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Counteracting flawed landslide data in statistically
based landslide susceptibility modelling for very
large areas: a national-scale assessment for Austria

Abstract The reliability of input data to be used within statisti-
cally based landslide susceptibility models usually determines the
quality of the resulting maps. For very large territories, landslide
susceptibility assessments are commonly built upon spatially in-
complete and positionally inaccurate landslide information. The
unavailability of flawless input data is contrasted by the need to
identify landslide-prone terrain at such spatial scales. Instead of
simply ignoring errors in the landslide data, we argue that
modellers have to explicitly adopt their modelling design to avoid
misleading results. This study examined different modelling strat-
egies to reduce undesirable effects of error-prone landslide inven-
tory data, namely systematic spatial incompleteness and positional
inaccuracies. For this purpose, the Austrian territory with its
abundant but heterogeneous landslide data was selected as a study
site. Conventional modelling practices were compared with alter-
native modelling designs to elucidate whether an active
counterbalancing of flawed landslide information can improve
the modelling results. In this context, we compared widely applied
logistic regression with an approach that allows minimizing the
effects of heterogeneously complete landslide information (i.e.
mixed-effects logistic regression). The challenge of positionally
inaccurate landslide samples was tackled by elaborating and com-
paring the models for different terrain representations, namely
grid cells, and slope units. The results showed that conventional
logistic regression tended to reproduce incompleteness inherent in
landslide training data in case the underlying model relied on
explanatory variables directly related to the data bias. The adop-
tion of a mixed-effects modelling approach appeared to reduce
these undesired effects and led to geomorphologically more co-
herent spatial predictions. As a consequence of their larger spatial
extent, the slope unit–based models were able to better cope with
positional inaccuracies of the landslide data compared to their
grid-based equals. The presented research demonstrates that in
the context of very large area susceptibility modelling (i) ignoring
flaws in available landslide data can lead to geomorphically inco-
herent results despite an apparent high statistical performance and
that (ii) landslide data imperfections can actively be diminished by
adjusting the research design according to the respective input
data imperfections.

Keywords Mixed-effects modelling . Slope units . Logistic
regression . Landslide inventory . Validation

Introduction
In the last decades, there has been an increase in the reporting of
landslide phenomena that caused damage or threatened society
(Petley, 2012). Recent reviews highlight a growing number of pub-
lications dealing with the quantitative spatial prediction of land-
slides (Reichenbach et al., 2018; Steger & Kofler, 2019; Wu et al.,

2015). For very large areas, such assessments are usually based on
statistical methods and include national-scale analyses (e.g. (Dikau
& Glade, 2003; Domínguez-Cuesta & Bobrowsky, 2017; Ferentinou
& Chalkias, 2013; Gaprindashvili & Westen, 2015; Graff et al., 2012;
Komac, 2006; Komac & Ribicic, 2006; Liu et al., 2013; Malet et al.,
2008; Sabatakakis et al., 2013; Trigila et al., 2013)), continental-scale
assessments (e.g. (van Den Eeckhaut et al., 2012; Günther et al.,
2013; Günther et al., 2014; Wilde et al., 2018)) and global models
(Hong et al., 2007; Lin et al., 2017; Nadim et al., 2006). Lack of
reliable spatial geotechnical information and restrictions related to
computational resources are well known to hamper the applica-
tion of physically based spatial landslide models for such large
territories (Corominas et al., 2014).

The primary purpose of a landslide susceptibilitymap is to spatially
depict the relative likelihood of landslides affecting an area under a
given set of geo-environmental conditions (Brabb, 1984; Fell et al.,
2008; Glade & Crozier, 2005). The selection of an appropriate model-
ling approach should consider the size and characteristics of the target
area and the availability and quality of input data (Corominas et al.,
2014; Guzzetti, 2005). Under real-world data conditions, the size of a
study area is likely to influence the consistency and quality of available
geo-environmental and landslide information. Compared to physical-
ly based slope stability models, statistical landslide susceptibility anal-
yses are more flexible in terms of input data and thus often applied for
the assessment of large areas (Cascini, 2008; Corominas et al., 2014;
Sabatakakis et al., 2013; van Westen et al., 2008). Statistically based
landslide susceptibility assessments are based on the assumption that
the potential location of an upcoming slope failure can be estimated by
analysing past landslides and their relation to spatial geo-
environmental variables. In most cases, the underlying classification
algorithms build a statistical relation between past landslide presence/
absence information and a set of explanatory variables that describe
the underlying terrain conditions, e.g. the topography, lithology and
land cover. The ensuing prediction rule often expressed as a suscep-
tibility score between zero and one is then applied to each terrain unit
of a study area (e.g. raster cell, slope unit) (Jacobs et al., 2020). For
validation, the predicted susceptibility score is confronted withmodel-
independent landslide observations in order to get insights into the
prediction capability of the model (Chung & Fabbri, 2003; Frattini
et al., 2010; Reichenbach et al., 2018). Several studies have shown that
the explanatory power of statistically based spatial landslide predic-
tions is particularly dependent on the reliability of landslide training
data (Ardizzone et al., 2002; Harp et al., 2011; Steger et al., 2016a; Zêzere
et al., 2017).

In its basic form, a landslide inventory represents a collection
of past landslide locations. For most scientific purposes, a further
distinction between landslide types is required (Corominas et al.,
2014; Guzzetti et al., 2012). Additional information on the spatial
accuracy of events, their temporal occurrence and mapping
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uncertainties can further enhance the usability of inventory data
(Guzzetti et al., 2012). However, for very large areas, consistent and
accurate landslide information is rarely available and the creation
of an assembled landslide inventory based on a variety of sources
is common practice (Malamud et al., 2004). The resultant spatially
heterogeneous data quality poses a challenge for the spatial pre-
diction of landslide phenomena using statistically based ap-
proaches (Ardizzone et al., 2002; Fressard et al., 2014; Harp et al.,
2011; Hussin et al., 2016; Steger et al., 2017).

