations are solved in two steps. First, we solve the hyperbolic 
part of the equations, i.e. without the source term (right-hand side) 
using a second order ENO scheme. The second step is to integrate 
the source terms using a second order Runge-Kutta method.

(14)�⃗Si =

(
𝜇igzhi +

g||vi||2
𝜉i

)
êi

(15)�̇ =

{
q̇�⃗v2 if the first layer is dilating ḣ1 > 0

q̇�⃗v1 if the first layer is collapsing ḣ1 < 0

To check the mathematical consistency of the model (Eqs. 6 
and 8 to 13), we performed two numerical tests. The first test is 
designed to test the stability of the three-component momentum 
equations (solid, free and inter-granular fluid), while the second 
test is designed to check the mass conservation between the inter-
granular and free fluid contents during dilatative changes in the 
solid boulder/rock matrix.

The first test is based on the idea that for a steady flow, the 
dimensionless Froude number is constant, defined only by the 
Voellmy-type friction parameters � and � in relation to the slope 
angle � . This condition must hold for the two-component flow 
(inter-granular fluid/solid material) even if the solid material is 
undergoing shearing and dilatative changes. The derivation of 
this fact is contained in a short Appendix. We therefore performed 
block release simulations on a flat plane with a uniform slope angle, 
Fig. 4a. The plane connects to a flat runout area. In order to prove 
the existence of steady state, our interest is directed toward the 
slope above the runout plane. Obviously in real-terrain conditions, 
the flow would generally not reach a pure steady state configuration.

The convergence of the numerical simulations to the theoretical 
results is depicted in Fig. 4a (input parameters are summarized in 
Table 1). Here, the Froude number is plotted as a function of the 
simulation time t. The red curves represent the theoretical Froude 
numbers evolution for a sliding rigid block (see Appendix) for two 

0 20 40 60 80 100 120
0

1

2

3

4

0 50 100 150 200 250 300

Time [s]

0

500

1000

1500

2000

M
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Blue markers: numerical outputs

’+’ markers: second set of parameters
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α = 15%
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a) b)

Fig. 4   a) Results of two simulation checks. For a flow on a flat slope 
governed by Voellmy-type friction parameters, the Froude number 
is constant at steady state. b) The total fluid mass composing the 
flow is plotted as a function of the time. The dark orange line is the 
inter-granular fluid, the light orange line is the free fluid; the blue line 
is the total amount of fluid, i.e., the sum of the two previous ones, 

for � = 10% . The dashed line represent the inter-granular (upper 
curves)-free(lower curves) fluid evolution for two different values of 
alpha, i.e. � = 15% (green dashed lines) and � = 20% (cyan dashed 
lines). Total fluid is conserved as slope changes cause unsteady 
motions

Table 1   Summary of the free parameters governing the Froude 
number value

Simulation � [] � [ m∕s2] � [ ◦] Froude 
Number

1 (’x’) 0.1 100 15 1.29

2 (’+’) 0.15 300 30 3.36
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different sets of friction values (Table 1, markers ’x’ and ’+’), while 
the blue markers are the numerical outputs. The mass of the block 
used in the theoretical computation is equivalent to the initial mass 
of the release block used in the numerical simulations. This plot 
reveals an important feature of model; namely, that in steady state, 
there are no dilatative changes in the solid boulder/rock matrix. 
The flow density is constant in steady state, and therefore, there is 
no changes in the amounts of free and inter-granular fluid compo-
nents. Indeed, momentum exchanges would result in a deviation 
in the Froude number convergence. Therefore, a constant Froude 
number, which coincides with the mathematically computed value, 
means that no momentum exchanges are occurring, which is the 
proof that the flow has attained a constant density4. Changes in 
slope angle encountered in real torrents therefore always produce 
changes in the debris flow density and streamwise structure.

Note that in the mathematical derivation of the Froude number 
value, Appendix, we do not consider the influence of one phase 
on each other. However, this effect is taken into account when we 
performed the numerical simulations. The fact that the numerical 
output converges to the theoretical value shows that these effects 
are negligible. Therefore, the mathematical derivation can be con-
sidered as valid even for a dilatant two-layer model with phase 
interactions.

