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Abstract Landslide run-out modeling involves various uncer-
tainties originating from model input data. It is therefore desirable
to assess the model’s sensitivity to these uncertain inputs. A global
sensitivity analysis that is capable of exploring the entire input
space and accounts for all interactions often remains limited due
to computational challenges resulting from a large number of
necessary model runs. We address this research gap by integrating
Gaussian process emulation into landslide run-out modeling and
apply it to the open-source simulation tool r.avaflow. The feasibil-
ity and efficiency of our approach is illustrated based on the 2017
Bondo landslide event. The sensitivity of aggregated model out-
puts, such as the angle of reach, impact area, and spatially resolved
maximum flow height and velocity, to the dry-Coulomb friction
coefficient, turbulent friction coefficient, and the release volume is
studied. The results of first-order effects are consistent with pre-
vious results of common one-at-a-time sensitivity analyses. In
addition to that, our approach allows us to rigorously investigate
interactions. Strong interactions are detected on the margins of the
flow path where the expectation and variation of maximum flow
height and velocity are small. The interactions generally become
weak with an increasing variation of maximum flow height and
velocity. Besides, there are stronger interactions between the two
friction coefficients than between the release volume and each
friction coefficient. In the future, it is promising to extend the
approach for other computationally expensive tasks like uncer-
tainty quantification, model calibration, and smart early warning.

Keywords Landslide run-out modeling . Global sensitivity
analysis . Gaussian process emulation . Emulator uncertainty

Introduction
Flow-like landslides, e.g., rock avalanches and debris flows, pose an
ongoing threat to life, property, and environment inmountainous regions
around the world. In order to assess their hazard and design mitigation
strategies, many research efforts have been devoted to developing com-
putational landslide run-out models which are capable of simulating the
dynamics of the flow over complex topographies. The majority of these
models employ depth-averaged shallow flow equations derived from
mass and momentum balance. Examples are TITAN2D (Pitman et al.,
2003), Volcflow (Kelfoun & Druitt, 2005), SHALTOP (Mangeney et al.,
2007), DAN3D (Hungr & McDougall, 2009), RAMMS (Christen et al.,
2010), r.avaflow (Mergili et al., 2017), and faSavageHutterFOAM (Rauter
et al., 2018) (see McDougall (2017) for a review).

Such models generally require a variety of input data, including
release area and volume (a release polygon given as a shape file or a
raster map of release heights), flow resistance parameters (dry-Cou-
lomb friction and turbulent friction parameters for the Voellmy rhe-
ology), and topographic data (a digital elevation model). If the input
data are accurate, the models can be deterministically run to predict
characteristics of the landslide’s bulk behavior, such as run-out dis-
tance, impact area, spatio-temporally resolved flow height, and

velocity. In practice, however, the input data usually involve large
uncertainties (Dalbey et al., 2008). For example, release areas and
volumes of landslides are challenging to predict due to the complexity
of geological pre-conditioning factors and often a lack of subsurface
information. They may be approximated by heavily tailed probability
density functions based on the statistical properties of landslide in-
ventories (Quan Luna et al., 2013). The flow resistance parameters are
more conceptual than physical (Fischer et al., 2015). For a past land-
slide event, deterministic trial-and-error calibration (Hungr &
McDougall, 2009; Lucas et al., 2014; Moretti et al., 2015; Schraml
et al., 2015) or probabilistic Bayesian calibration (Aaron et al., 2019;
Heredia et al., 2020; Moretti et al., 2020) is commonly conducted to
obtain the flow resistance parameters that reproduce field observa-
tions well. For landslide run-out forecasting, however, values of the
flow resistance parameters usually cannot be deterministically deter-
mined. In that case, error bounds or probability density functions of
the flow resistance parameters based on group calibration of similar
events can be used in a probabilistic framework for reliable landslide
run-out forecasting (McDougall, 2017). Topographic data may also be
subject to uncertainties due to error introduced during source data
acquisition or data processing (Zhao&Kowalski, 2020). Therefore, it is
essential to study the model’s sensitivity to uncertain inputs, which
could improve our understanding of the computational landslide run-
out models and provide guidelines for their future usage.