The positional accuracy of a landslide inventory is known to be
associated with the underlying data source and mapping technique
applied (Guzzetti et al., 2012). To what extent positional inaccuracies
are propagated into the final modelling and validation results also
depends on the chosen raster resolution and the type of terrain
representation (Jacobs et al., 2020; Steger et al., 2016b; Steger et al.,
2020). Alternatives to a raster-based representation of the landscape,
like slope units (Alvioli et al., 2016), are gaining increasing popularity
in the context of statistical landslide susceptibility modelling, also
because they are considered to be geomorphically more meaningful
and potentially less sensitive to landslide positional errors and noise
in geo-environmental input data (Alvioli et al., 2016; Camilo et al.,
2017; van Den Eeckhaut et al., 2009; Guzzetti et al., 2006; Jacobs et al.,
2020; Schlögel et al., 2018).

Another concern in statistical landslide susceptibility modelling
is the spatial representativeness (i.e. completeness) of available
landslide information (Guzzetti et al., 2012; Steger et al., 2017). A
common source of such spatial bias relates to the underreporting
of landslides that did not cause social, infrastructural or monetary
damage leading to an underrepresentation of landslides far from
settlements and infrastructure (Bell et al., 2012; Brardinoni et al.,
2003; Petschko et al., 2014; Sabatakakis et al., 2013). Human activity
(e.g. earthmoving) and natural processes (e.g. erosion or ecological
succession) may as well induce a spatially changing completeness
of landslide information among different land cover types (Bell
et al., 2012; Petschko et al., 2016). Varying completeness of land-
slide data can also be related to the boundaries of administrative
units. For example, the resources allocated for landslide mapping
may vary among administrative units, such as political counties,
provinces or municipalities, which can introduce another type of
spatial bias (Steger et al., 2017; Trigila et al., 2013). Merging existing
landslide inventories from different study sites may also introduce
spatial inconsistencies because areas, where less detailed mapping
campaigns were performed, are likely to under represent the
portion of past landslide occurrences.

Literature indicates that the positional accuracy and spatial
consistency (i.e. representativeness) of mapped events are fre-
quently ignored in statistical susceptibility modelling. Especially
for large study sites, where data inconsistencies represent the rule
rather than an exception, flawed landslide information may lead to
erroneous landslide susceptibility models, which in turn may
negatively influence the explanatory power of each subsequent
decision or analysis. Previous publications highlighted some strat-
egies that may counteract associated error propagations by focus-
ing on the sampling of non-landslide locations (van Den Eeckhaut
et al., 2012), positional inaccuracies of landslide information
(Jacobs et al., 2020; Steger et al., 2016b) and systematic
inventory-based incompleteness (Steger et al., 2017).

This research aims (i) to assess landslide susceptibility for the
entire Austrian territory by (ii) counterbalancing landslide

inventory-based incompleteness and by (iii) minimizing the effect
of positional inaccuracies through a slope unit terrain representa-
tion. The application of different classification algorithms (i.e.
logistic regression vs. mixed-effects logistic regression) and differ-
ent terrain representations (i.e. grid-based vs. slope units) allowed
the comparison and evaluation of four models in terms of their
ability to counterbalance flawed landslide information. Only shal-
low translational earth and debris slides (further termed land-
slides) were considered within this analysis (Cruden & Varnes,
1996; Dikau et al., 1996).

Study area
Containing approximately 84,000 km2, the territory of Austria
(Fig. 1) is located centrally on the European continent and its
approx. 8.8 million inhabitants are distributed across nine fed-
eral provinces (Statistik Austria, 2017). The topography of Aus-
tria can be described as undulating to flat in the East and
predominantly mountainous in the West. The Danube river
basin in the East crosses the political capital Vienna in the very
East. In contrast, the alpine landscape in the central and west-
ern parts exhibits elevations of up to 3798 m asl. at the
Großglockner peak. From the north-eastern lower and gentle
terrain to the high alpine landscape in the central and western
parts, the Austrian territory is characterized by a considerable
morphological variety. Landslides represent a substantial threat
to private and public properties, critical infrastructure and the
population where the landslide favouring geomorphological
conditions coincides with specific socio-economical and demo-
graphical settings (Petschko et al., 2013; Schweigl & Hervás,
2009).

The geological setting of the Austrian territory is defined by
a Northern part mainly dominated by the presence of the
Bohemian Massif and Molasse zones. These partly deforested
flat to hilly landscapes are located within the northern part of
Austria (Krenmayr et al., 2000). The Helvetic and Flysch zones
represent relatively narrow lithological units located south of
the Molasse zone and correspond to sedimentary deposits. The
Flysch zone, an elongated sandstone-rich unit, represents a
gentle to hilly landscape that originated from the depositional
processes dating from Upper Cretaceous and Neogene. The
Flysch zone is well known to be particularly prone to landslides
of slide-type movement (Petschko et al., 2014; Schwenk, 1992;
Terhorst & Damm, 2009). Various lithologies like the Greywacke
zone, the Calcareous Alps, the Penninic unit, crystalline rocks
and the Periadriatic compose the high elevation alpine terrain,
where landsliding is common, but often underestimated
(Krenmayr et al., 2000).

The climate is influenced by the Alpine territory, which repre-
sents 62.8% of the total area of Austria (BMLFUW, 2007), with
strong influences from the Atlantic continental, sub-
Mediterranean and polar or subpolar air masses. Temperature
regimes largely depend on elevation ranges and seasonal trends
(Auer et al., 2007; Hiebl & Frei, 2016). The mean annual rainfall is
also greatly variable over the territory. The humid season also
corresponds with the warmer period. Precipitation average annual
values range from a few hundred millimetres per year (400 to
600 mm/year in the Eastern part) to more than 2000 mm/year in
some of the Alpine areas (BMLFUW, 2007). Localized, highly
intense rainfall events are mainly concentrated during the
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summer-autumn period and can be manifested as heavy thunder-
storms, bringing heavy hail, in summer, occurring throughout the
country. However, comprehensive historical data analysis has
shown significant regional and different seasonal tendencies
(Auer et al., 2007).

The predisposition for landsliding in Austria depends on an
interplay of different environmental factors, such as lithology
and its weathering products, topography, land cover and human
impact (Bell et al., 2012; Schweigl & Hervás, 2009). Extreme
precipitation events, as well as rapid snow-melting, are known
to represent typical landslide triggering factors (Glade et al.,
2020). Severe landslide events caused major consequences, for
instance in August 2005 in Gasen und Haslau, where hundreds
of landslides were reported after a heavy rainfall of 200 mm in
48 h (Tilch, 2009). In June 2009, thousands of landslides were
triggered by heavy rainfalls in Feldbach (Hornich & Adelwöhrer,
2010).