The second consistency check demonstrates that when the 
debris flow is outside steady state, and there are changes in the 
streamwise structure and dilatant actions in the boulder/rock 
component, the mass of free and inter-granular fluid (total fluid) 
are always conserved. Therefore, for model consistency, we have to 
check that the entire amount of fluid contained in the flow is con-
served with time. The simulations are again perform on an ideal, 
flat plane with a constant 30°slope. This time, however, we are inter-
ested when the flow leaves the slope and enters the runout zone; 
that is, when the flow is no longer in steady state as in the previous 
case. We have plotted the mass of the different fluid flow compo-
nents as a function of the time for three values of � : 10% , 15% and 
20% , Fig. 4b. The orange and red curves represent the free and inter-
granular fluid for � = 10% , while the blue lines are the total fluid 
composing the flow (sum of the two previous curves). the green 
and cyan dashed lines are the evolution of free(lower curves) and 
inter-granular (upper curves) fluid, for � = 15% and � = 20% . This 
result demonstrates that fluid mass is conserved during unsteady 
motions in uneven terrain. Moreover, we can check that the mass 
exchanges (and therefore the debris flow saturation), increase with 
� , which is the consistent numerical behavior.

Comparison to illgraben measurements
The Illgraben debris flow test site (Fig. 5) is located near Leuk, Can-
ton Valais, Switzerland [11, 21, 22]. Since 2005, the Illgraben torrent 
has been instrumented with a rectangular force plate (area A=4m2 ) 
that measures shear (S) and normal (N) stresses at the base of a 
passing debris flow. A laser sensor located above the plate meas-
ures the total debris flow height h as the flow passes over the plate. 
The force plate is located at the end of a 2.5-km-long torrent (in 
orange on Fig. 5) that has an average slope of 5 o . The torrent is fed 

by a large (9.5km2 ), steep catchment zone (in blue on Fig. 5), which 
supplies the measuring channel with debris flows of various sedi-
ment/fluid compositions. In this paper we consider four specific 
debris events, see Table 2. All four events can be considered single 
surges, with well-defined front-tail structure. The debris flow fronts 
contained boulders and rocks, leading to large measured normal 
stresses N ≈ 20kPa - 25kPa (Fig. 6a, b, c, d). The debris flow fronts 
were followed by fluid tails containing much less solid mass, reduc-
ing the measured normal stresses.

From the measurement data it is possible to estimate the stream-
wise bulk density � of the flow, and therefore the time variation of 
the solid and fluid components as debris flow passes over the plate. 
Keeping the same notation as in Section 2, we can write the two 
following equations:

In these equations, M is the total mass running over the plate which 
has the mean bulk density � . As the basal area A is constant we 
can represent the volumetric components of the solid/fluid as a 

(16)h =hs + hm

(17)M =
N

gz
= (�shs + �mhm)A = �hA.

Fig. 5   Map of the Illgraben test site. The catchment zone is given by 
the blue polygon, while the channel is drawn in orange. The check 
dams are also shown (red line). The blue star represents the starting 
point of the hydrogaph, used for the numerical simulation, and the 
green star is the location of the shear plate. The original map can be 
found in [11]

4  A constant density does not mean that the steamwise density distri-
bution is uniform.
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corresponding height. Gravity gz  is the slope-perpendicular grav-
ity component. With these equations, we can equivalently write,

Therefore, thanks to this experimental setup, we can extract from 
the measurements the streamwise evolution of the bulk density, 
Eq. 18. (Equivalently it is possible to calculate the volumetric fluid 
concentration 

hf

h
 ). In the four events studied, the variation of the 

density with respect to time is highly different from one event to 

(18)� =
�shs + �mhm
hs + hm

(19)

hs =h

[
� − �m
�s − �m

]

hm =h

[
�s − �

�s − �m

]
.

the others (Fig. 6a, b, c, d). However, the variation of the density 
with the normal stress exhibits a similar behavior for each of the 
measured events (Fig. 7a, b, c, d). The color is an additional time 
information. The blue markers represent the front of the flow and 
time is evolving as we approach the yellow color. From this time 
information, we can check that the flow density is higher in the 
front (blue) than in the tail (yellow). As a consequence of the uni-
formity in the density-normal stress space, we compare the density 
behavior with respect to the normal stress, rather than the time 
variation of the flow composition itself.