Sensitivity analyses on landslide run-out models are commonly
based upon local one-at-a-time approaches, i.e., changing one input
variable at a time while keeping others at their baseline values in order
to explore its isolated effect on model outputs. For example, Borstad
and McClung (2009) and Moretti et al. (2015) studied the sensitivity of
the run-out model employing the Coulomb-type friction law to the
Coulomb friction coefficient and initial condition of the release mass,
based on a hypothetical parabolic slope and a real rockslide-debris flow
event respectively. Both found model outputs are more sensitive to the
Coulomb friction coefficient than the initial condition of release mass.
In terms of the Voellmy friction law, Barbolini et al. (2000) and Schraml
et al. (2015) studied the sensitivity of model outputs to the two Voellmy
friction coefficients and initial condition of release mass, while Hussin
et al. (2012) studied the sensitivity of model outputs to the two Voellmy
friction coefficients and the entrainment coefficient. A common finding
is that the run-out distance is mainly influenced by the Coulomb
friction coefficient; Barbolini et al. (2000) reported that the release area
generally has a lower influence than the other parameters and Schraml
et al. (2015) found the release volume causes little variation of the
output of RAMMS-DF; Hussin et al. (2012) found the turbulent friction
coefficient has the strongest impact on the maximum flow velocity at
control points. Similar one-at-a-time sensitivity analyses of run-out
model employing other friction laws, such as the Pouliquen or Mohr-
Coulomb law, can be found in Fathani et al. (2017), Pirulli and
Mangeney (2008). While straightforward to implement, these types of
local sensitivity analysis methods cannot assess potential interactions
between input variables. Their result may highly depend on the chosen
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baseline values (Girard et al., 2016). In contrast, variance-based global
sensitivity analyses can fully explore the input space, quantify the
contribution of each variable to the output variation, and identify
interactions between different variables. The Sobol′method, one typical
variance-based method, has been developed and widely used since the
1990s (Saltelli, 2002; Saltelli et al., 2010; Sobol, 1993; Sobol, 2001). The
key idea of a Sobol′ sensitivity analysis is that the variance of model
output can be quantitatively decomposed into contributions due to the
independent effect of every single input factor and combined effects of
input factors. These are represented by first-order and higher-order
Sobol′ indices respectively. The Sobol′ indices can therefore be
interpreted as measures of relative sensitivity. They allow identifying
coupled effects between the various model inputs. The calculation of
Sobol′ sensitivity indices usually requires Monte Carlo–based methods,
leading to a large number of necessary model evaluations. For compu-
tationally demanding models, the calculation may be prohibitively
expensive. In that case, it is rather promising to employ emulation
techniques to overcome the computational challenge.

An emulator is a statistical representation of a computationally
demanding model, also referred to as a simulator. While it comes at
the prize of an additional statistical error, it is typically evaluated
several orders of magnitude faster than the simulator. Different emu-
lation techniques have been used in run-out analyses. For example,
Bayes linearmethod (Stefanescu et al., 2012), separable scalar Gaussian
process (GP) emulators (Bayarri et al., 2009; Bayarri et al., 2015;
Rutarindwa et al., 2019; Spiller et al., 2014), a physics-based emulator
using the Ornstein-Uhlenbeck process (Mahmood et al., 2015), and
multi-output GP emulator (Gu & Berger, 2016) have been used for
probabilistic risk assessment and hazardmapping of pyroclastic flows.
Navarro et al. (2018) employed polynomial chaos expansion for Bayes-
ian inference of parameters of a one-dimensional run-out model
based on debris flow flume experiment data, and conducted a priori
global sensitivity analysis for the flow height at specific locations. Sun
et al. (2021) employed scalar GP emulator for Bayesian inference of
run-out model parameters and probabilistic prediction of landslide
run-out distance. A detailed review of various emulation techniques
can be found in (Asher et al. (2015), Razavi et al. (2012). In this study,
we employ GP emulation due to its rich theoretical background and its
ability to take emulator uncertainty into account in any following
emulator-based analyses.