Data

Landslide inventory
The landslide information used for this study consists of 23,891
shallow translational landslides (Cruden & Varnes, 1996; Dikau
et al., 1996; Hungr et al., 2014). The final landslide inventory
was compiled from nine sub-inventories, which differ in their
spatial reference area (i.e. mapping domain) and applied map-
ping technique. From now on, the term “mapping domain” is
used to describe the spatial extension (i.e. a polygon)
delimiting the area of each sub-inventory. Complementary in-
ventory characteristics, such as the coverage area (km2), density
(slides/km2), the mapping technique used, location description
and also a quality indicator about the positional accuracy of
each inventory, are described within Table 1 and represented by
Fig. 2(D). Although information on the trigger mechanism was
not available for all the sub-inventories, it is known that com-
monly the main triggers of shallow earth and debris slides in

Austria are associated with hydro-meteorological events and
not of tectonic origin (Schweigl & Hervás, 2009). Consequently,
the present study refers to hydro-meteorological landslide trig-
ger only.

Available landslide inventories are a more or less accurate
representation of the past landslide locations (Guzzetti et al.,
1999; Guzzetti et al., 2012). Detailed new mapping campaigns
that cover very large territories (e.g. entire nations) are costly
and time-consuming and do not necessarily lead to a repre-
sentative landslide data set since the footprint of old landslides
might be absent within specific areas. In practice, it usually
remains to the researcher to work with the best available data
by keeping in mind its limitations. For the present study, the
spatial bias in the available landslide information plays a
significant role. Literature suggests that in Austria, specific
land cover features may over- or underrepresent the true
landslide occurrence (Bell et al., 2012; Petschko et al., 2014).
Although the compiled inventory contains a considerable num-
ber of landslides, the first inspection of available meta-data
and the available spatial information indicated heterogeneous
completeness among the different mapping domains (Fig.
2(D)). For instance, the very low landslide density in the
mountainous region of Tyrol is likely associated with the ab-
sence or unavailability of a detailed and province-specific
landslide inventory (i.e. only Mp1 was available). In contrast,
the comparably high landslide density observed for the prov-
ince of Lower Austria (Mp9) is associated not only with its
high landslide susceptibility but also with the underlying sys-
tematic mapping campaign associated with a recent project
(Petschko et al., 2016). Between all the nine sub-inventories,
the mapping domain named Mp1 covers the highest portion of
the Austrian territory (73% of the area).

Geo-environmental variables
(Schweigl & Hervás, 2009) reported that landslide occurrence in
Austria is mainly controlled by geo-environment factors such as

Fig. 1 (A) The location of Austria at the central European territory. (B) Overview of the Austrian morphological and political territory. (C) Shallow landslide events that
occurred within the Austrian territory. Photographs were provided by the Geological Survey of Austria
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Table 1 Characterization of available landslide information. The positional accuracy indicator (one to three crosses) was deduced from the authority’s inventory data
documentation. The positional accuracy was estimated higher (+++) in the case of inventories mapped utilizing high-resolution aerial photography, high-resolution DTM
derivatives and GPS field campaigns. Mid accuracy (++) was assigned to digitalized inventories from other sources. Lower accuracy (+) was assigned to landslides
inventories build on inferior accuracy mapping procedures (e.g. digitalization from old archives)

Mapping
domain
(Mp)

Number of
landslides

and
percentage

(%)

Area (km2)
and national
coverage
percentage

(%)

Landslide
density

(slide/km2)

Mapping method
technique and
observations

Location describer in
Austria

Qualitative
positional
accuracy
indicator
(accuracy
suggested
within the
source

documentation)

Mp1 8297
(34.73%)

61,771 km2

(73.5%)
0.13 Varying mapping

techniques
involved. Mostly
digitalized
historical
inventories.
Source:
Geological
Survey of
Austria.

It covers the largest
portion of the
territory. It
comprehends the
provinces of Tyrol,
Carinthia and
Burgenland; and parts
of Styria and Upper
Austria.

+
(1: 300,000)

Mp2 1212
(5.07%)

2668 km2

(3.18%)
0.45 Interpretation of

multi-temporal
aerial photogra-
phy (Tilch,
2014).

Covers the Vorarlberg
province area.

+++
(1: 2000)

Mp3 236
(0.99%)

105 km2

(0.13%)
2.25 Event-based

inventory. Field
mapping with
GPS. Source:
Geological
Survey of
Austria.

It is located nearby
Feldbach municipality,
province of Styria.

+++
(accuracy of a few
meters)

Mp4 58
(0.24%)

7 km2

(0.01%)
8.27 Event-based

inventory. Field
mapping with
GPS. Source:
Geological
Survey of
Austria.

It is located nearby
Feldbach municipality,
province of Styria.

+++
(accuracy of a few
meters)

Mp5 179
(0.75%)

9 km2

(0.01%)
20.23 Event-based

inventory,
digitalized after
a field mapping
performed by
Brandlmayr
(1995).

It is located in the
municipalities of
Gmunden and
Ebensee, province of
Upper Austria.

++
(1: 50,000)

Mp6 21
(0.09%)

115 km2

(0.14%)
0.18 Event-based and

site-specific
mapping survey.
Source: Geologi-
cal Survey of
Austria.

Located in the Hausruck
region, province of
Upper Austria.

+++
(1: 1000 to 1: 5000)

Mp7 390
(1.63%)

60 km2

(0.07%)
6.49 Event-based

landslide
inventory. Field
mapping with
GPS. Source:
Geological
Survey of
Austria.

The landslides were
mapped after a
rainfall event in 2005
over the municipalities
of Gasen und Haslau,
both located in the
Styria province.

+++
(>1: 10,000)

Mp8 443
(1.58%)

12 km2

(0.01%)
36.52 Event-based

landslide
inventory.