In Fig. 6a, b, c, and d, the debris flow height (colored curves) 
and the density (black curves) is plotted as a function of time for 
the four different events. Colour should help to guide the reader 
over the duration of the event. However, be aware that the color is 
more an indication than a real temporal data. Indeed, for both sub- 
graphics, the two curves (Illgraben data and numerical outputs) 

Table 2   Main characteristics of the simulated debris flows

Event Description ≈ Max flow 
height

≈ Time event ≈ Front  
velocity

(a) 02.08.2005 Event with a high density: rocky event 1.1 m 20 min no data

(b) 28.07.2006 Unconventional event the tail becomes again less saturated 1.5 m 55 min 2 m/s

(c) 31.08.2008 Rocky front and very fluid tail, large saturation difference 
between the front and the tail

1.4 m 25 min 1.9 m/s

(d) 29.07.2013 extremely fluid event 1 m 50 min 1.9 m/s

Fig. 6   Data of the Illgraben data measurements. The colored mark-
ers plot the flow height behavior, whereas the black markers plot the 
density evolution. Both markers are plotted with respect to time. The 

color is an additional temporal information, the blue represents the 
front and the yellow the tail
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do not have the same duration. Therefore, the yellow markers, by 
instance, represent in both (Illgraben and numerical simulation) 
case the end of the flow, but are associated with different times.

To validate our model, we have selected four events at the Illgra-
ben site: the 2nd of August 2005, the 28th July 2006, the 31st August 
2008 and the 29th July 2013. We use a hydrograph for the release 
method [38]. In order to compare the numerical prediction with 
the experimental results, we have selected four cells (a square of 
2 by 2 cells), corresponding to the shear place location. For com-
parison we used the average of different variable of the debris flow 
on these cells.

The comparison between experimental and numerical results 
is shown in Fig. 7a, b, c, d, which plots the first layer density as a 
function of the first layer normal stress. The colored dots are the 
experimental data while the black edge symbols, filled with color, 
are the numerical outputs. These results suggest that the dilatant, 
two-component model is able to reproduce the streamwise den-
sity structure of several debris flows observed at the Illgraben test 
site. The numerical results not only predict the correct depend-
ency between density and normal stress, but also the correct time 
dependency. Although this is a positive result, it must be empha-
sized that the model is not able to differentiate between the inter-
granular and free fluid components and therefore the exact degree 
of solid dilatation. This is largely due to the fact that the Illgraben 
data, although extensive, does not provide a means to separate the 
inter-granular and fluid parts of the interstitial muddy fluid. We 
are able only to measure the sum of the muddy fluid passing the 

normal plate over time. This leads to an important observation: 
as we cannot distinguish the interstitial and free fluid from the 
Illgraben measurements, we can choose to match the experimental 
data either with the first layer density or with the entire debris flow 
density. We have chosen the former case for the following reason. 
Our final goal is to compute the flow rheology as a function of 
the flow composition. However, in our model, the rheology of the 
first layer only will change, because the second layer is completely 
composed by fluid. Therefore, it is relevant to match the data with 
the first layer only, as this will determine in large part the rheology 
of the flow5. Moreover, we can also choose to initialize the flow in a 
already dilated configuration, in which case all the fluid is assigned 
to belong to the first layer and there is no free fluid as long as the 
solid matrix does not start to collapse. However, we did not use 
this way to initialize the flow for consistency reasons. Indeed, we 
wanted to show that we were able to catch the right density profile 
even when we initialize the flow in the co-volume configuration, to 
demonstrate the applicability of the dilatancy approach.

As a last results, we show on Fig. 8, the time-spatial evolution of 
the three flow contents, that is to say: the solid matrix, the intersti-
tial fluid, and the free fluid. One can see an important aspect of the 
model. During flow, the amount of free fluid is small with respect 
to the first layer, which is the sum of the two left plots.