GP emulation has been developed since 1980s (Currin et al., 1991;
O’Hagan, 2006; Sacks et al., 1989). It has been utilized for the purpose
of global sensitivity analyses in different fields (Aleksankina et al.,
2019; Bounceur et al., 2015; Girard et al., 2016; Lee et al., 2011; Lee
et al., 2012; Rohmer & Foerster, 2011). These studies either focus on
emulating the evaluation of a few scalar outputs (Girard et al., 2016;
Lee et al., 2011; Rohmer & Foerster, 2011), or build separate emulators
for each of the many outputs (Aleksankina et al., 2019; Lee et al., 2012).
One exception among them is Bounceur et al. (2015), which combines
emulation techniques with the principal component analysis leading
to the emulation of a reduced-order model. For a simulator with
massive outputs like a landslide run-out model, building separate
emulators for each output can be computationally intensive (Gu &
Berger, 2016). In recent years, great improvement has been made to
enable simultaneous emulation for multi-output models (see for in-
stance Gu and Berger (2016), Rougier (2008)).

The goal of this study is twofold: The first is a methodological
goal, namely to combine the recent development of emulation
techniques (Gu & Berger, 2016; Gu et al., 2018; Gu et al., 2019),

landslide run-out models (Mergili et al., 2017), and global sensi-
tivity analyses (Le Gratiet et al., 2014) to enable global sensitivity
analyses of computationally demanding landslide run-out models
for the first time. The second goal is application-oriented and aims
at employing the methodology to assess the relative importance of
different uncertain inputs, specifically flow resistance parameters
and the release volume, and their interactions in landslide run-out
models based on the 2017 Bondo landslide event as a test case.

This paper is set out as follows. In the “Methodology” section,
the methodology is described, including the computational land-
slide run-out model based on the Voellmy rheology, Sobol′ sensi-
tivity analysis, GP emulation, and an algorithm to take emulator
uncertainty into account. The “Implementation” section presents
our Python-based implementation. The “Case study” section de-
scribes the case study. The “Results and discussions” section is
devoted to a discussion of our results. In the “conclusions” sec-
tion, important conclusions are drawn.

Methodology

Computational landslide run-out model based on the Voellmy rheology
Depth-averaged shallow flow type process models have gained
popularity in practice and in academia, owing to their good com-
promise between accuracy and computing time (Rauter et al.,
2018). A variety of flow resistance laws can be used with the models
depending on landslide types and characteristics of flow material
(Hungr & McDougall, 2009; Naef et al., 2006; Pirulli & Mangeney,
2008). In the case of flow-like landslides, the Voellmy rheology is
one of the most widely used flow resistance laws (Bevilacqua et al.,
2019; Frank et al., 2015; Hussin et al., 2012; Schraml et al., 2015). The
governing system of the depth-averaged model employing the
Voellmy rheology can be expressed in a surface-induced coordi-
nate system as (Christen et al., 2010; Fischer et al., 2012).
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where X, Y, and Z denote coordinates in the down-slope, cross-
slope, and normal directions; t denotes time; h represents flow height;
uX and uY represent components of the depth-averaged surface tan-
gent flow velocity u along X and Y directions; gX, gY, and gZ are
components of the gravitational acceleration which are calculated
using a finite central differencing scheme (Mergili et al., 2017); μ and
ξ are the dry-Coulomb friction coefficient and turbulent friction
coefficient, which describe the flow resistance law known as the
Voellmy rheology. (For comprehensive details of the model including
a schematic plot of the flow model in the surface-induced coordinate
system, please refer to Christen et al. (2010), Fischer et al. (2012)).

The process model is solved forward in time; hence, an initial
condition h(X, Y, t0) and u(X, Y, t0) is needed. Typically, u(X, Y, t0)
is zero and h(X, Y, t0) denotes the release volume and release area.
Other essential inputs include the flow resistance parameters and a
digital elevation map of the topography. As stated in the
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introduction, these input data usually involve uncertainties. The
uncertainty of topographic data may be reduced by using high-
accuracy remote sensing data. The uncertainty of the release
volume and release area of a potential landslide may be more
difficult to predict due to the complexity of geological pre-
conditioning factors and often a lack of subsurface information.
It is often based on expert judgment. The flow resistance param-
eters depend on back-analyzing past events. It is still a great
challenge to select them for quantitative risk assessment in prac-
tice (McDougall, 2017). In this study, we focus on the sensitivity of
selected model outputs to the release volume v0 (denoting the
landslide magnitude) and the two flow resistance parameters μ
and ξ of the Voellmy rheology.