Event-based inventory
mapped after the
2009 rainfall event

+++
(>1: 1000)

Original Paper

Landslides 18 & (2021)3534



geological, geomorphological and land cover features. For this
study, five topographical variables were derived from a resampled
airborne laser scanning (ALS)–based DTM available at a 10 m ×
10 m spatial resolution. Slope angle is the most commonly used
variable in landslide susceptibility modelling (Budimir et al., 2015;
Coe et al., 2004; Corominas et al., 2014; Kanungo et al., 2009;
Malamud et al., 2014; Pourghasemi & Rossi, 2016; Süzen & Kaya,
2012; van Westen et al., 2008; Wu et al., 2015). This variable was
selected to describe the driving forces that directly influence the
downslope sliding potential. For large areas, elevation may reflect
altitude-dependent environmental, climatic and morphological
conditions that are associated with slope stability (e.g. general
climatic features, elevation-dependent weathering variations)
(Corominas et al., 2014; Dai & Lee, 2002; van Westen et al.,
2008). The topographic wetness index (TWI) (Beven & Kirkby,
1979) was used as a hydrological proxy which considers the up-
slope contributing area and slope gradient. Applied as a condi-
tioning variable for this study, the TWI indicates potential spatial
differences in soil moisture and flow accumulation (Süzen & Kaya,
2012).

The slope aspect may describe a varying degree of insolation,
which influences soil moisture and weathering conditions
(Corominas et al., 2014; Dai & Lee, 2002; van Westen et al.,
2008). The slope aspect is also mentioned to be a relevant land-
slide predisposing variable considering that distinctive aspects
may influence the terrain exposition to rainfalls and radiation,
conditioning terrain humidity and vegetation patterns (Catani
et al., 2013; Pourghasemi & Rossi, 2016). For this study, the aspect
was derived from the DTM and resampled from the continuously
scaled layer (originally from 0 to 360°) by calculating the respec-
tive cosine and sine, representing the degree of north and east
exposedness (Brenning, 2009; Brenning & Trombotto, 2006; Steger
et al., 2016b). The lithological map provided by the Geological

Survey of Austria at the scale 1:500,000 (Weber, 1997) was used
as an indicator for the parent structural material composition. The
lithological classes were represented by their lithostratigraphical
units. The land cover data, used to account for an associated
inventory-based incompleteness (cf. “Statistical modelling”), was
obtained from the CORINE land cover data (CLC) (European
Environment Agency & EEA, 2012).

Methods
The methodological framework (Fig. 3) consists of four main steps:
(i) data collection and preparation, (ii) exploratory data analysis,
(iii) statistical modelling and (iv) model evaluation. Four models
were created by testing two classifiers (logistic regression, mixed-
effect logistic regression) and two landscape representations (grid-
based, slope unit–based). The slope units were semi-automatically
delimited using GRASS GIS and r.slopeunits (Alvioli et al., 2016).
All statistical analyses were performed using the open-source
statistical software “R” (Core Team, 2020). The terrain and the-
matic GIS parameters were computed using the open-source “SA-
GA GIS” (Conrad et al., 2015), while final visualizations of the
maps were conducted within ESRI ArcGIS (ArcGIS Desktop, 2017).

Data collection and preparation
Two different landscape representations were tested. For the grid-
based approach, all the variables were resampled to the modelling
resolution of 100 m × 100 m. The delineation of slope units was
performed using the r.slopeunits extension of GRASS GIS (Alvioli
et al., 2016) using a scale-dependent parameter optimization, as
suggested by (Schlögel et al., 2018). The geo-environmental vari-
ables were assigned to the underlying slope units according the
following criteria: for continuous variables (e.g. slope and eleva-
tion), the mean value was taken; while for categorical variables

Table 1 (continued)

Mapping
domain
(Mp)

Number of
landslides

and
percent-
age (%)

Area (km2)
and

national
coverage
percent-
age (%)

Landslide
density
(slide/-
km2)

Mapping method
technique and
observations

Location describer in
Austria

Qualitative
positional
accuracy
indicator
(accuracy
suggested
within the
source

documenta-
tion)

Mapped through
airborne laser
scanning survey.
Source:
Geological
Survey of
Austria.

within the Klingfurth
municipality, province
of Lower Austria.

Mp9 13,055
(54.64%)

19,243 km2

(22.91%)
0.68 Mapped through

airborne laser
scanning survey
campaign
(Petschko et al.,
2014).

It comprehends mostly
the whole extension
of the Lower Austria
province.

+++
(mapping based on
a 1 m ALS-DTM)

Compiled
invento-
ry

23,891
landslides

(100%)

83,991 km2

(100%)
0.28 N.A. N.A. N.A.
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(e.g. land cover and lithology), the predominant class was taken.
Slope units that were entirely located within the class “flat”, as
depicted by the topographical position index (Weiss, 2001), or
were predominantly located within fluvial deposits, as depicted
by the lithological map, were not considered for modelling. The
exclusion of such flat “trivial terrain” was expected to increase the
explanatory power of the results at the costs of an apparent lower
predictive performance (Steger & Glade, 2017). These trivial areas
were also excluded for the grid-based analyses. To guarantee a
parsimonious model and to enhance the interpretability of the
results, we opted to build the study upon a compact set of fre-
quently applied geo-environmental variables (cf. “Geo-environ-
mental variables”).

Exploratory data analysis
An initial examination of the available datasets built the basis
to gain insights into empirical relations between geo-
environmental variables and the presence/absence of landslide
occurrence. The data visualization techniques were also used to
explore suspicious data patterns, which may be indicative of
data biases. Conditional frequency plots (for continuous vari-
ables) and spineplots (for categorical variables) were used to
highlight the ratio of landslide presence to absence across the
geo-environmental data values. First insights into the capability
of geo-environmental variables to distinguish landslide

presence from absence observations were gained by evaluating
the discriminatory power of single-variable models (Murillo-
García et al., 2019; Steger et al., 2020). In this case, the obtain-
ed metric reflects the fitting performance of a single-predictor
logistic regression measured via the area under the receiver
operating characteristic curve (AUROC) (Beguería, 2006;
Remondo et al., 2003).

Statistical modelling
Regression-based classification methods are frequently applied to
model landslide susceptibility (Brenning, 2005; Budimir et al.,
2015; Malamud et al., 2014; Wu et al., 2015). Two classifiers, which
are both based on a generalized linear model (GLM), were
confronted for this study: logistic regression and mixed-effects
logistic regression. The former relates to the most widely applied
classifier in landslide susceptibility modelling, while the latter is
rather new in the field and allows to additionally isolate variation
related to a heterogeneous landslide inventory completeness
among classes of categorical variables (i.e. mapping domains, land
cover units) (Steger et al., 2017).