Fig. 7   Comparison between 
Illgraben data and numeri-
cal simulations results. Bulk 
density � as a function of 
normal stress N. The colored 
dots are the experimental data 
while the black edge dots are 
the numerical outputs. The 
color is an additional temporal 
information, the blue repre-
sents the front and the yellow 
the tail
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d) Event of the 29th July 2013

5  We can also possible to match the Illgraben measurements with the 
entire flow data.
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Discussion and conclusions
Measurements of S/N ratios of debris flow reveal a strong decrease in 
friction with increasing volumetric fluid content (Fig. 9a, b, c, d). This 
statement can, of course, be alternatively stated: S/N ratios increase 
with increasing solid content. However, the experimental data reveals 
an important second point: the solid/fluid content distribution var-
ies in the streamwise direction. Often, the debris flow front contains 
less fluid than the tail, indicative of higher friction, or bulking, at the 
leading edge of the flow (Fig. 6a, b, c, d). The solid mass will have a 
tendency to stop sooner, in comparison with the fluid concentrated 
tails, causing a wide array of different stopping possibilities in runout 
zones. Stopped solid concentrations can de-water, or be overflown by 
their muddy tails. Torrents can be blocked and dammed, leading to 
channel outbreaks and muddy flows that inundate large areas.

The first step to model accurately the mobility of a debris flow 
is the ability to predict the variation of volumetric fluid/solid com-
ponents—essentially the streamwise variation of the bulk density 
from the head to the tail of the flow. This task cannot be achieved 
within the framework of simple one-layer models and is the pur-
pose of this paper.

The approach adopted in this paper is to divide the fluid content 
into two parts—the inter-granular part (that moves with the speed 
of the solid matrix) and the free fluid (which moves independently 
from the solid). We assume that all fluid that can be contained in the 
void space of the solid is inter-granular. The problem here is that 
the void space is continuously changing because of the continuous 
interactions between the rocks and boulders themselves and the 
ground. Shearing changes the volume of the solid matrix and thus 
the relative amounts of inter-granular and free fluid. Importantly, 
the solid concentration moderates the speed of the overall flow, 
causing the fluid to move at a slower speed, backing up the fluid 
into the tail of the debris flow. With this approach, it was possible 
to simulate the density variation (i.e., the volumetric fractions of 
solid/fluid) in the streamwise direction.

The model imposes two physical constraints: 

1.	 In steady state, there is no variation in the solid configuration, 
and therefore the density is constant. Volumetric dilatation 
in the solid matrix are governed by the balance between the 
shear work rate (production) and collapse of the volume in 
the surrounding fluid (decay). In steady state the work done by 
shearing is constant and equal to the collapse rate, leading to 
a constant solid volume and therefore a constant void ratio. In 
this case there can be no exchange between the inter-granular 
and free fluid fractions which remain constant. This leads to 
constant Froude numbers in the steady state, and, because no 
mass can be exchanged, in turn to no momentum exchange 
between the two components. On steep slopes, the production 
term dominates leading to more dilated flows with suspended 
particles. In the runout zone, the flows collapse, the particles 
return to the basal layer and the void space disappears. The 
debris flows de-waters.

2.	 Mass exchanges imply momentum exchanges. In existing debris 
flow models [15–17, 19], momentum exchanges must be devised 
to regulate the speed of the two phases/layers solid/fluid mod-
els. By transferring mass between the inter-granular fluid 
locked in the solid matrix and the free fluid, we also transfer 
momentum. The transfer of momentum is regulated by the 
void space (dilatation) in the solid boulder/rock matrix of 
the flow. As we have demonstrated in the numerical examples, 
these momentum exchanges will only occur when the flow is in 
a non-steady state. For example, when the flow is undergoing 
sharp slope changes such as when entering the runout zone. Of 
importance, is the fact that the transfer of mass and momen-
tum between the solid/inter-granular fluid (layer 1) and free 
fluid (layer 2) layers regulates both the speed and the density 
of the debris flow.

Fig. 8   Three pictures of the 
simulations performed to 
match the 2013 event. From 
left to right: the solid height, 
the interstitial fluid height 
and the free fluid height. The 
picture is taken when the first 
layer reaches the shear plate. 
We can see here an important 
point of the model: during 
flowing, a large part of the fluid 
belongs to the first layer and 
there is only a small amount of 
free fluid left
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In our debris flow model formulation, the free fluid has two main 
roles. First, it surrounds the solid matrix and therefore facilitates 
the buoyant dispersion of the solid mass. It effectively allows dila-
tancy and therefore streamwise density variations. Secondly, when 
the solid matrix stops, the solid particles deposit out of the fluid 
content. It then becomes possible to simulate phase separation (de-
watering) between the solid and free fluid.