The process model produces numerous outputs, essentially
given by flow height h and flow velocity u at every space-time grid
point. Other quantities of interest can be calculated based on the
spatio-temporally resolved flow height and velocity data and have
been used for the purpose of sensitivity analyses, including run-
out distance, impact area, deposit area and volume, impact pres-
sure at specific locations, maximum flow height, and velocity at
specific locations (Barbolini et al., 2000; Borstad & McClung, 2009;
Fathani et al., 2017; Hussin et al., 2012; Pirulli & Mangeney, 2008).
In this study, we focus on the spatially resolved maximum flow
height and velocity which provide detailed information for hazard
assessment and mitigation, as well as the angle of reach and
impact area which indicate the overall landslide impact.

& Angle of reach, the tangent of which equals to the ratio of the
landslide fall height and projected run-out distance, namely
the Heim’s ratio (Lucas et al., 2014). The angle of reach gener-
ally decreases as the run-out distance increases.

& Impact area, defined as the area of the region where maximum
flow height values exceed a threshold value, here 0.1 m.

& Maximum flow height over time at k locations {(Xj, Yj)}j = 1, …,

k, denoted as ðhmax
l1 ,…,hmax

lk ÞT .
& Maximum flow velocity over time at k locations {(Xj, Yj)}j = 1, …,

k, denoted as ð∥ul1∥max,…,∥ulk∥
maxÞT .

The model defined in Eq. (1) does not include entrainment
processes (Christen et al., 2010; Moretti et al., 2012) and topograph-
ic curvature effects (Favreau et al., 2010; Fischer et al., 2012). Both
can have an impact on landslide run-out simulation and therefore
may influence the results of a sensitivity analysis. We do not take
them into account in our case study for simplicity. Our approach,
however, can be easily extended.

Sobol′ sensitivity analysis
Assume that a simulator is denoted by f(x) with a p-dimensional
input x = (x1,…, xp)

T∈ℝp and a scalar output y∈ℝ. For the
process model described in the “Computational landslide run-
out model based on the Voellmy rheology” section, x is a three-
dimensional vector consisting of the two friction coefficients and
the release volume, namely x = (μ, ξ, v0)

T; y could be an aggregated
scalar output like the angle of reach or the impact area or an
element of a vector output like maximum flow height or velocity
at a specific location. Input uncertainties of x induce output
uncertainty of y. The essential idea of a Sobol′ sensitivity analysis
is to decompose the variance of y into contributions caused by

each xi and their interactions. In practice, p first-order indices
{Si}i = 1, …, p and p total-effect indices {STi}i = 1, …, p are usually
computed. They are defined as (Saltelli et al., 2010)

Si ¼ Vxi Ex−i yjxið Þð Þ
V yð Þ ð2aÞ

STi ¼ 1−
Vx−i Exi yjx−ið Þð Þ

V yð Þ ð2bÞ

where V and E represent the variance and expectation operator
respectively, and x−i denotes the vector consisting of all input
factors except xi. A first-order index Si accounts for the contribu-
tion of the input factor xi to the variance of the output, indepen-
dent from other input factors x−i; a total-effect index STi indicates
the total contribution of xi to the output variation, i.e., the sum of
its first-order contribution and all high-order effects owing to
interactions (Saltelli et al., 2008). The difference of STi − Si thus
indicates any interaction between xi and x−i. Employing this con-
cept to landslide run-out models will hence allow us to investigate
the combined effects of the two friction coefficients and the release
volume on simulation outputs.

Computing the conditional variances in Eqs. (2a)–(2b) involves
nested integrals (Girard et al., 2016). This is analytically impractical
for complex simulators like landslide run-out models. Instead, Monte
Carlo–based methods are commonly used to estimate the Sobol′ indi-
ces. The uncertainty introduced by Monte Carlo–based integration can
be taken into account using a bootstrap strategy (Archer et al., 1997).