Atkinson and Massari (1998) and Guzzetti et al. (1999) were
among the first to apply logistic regression (LR) for spatial land-
slide susceptibility modelling. Besides producing smooth predic-
tion surfaces, the LR results are straightforward to interpret
(Felicísimo et al., 2013; Goetz et al., 2015). The applied LR model

Fig. 2 The landslide inventory composed of 23,891 observations is displayed within the central image as black points which are the basis for the calculated landslide
density (B). Two closer frames display details of the lithology (A) and land cover variables (B), respectively. The nine different inventory mapping domains (Mp) are given in
(D)
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assumes a binomial probability distribution of the response and
the final output relates to the probability of landsliding (Hosmer &
Lemeshow, 2000). LR was fitted using six predictors: lithology,
slope angle, elevation, TWI, eastness and northness. To better
represent the previously explored non-linear relationship between
shallow landslide occurrence and slope angle (cf. “Exploratory
data analysis”), a quadratic term (X2) was applied (Osborne, 2015).

Most statistical classifiers used in the field of landslide suscep-
tibility modelling, such as LR, can be assigned to the category of
fixed-effects models which aim to assess the direct influence of
each predictor variable (i.e. the fixed-effect) on the response
(Bolker et al., 2009; Steger et al., 2017). Mixed-effects models
enable to additionally consider random effects in order to account
for data hierarchies or nuisance effects (Bolker et al., 2009; Zuur
et al., 2009). For statistical landslide susceptibility modelling,
mixed-effects modelling already proved efficient to separate effects
related to a systematic incompleteness inherent in the landslide
data from effects that describe the quantity of interest, namely
landslide susceptibility (Steger et al., 2017). The random intercept
was only used for parameter estimation and averaged-out for the
final spatial prediction (Bolker et al., 2009; Zuur et al., 2009).
Table 2 summarizes the selected variables applied within the LR
and MELR models. It is important to note that the random inter-
cepts (i.e. bias-describing variables) were only used for parameter

estimation, and lately averaged-out of the final predictions. The
final spatial predictions are based on the fixed-effects variables
(i.e. slope angle, lithology, elevation, TWI and aspect; eastness and
northness). More details on mixed-effect modelling for assessing
landslide susceptibility can be found in (Steger et al., 2017). Rather
than simply ignoring biased variables, the advantage of mixed-
effects model adoption is closely related to the confounding

Fig. 3 Methodological framework. (i) Data collection and preparation. (i.a) National-scale landslide inventory assemble. (i.b) Landscape representation through terrain
units (grid approaches and slope units). (i.c) selection, preparation and representation of the variables through the selected landscape representation. (ii) First knowledge
gain on the data through the exploratory data analysis. (iii) Statistical classifiers applied. (iv) Outcome evaluation and best performing model selection

Table 2 Summary of the variables considered within this publication to fit and
predict the statistical models

Variables Usage in the model
LR MELR

Lithology Fit and predict. Fit and predict.

Slope angle Fit and predict. Fit and predict.

Elevation Fit and predict. Fit and predict.

TWI Fit and predict. Fit and predict.

Eastness Fit and predict. Fit and predict.

Northness Fit and predict. Fit and predict.

Land cover Fit and predict. Fit and random intercept.

Mapping units Not used. Fit and random intercept.
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effects, often observed between environmental variables (e.g. slope
and land cover). Therefore, the usage of bias-describing variables
as random intercepts enables to account for the associated varia-
tion during model parameter estimation (Steger et al., 2021), while
the effects of these same variables are averaged-out for the predic-
tions. For this study, the two categorical variables, land cover and
mapping domain, which mainly describe a systematic incomplete-
ness of landslide information, were introduced as random inter-
cepts to reduce associated confounding and direct bias
propagation.

Land cover variables are well known to describe not only
landslide influencing processes but often also a heterogeneous
completeness of landslide information (Bell et al., 2012;
Petschko et al., 2016). For instance, forest cover may impede
the identification of landslides while an over reporting of
landslide information is likely nearby settlements or agricul-
tural land (Bell et al., 2012; Brardinoni et al., 2003; Petschko
et al., 2016; Steger et al., 2017). The completeness of landslide
information was also expected to vary across the nine mapping
domains (cf. “Landslide inventory”). Thus, the nine mapping
domains (Table 1; Fig. 2(D)) were also introduced as a random
intercept within the MELR.

Model evaluation
Model evaluation is considered an essential step in landslide
susceptibility modelling (Chung & Fabbri, 2003; Guzzetti et al.,
2006). The AUROC was used as a performance metric and
assessed for the training samples (fitting performance) and test
samples (predictive performance) obtained by repeated non-
spatial (cross-validation (CV)) and spatial partitions (spatial
cross-validation (SCV)). The training and test sample partitioning
was performed using a k-Fold cross-validation technique using 25
repetitions and 10-fold for each repetition. This multi-fold
partitioning technique is described in more detail within
(Brenning, 2012; Schratz et al., 2019). In summary, for each model
250 AUROC values that relate to different partitions of training
and test data were calculated (25 repetitions times 10 folds). Model
overfitting describes the tendency of a model to adapt itself too
closely to the training sample and therefore fails to explain inde-
pendent test set observations (Hosmer & Lemeshow, 2000). An
overfitted landslide susceptibility model may reproduce the train-
ing observations in great detail, while yet unseen future landslide
locations may remain undetected (Brenning, 2005; Goetz et al.,
2015). The difference between the fitting and predictive perfor-
mances of each model was calculated to get insights into the index
of model overfitting. (Steger et al., 2017) highlighted that consid-
erable differences between non-spatially (CV) and spatially (SCV)
assessed predictive performances can indicate systematic spatial
inconsistencies in the modelling results. Thus, mean AUROC
differences (Δ|CV − SCV|) were calculated to expose inconsistent
modelling results. Besides a detailed quantitative model evalua-
tion, also a geomorphological plausibility check was conducted to
explore whether the results were affected by evident inventory-
based biases or artefacts (Steger et al., 2016a).