Alternatively, when the debris flow mixture is still flowing, a 
significant proportion of the fluid is flowing at the same speed 
as the solid in the inter-granular void space. The amount of the 
free fluid layer is small comparing to the first layer, Fig. 8, in some 
cases nonexistent. Another important practical point is that we 
can initiate the flow in an already dilated configuration by using 
an hydrograph. Therefore, we start the debris flow as a single layer 
flow, assigning all fluid to be inter-granular. It means that in this 
case, the two-layer model reduces to a one-layer model, which 
implies a reduction in computational time, while keeping the pos-
sibility to have a density profile. Only in the runout zone, when the 
solid matrix deposits, will the inter-granular fluid become free.

To summarize, our model is able to predict the complexities of 
two-layer behavior (streamwise density distribution, phase separa-
tion), while solving, for a large part of the simulation time, a system 

of one layer equations. This offers the possibility to reduce calcula-
tion time, which is an crucial aspect in practical engineering applica-
tions. With regard to the flow rheology, we note that the experimental 
decrease in S/N (Fig. 9a, b, c, d) appears almost linear with volumet-
ric fluid content, providing strong evidence of effective stress like 

Fig. 10   Block sliding on a flat plan with constant slope angle �
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Fig. 9   Experimentally measured S/N ratio as a function of the measured saturation. Each dot represents an experimental measurement. The 
color is an additional temporal information, the blue represents the debris flow front and the yellow the tail
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Appendix

Appendix A: Analysis of a sliding block along an inclined plan 
with a Vollemy– type shearing model
In this section, we study the mathematical solution of a sliding rigid 
block along an inclined plan with a constant slope angle � . The shear-
ing force will be given by the Vollemy– type model. it means :

where A is the basal area, � is the center of mass velocity, always 
parallel to the slope direction êx (we suppose than either the ground 
and the block are unalterable). If we use the second law of Newton 
and we decompose the forces along êx and êz , slope perpendicular 
direction (see Fig. 10) , it gives:

Combining these two equations, we find a first order differential 
equation:

We can solve it with respect to v. After integration, with the initial 
condition v(t = 0) = 0 we obtain:

with Γ2 = mg(sin(�) − � cos(�)) and � =
�gA

�
 . Therefore, for time 

long enough ( limt→∞ ), the block reaches a steady state, given by the 
steady value:

(20)� = 𝜇Nê
�
+

𝜌gA

𝜉
v2ê

�
=

(
𝜇N +

𝜌gAv2

𝜉

)
êx

(21)along êx → mg sin(𝜃) −
𝜌gAv2

𝜉
− 𝜇N = ma = mv̇

(22)along êz → −mg cos(𝜃) + N = 0

(23)mg sin(𝜃) −
𝜌gA

𝜉
v2 − 𝜇mg cos(𝜃) = mv̇

(24)v(t) =
Γ√
�
tanh

�
Γ
√
�

m
t

�

(25)
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t→+∞

v(t)√
gh(t)

=

�
�(sin(�) − � cos(�))

g

⎡
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⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

⎤
⎥⎥⎥⎥⎥⎦

(26)=
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�(sin(�) − � cos(�))

g

concepts which reduce the shear stress linearly with increasing fluid 
pressure. A first step to develop and test different two-layer rheologi-
cal models is first to capture the streamwise density variation of the 
flow. Although our major goal was to develop a model for practical 
applications, because we can define variable amounts of solid and 
muddy fluid, the model might help also to understand how debris 
flow mobility will be affected in a changing climate, where we expect 
changing geomorphological and precipitation conditions.
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which is the well known Froude number. It means that, once the 
entire flow (each cell) reaches a steady state, the value of the Froude 
number should converge to a constant and uniform value which 
depends only on the slope angle and the two friction parameters of 
the Voellmy-Salm model. We can note, that even if the mathematical 
derivation remains valid for every density of the block, momen-
tum exchanges between the layers would not conserve the Froude 
number convergence. Therefore, to have a correspondence between 
the numerical output and the mathematical analysis, momentum 
exchanges have to be zero, which reflect the fact that we have a 
constant density (not uniform!!).
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