The geomorphological plausibility of landslide susceptibility
models might suffer in case the model training is based on biased
landslide data, such as underreporting of past events within spe-
cific territories. Taking the landslide data background into ac-
count, subsequent bias propagations and misleading spatial

predictions can be identified. The morphological coherence of
the maps was assessed qualitatively by considering known and
suspected flaws in the available landslide data and by scrutinizing
whether those flaws are reflected in the final prediction pattern. As
an example, a section in the Tyrolean Alps (Fig. 2(A, D); Fig. 6) was
selected to check the coherence of the results. This landslide-prone
area is characterized by a high relief energy (540–3166 m asl.; mean
elevation of 1638 m asl.) and steep terrain (mean slope 25°, max.
76°) and known to be underrepresented in terms of available
landslide information. Predicted very low landslide susceptibility
scores at the prevalent hill slopes were therefore interpreted as an
indicator of a direct landslide data bias propagation and a low
morphological coherence of the final map.

Results

Exploratory data analysis
The exploratory analysis (Fig. 4) shows comparable conditional
frequencies for the grid-based and slope unit–based terrain repre-
sentations. For both landscape representations, the plots for the
variable lithology evidence the highest conditional landslide frequen-
cies for the units Flysch (Fz), Helvetic zone (Hz) and South Alpine
(Sa). Comparably low landslide densities were observed for the units
Penninic window (Pw) and BohemianMassif (Bm). High conditional
landslide frequencies were calculated for the land cover class pas-
tures (P), broad-leaved forests (Bf) andmixed forests (Mf). Bare soils
(Bs) showed low landslide frequencies. The highest landslide fre-
quencies were observed for medium inclined terrain, with the
highest values between 10 and 30° (Fig. 4(D, H)).

The land cover plots (Fig. 4(B, F)) also reveal a comparably low
number of inventoried landslides for settlement areas and arable
land. Since these land cover units are simultaneously associated
with lower slope angles and low elevations, such univariate data
inspections have to be interpreted with care. An additional con-
sideration of the underlying landslide data origin (e.g. mapping
purpose) indicates that the observed relations (e.g. land cover vs.
landslide occurrence) do not necessarily depict geomorphically
plausible relations but are likely to describe a spatially heteroge-
neous landslide data completeness. Higher landslide frequency
was also associated with low to mid slope steepness and lower to
medium elevation (Fig. 4), where usually most of the settled areas
tend to be located. This supports the argument of an overrepre-
sentation of landslides near settlements. Lower frequencies of
landslides were associated with land cover features like arable
land, grassland, coniferous forest and bare soils. Predominantly
located at steeper slopes, coniferous forests were associated with
the lowest frequency of reported landslides compared to the other
forest types.

The discriminatory power of each variable varied from 0.5
(TWI and Eastness when applied for the grid approach) to 0.73
(for lithology when applied for the grid approach, refer to Table 3).
For the grid-based approach, lithology and slope angles were most
efficient in discriminating landslide presence from absence. The
discriminatory power was generally lower when assessed for the
slope unit models.

Spatial prediction maps
It was observed that the appearance of the predictive maps
differed substantially. In general, the MELR classifier
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produced a less spatially contrasting prediction pattern over
the territory. LR predicted clear heterogeneous landslide sus-
ceptibility maps. The LR models clearly reproduced the higher
and lower landslide distribution pattern observed in Fig. 2(B).

Although this general pattern can also be observed when
applying MELR on slope units (Fig. 5), it is much more
accentuated when potential bias-causing effects are ignored
(i.e. LR models).

Fig. 4 Conditional frequency plots. Graphs (A)–(D) represent the grid approach, and graphs (E)–(H) represent the slope unit approach. The light orange colour represents
landslide presence (TRUE), while the light-blue colour represents the non-landslide observations (FALSE). The y-axis represents either the binary or the relative proportion
between landslide and non-landslide. Legend for the internal variables categories: Graphs (A) and (E) - Lithology: (a) Austroalpine crystalline, (b) Austroalpine Paleozoic, (c)
Austroalpine Permo-Mesozoic, (d) Flysch zone, (e) Penninic window, (f) Bohemian Massif, (g) Helvetic window, (h) Periadriatic rocks, (i) Quaternary, (j) South Alpine units,
(k) Tertiary basis. Graphs (B) and (F) - Land cover: (1) = settlements, (2) = arable and fallow land, (3) = pasture, (4) = grassland, (5) = broad-leaved forests, (6) =
coniferous forests, (7) = mixed forests, (8) = bare soils. For the spine plots (graphs (A), (B), (E) and (D)), the width of the bars corresponds to the relative spatial coverage
of each variable class within the Austrian territory

Fig. 5 National-scale landslide susceptibility maps. The four models were produced under diverse statistical classifiers (LR or MELR) for grid and slope unit approaches. The
predictive performance scores (median AUROC) are represented on the bottom-left corner. The upper maps represent the grid approaches (predicted through MELR and
LR), while the bottom maps represent the slope unit models (predicted through MELR and LR). In order to avoid any additional bias, some areas have not been modelled
(e.g. flat areas, glaciers)
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A closer look at the high alpine areas of the Tyrolean Alps
indicates considerable discrepancies in the produced spatial pre-
diction patterns when comparing the different modelling strate-
gies (Fig. 6). In contrast to MELR, LR models tend to produce low
landslide susceptibility scores even for steeper parts of the Tyro-
lean Alps. This behaviour became particularly evident when com-
paring landslide susceptibility scores across slope angles for this
same mountainous region (Fig. 8). Instead, for this same region
and despite the low amount of inventoried landslides in this area,
MELR was still able to assign comparably high susceptibility scores

to the steep terrain of this particular area. For this area, 94% of the
pixels were classified lower than 0.5 when applying LR. When
accounting for potential inventory bias using MELR, the percent-
age of pixels predicted lower than 0.5 decreased to 53%.

Model evaluation
Among the grid-based approaches, LR reached the highest predic-
tive performance (CV: 0.842; SCV: 0.778) compared to MELR (CV:
0.834; SCV: 0.773). Also, for the slope unit models based on LR, the
AUROCs (CV: 0.769; SCV: 0.723) were slightly higher than their
MELR equivalents (CV: 0.755; SCV: 0.734). Lower predictive per-
formances were constantly obtained for the spatial cross-
validation technique (SCV) compared to non-spatial cross-valida-
tion (CV) as also observed by Petschko et al., (2014), Steger &
Glade, (2017), Steger et al., (2016b).

The fitting performance achieved through SCV (black crosses in
Fig. 7) showed a similar trend with slightly higher values for the LR
models. Fitting performances can jointly be interpreted with the
predictive performance to obtain insights into the index of model
overfit (here named as overfitting index and represented by the
black points within the lower graph of Fig. 7) (Brenning, 2005;
Goetz et al., 2015; Murillo-García et al., 2019; Tien Bui et al., 2012).
Comparing the two classifiers, the overfitting index was lower for
MELR indicating a lower index of overfitting. This tendency was
particularly evident for the slope unit terrain partition. The mean
difference between CV and SCV (Δ|CV − SCV|), in Fig. 7, was
constantly lower for MELR indicating spatially more robust
modelling results (Steger et al., 2017).

Discussion
This research tackled two pending challenges related to the topic
of large area statistical landslide susceptibility assessment, namely
(i) the systematic incompleteness of landslide data and (ii) the
unprecise positional location of landslide samples. These chal-
lenges were faced using (i) a mixed-effects modelling approach
and (ii) an alternative representation of the terrain, namely slope
units.

The initial exploratory data analysis provided further evidence
that systematic biases are inherent in the available landslide data.
The inventory data that was based on reports was assessed to
overrepresent densely populated areas (gentle slopes and relatively
lower elevations), which is reflected by a very high conditional
frequency of landslides (Fig. 4 (C, D, G, H)). As a consequence, an
underreporting of landslides in sparsely populated regions can be
expected. Particular high conditional landslide frequencies for
both terrain units were associated with elevations below 1500 m
and slope inclinations below 20 degrees. Additionally, known
challenges in landslide reporting and mapping within specific land
cover classes (e.g. forested areas) as described by (Bell, 2007);
(Petschko et al., 2016); (Conoscenti et al., 2016) might have con-
tributed to a heterogeneous landslide data completeness. This in
turn supported the decision to include land cover as a bias-
describing effect within the mixed-effects models.

While the four models reached moderately high and similar
predictive performances, the appearance of the final maps varied
significantly. Such contrasting spatial prediction patterns for sim-
ilarly performing models have also been reported in the literature
(Hussin et al., 2016; Sterlacchini et al., 2011). The slightly higher
predictive performance of the LR models should be interpreted in

Table 3 Univariate AUROCs associated with each single-predictor model

Variables Modelling approaches
Grid approach Slope units

Lithology 0.73 0.66

Land cover 0.68 0.62

Slope 0.67 0.64

Elevation 0.68 0.58

Northness 0.53 0.53

Eastness 0.51 0.51

TWI 0.54 0.54

Fig. 6 Closer cutout to a region with a low density of landslides. The upper maps
represent the grid approach (predicted through MELR and LR, respectively), and the
bottom maps represent the slope unit approach (also respectively predicted
through MELR and LR).
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the context of the underlying landslide data bias. By including a
bias-describing predictor like land cover, LR directly reproduced
the associated data bias which also led to over-optimistic AUC
values (Goetz et al., 2015; Hosmer & Lemeshow, 2000). Although a
vast amount of publications focuses on the AUC values as a model
and variable selection criterion, high AUCs might not necessarily
reflect the real quality of the final maps, especially under data bias
conditions (Steger et al., 2016b; Steger et al., 2017). From a purely
quantitative point of view, MELR models performed slightly worse
compared to LR, a classifier extensively used in the field (Akgun,
2012; Atkinson & Massari, 2011; van Den Eeckhaut et al., 2012;
Goetz et al., 2015; Guzzetti et al., 1999; Lee et al., 2004; Moosavi &
Niazi, 2016; Nefeslioglu et al., 2008; Pourghasemi et al., 2013; Regmi
et al., 2014; Reichenbach et al., 2014; Reichenbach et al., 2018;
Trigila et al., 2013). Steger et al. (2017) have shown the potential
of mixed-effects modelling for handling landslide data bias for
study sites in Austria. This study provides evidence that the ap-
plication of such approaches is beneficial, also when applied for
large area assessments (national scale). MELR achieved was able to
reduce the propagation of biased relationships into the final re-
sults and produced geomorphologically coherent predictions.

Within this research, the quality of the models was not only
interpreted from calculated predictive performance estimates, but
also on the basis of other indicators, such as the overfitting index
and the difference between CV and SCV. Fitting a model too

closely to characteristics in training data is a common concern
for landslide susceptibility models using statistical methods (Goetz
et al., 2015). Such model overfitting was constantly observed to be
lower for the MELR models (Fig. 7) compared to their LR coun-
terparts. At the same time, MELR models were also associated with
a lower difference in AUCs between the validation techniques (e.g.
Δ|CV − SCV|; Fig. 7), indicating a higher spatial consistency of the
results (Steger et al., 2017).

Moreover, beyond the numerical evaluation, the model selec-
tion was additionally conducted by assessing the geomorphic
plausibility of the maps (Bell, 2007; Steger et al., 2016a). This
might be particularly important because differently appearing
maps can be associated with similar performance estimates and
the appearance of the final maps co-determines the practical
acceptance by the final users (Brenning, 2005; Goetz et al., 2015).
A close inspection of the prediction patterns created for the
Austrian territory (Fig. 5) provided valuable evidence that the
inventory biases were directly propagated into the final LR
results. In fact, the lack of spatially consistent landslide data
across the sampled target area (Fig. 2) is a recurrent challenge in
the field of landslide susceptibility assessments, especially for
very large areas. The inclusion of landslide mapping domains as
a random effect within MELR counterbalanced the associated
data heterogeneity across the territory and enabled more plau-
sible results.

Fig. 7 Quantitative model evaluation based on the spatial (SCV) and non-spatial cross-validation (CV). The boxplots in the upper graphs represent the CV- and SCV-based
AUROCs, while the black cross symbol refers to the median SCV fitting performance. The graph at the bottom represents the overfitting index calculated for SCV partitions
(black points) and an indicator for spatially inconsistent modelling results, i.e. the difference between median spatial and non-spatial validation scores (red triangles)
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In order to assess how landslide data incompleteness affected
the final maps, we focused on regions where the landslide
occurrence is well known to be underestimated due to
underreporting. For the selected landslide-prone Tyrolean area,
only a few landslides were registered within the available inven-
tory (samples originally from Mp1), which is mostly reported
biased. When viewing the maps from a national-scale perspec-
tive (Fig. 5), it became obvious that LR reproduced this data
bias by assigning particularly low susceptibility scores to this
area (Fig. 6). From a geomorphic viewpoint, much higher land-
slide susceptibility scores can be expected for this particular
region. The approach based on mixed-effects modelling was
able to counterbalance this landslide data flaw and produced
more appropriate predictions (i.e. higher susceptibility scores)
for the hillside areas. In other words, even in the case that very
few landslides were officially registered for the Tyrolean hill
slope areas, MELR assigned relatively high probability scores
as a consequence of the prevalent morphology.

For this sub-region, the lower plausibility of the LR predic-
tions became particularly evident when plotting the predicted
susceptibility values against a factor directly related to shear
stress, namely the slope angle (Fig. 8). A more detailed view at
the prediction patterns for this region (Fig. 8(B)) shows for LR a
particularly high concentration of very low susceptibility scores
(close to zero) associated even with high slope inclinations (be-
tween 30 and 40 degrees). MELR in its place produced a more
balanced representation of landslide susceptibility for this region
by predicting a substantial amount of medium to steeply inclined
slopes as considerably susceptible to landsliding (Fig. 8(B)).

The application of slope units as an alternative to grid-based
assessments has recently gained more and more attention in the
field of landslide susceptibility assessment (Alvioli et al., 2016;
Camilo et al., 2017; Guzzetti & Reichenbach, 1994; Jacobs et al.,
2020; Lombardo et al., 2018; Reichenbach et al., 2014; Schlögel
et al., 2018). Our results are in line with (van Den Eeckhaut
et al., 2009) and demonstrate an overall higher predictive

performance for grid-based assessments, in comparison to their
slope unit counterparts. However, other studies showed that this
is not necessarily always the case (Erener & Düzgün, 2012). A
common aspect of all publications that compared both land-
scape representations (slope units vs. grid cells) for the purpose
of landslide susceptibility modelling is the observed similar
predictive performance of the underlying models, despite the
rather different appearance of the final maps (e.g. van Den
Eeckhaut et al. (2009)). This already suggests that focusing on
obtained performance metrics as the sole criteria to select a
model is subject to limitations.

For landslide susceptibility assessments, slope units may fre-
quently cover a larger areal extent than a pixel within a conven-
tional grid-based model. As a consequence, inaccurately mapped
landslides are still more likely to be assigned to the correct spatial
entity (i.e. slope unit) compared to their grid-based counterparts
(Steger et al., 2016b). Thus, slope unit–based models are likely to
be less sensitive to positional inaccuracies of inventory data.
(Jacobs et al., 2020) tackled the effects of uncertain landslide point
positioning on landslide susceptibility models and confirmed an
improved capacity of slope units to handle positionally inaccurate
landslide data, compared to pixel-based representations. Within
this research, slope units, with generally larger size than pixels,
were better able to accommodate positional inaccuracies from the
inventories while still being a reliable terrain unit for landslide
susceptibility models. Finally, the joint analysis of several evalua-
tion criteria (prediction pattern surfaces, the susceptibility fre-
quencies distribution and the different validations measures)
provides further evidence of the utility of slope units under land-
slide data bias conditions and positional inaccurate sampling
points.

Ultimately, the current results provide evidence that a too
detailed representation of the terrain may be detrimental in the
presence of inaccurate landslide data and that actively
counterbalancing known systematic data biases (e.g. averaging
out bias-describing variables using mixed-effects modelling) can

Fig. 8 Comparison between predicted susceptibility scores (y-axis in (A) and (B)) and slope angle for MELR (left-side graph (A)) and LR (right-side graph (B)). The graphs
and summary statistics at the bottom of each graph are related to the shown area
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improve the plausibility of the results. In this context, we con-
sider mixed-effects models in combination with slope units
valuable to handle the impact of flawed landslide information.

Conclusion
Landslide inventory data available for large areas is usually
affected by positional inaccuracies and spatial incompleteness.
For national-scale analyses, the common unavailability of accu-
rate and representative information on past slope instabilities
impedes the straightforward creation of statistically based land-
slide susceptibility models. This research highlighted that an
adaptation of the research design can minimize the propagation
of landslide data flaws into susceptibility models for very large
areas. The underlying comparative analyses were based on four
models which are related to different classifiers (conventional
logistic regression vs. mixed-effects logistic regression) and dif-
ferent terrain representations (grid-based vs. slope unit–
based).While conventional logistic regression did not specifical-
ly account for the underlying data bias, a mixed-effects model-
ling approach was applied to counterbalance effects associated
with a systematic spatial landslide data incompleteness. Using
slope units, instead of the more common pixel-based terrain
representation, allowed to reduce the effects of positionally
inaccurate landslide locations. A holistic evaluation of model-
ling results (i.e. quantitative and qualitative assessments) pro-
vided evidence that mixed-effects modelling in combination
with a slope unit terrain representation was beneficial under
the prevalent flawed landslide data conditions compared to the
standard procedures (e.g. logistic regression and a grid-based
terrain representation).

For large area landslide susceptibility assessment, we recom-
mend to (i) gain insights into potential landslide data flaws in
order to (ii) allow a corresponding adaptation of the modelling
design. In case the landslide data is heterogeneously complete
across an area, we advise to avoid explanatory variables that
describe and therefore reproduce the underlying landslide data
incompleteness. Instead, mixed-effects modelling can prove use-
ful to explicitly reduce associated biases. Avoidance of a detailed
representation of the terrain (e.g. via high-resolution grid-based
models) is beneficial to tackle the challenge of positionally
inaccurate landslide information. In this context, we advocate
considering an alternative representation of the terrain, such as
slope units. We finally emphasize that such large area analyses
have to be interpreted with care, even if the flaws inherent in
the data were accounted for in the research design. The present
results provide a generalized overview of landslide-prone areas
in Austria, but they are not applicable for local decision-
making.
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