In this study, we employ the numerical procedure presented in
Saltelli et al. (2010). The computational cost is N • (p + 2) evalua-
tions of a simulator, where N is the base sample size. More
specifically, the denominator V(y) in Eqs. (2a)–(2b) can be esti-
mated using 2 • N simulation runs based on two independent sets
of input samples. Each set consists of N input samples for the
simulator. Moreover, each pair of numerators in Eqs. (2a)–(2b)
requires additional N simulation runs corresponding to a new set
of N input samples, which is constructed from the two indepen-
dent sets. It leads to additional p • N simulation runs. (For the
detailed procedure, please refer to Saltelli et al. (2010)).

As pointed out in Saltelli et al. (2010), N should be sufficiently
large, e.g., 500 or higher, which is critical in our case as the
landslide run-out model itself is computationally intensive. If a
single run of the simulator described in the “Computational land-
slide run-out model based on the Voellmy rheology” section costs
32 min, which corresponds to the average run time of the 200
simulation runs in the “Emulator design and validation” section,
the sensitivity analysis for three input variables will cost at least
32 × 500 × (3 + 2) = 80000 min, roughly 56 days on a single core.
Therefore, it is necessary to employ emulation techniques to
improve computational efficiency in order to carry out this type
of global sensitivity analysis.

Gaussian process emulation
A simulator, such as a landslide run-out model, represents a
deterministic input-output mapping. It is usually computationally
impractical to directly use such a simulator for analysis requiring a
large number of simulation runs, e.g., a global sensitivity analysis
described in the previous section, or an uncertainty quantification,
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or a model calibration. In that case, GP emulators have been
widely employed owing to their robustness and rich theoretical
background (Girard et al., 2016). GP emulation views a simulator
as an unknown function from a Bayesian perspective; the prior
belief of the simulator behavior, namely a Gaussian process, is
updated based on a modest number of simulation runs, leading to
a posterior which can be evaluated much faster than the simulator
and can then be used for computationally demanding analyses.
The fundamental assumption of GP emulation is that the simula-
tor is a smooth continuous function of its inputs (O’Hagan, 2006).
Here, we recap the principal ideas of GP emulators used in this
study (for detailed information, please refer to Bastos and
O’Hagan (2009), Gu and Berger (2016), Gu et al. (2018), O’Hagan
(1994)).

Gaussian process emulator for a scalar output
Let f (x) denote a simulator with a p-dimensional input x = (x1,…,
xp)

T∈ℝp and a scalar output y∈ℝ. For example, if f (x) is the
landslide run-out model, x is the triplet consisting of the release
volume and the two friction coefficients, and y is the angle of reach
or impact area. f (x) is regarded as an unknown function and will
be modeled as a Gaussian process. The Gaussian process is defined
by a mean function m (•) and a covariance function σ2c (•,•) with
variance σ2 and correlation function c(•,•), hence:

f ⋅ð Þ∼ GP m ⋅ð Þ;σ2c ⋅; ⋅ð Þð Þ ð3Þ

Themean function for any input x is givenby the regression as follows:

m xð Þ ¼ hT xð Þθ ð4Þ

where h(x) = (h1(x), h2(x),…, hq(x))
T is a q-dimensional vector

specifying basis functions, e.g., h(x) = (1, x1,…, xp)
T for a simple linear

regression, and θ= (θ1, θ2,…, θq)
T is the corresponding q-dimensional

vector consisting of q unknown regression parameters. There are a
variety of choices for the correlation functions like power exponen-
tials, sphericals, and Matérn. The Matérn correlation function is cho-
sen here following Gu et al. (2018). For any xi= (xi1,…, xip)

T and
xj= (xj1,…, xjp)

T, their correlation is described by the following:

c xi; x j
� � ¼ ∏

p

l¼1
1þ

ffiffi
5

p
dl

γl
þ 5d2l

3γ2l

� �
exp −

ffiffi
5

p
dl

γl

� �
ð5Þ

where dl = ∣ xil − xjl∣ represents the distance between the two
inputs in the lth dimension, and γ = (γ1,…, γp)

T is a p-dimensional
vector consisting of p unknown range parameters.

Equations (3)–(5) represent the prior belief of the simulator’s
behavior. The fundamental idea now is to update the prior belief
following a Bayesian methodology based on evaluations of the
simulator at Nsim selected inputs xD ¼ xif gi¼1;…;Nsim

. Owing to

the property of the Gaussian process, the outputs corresponding
to xD, denoted as yD ¼ f xið Þf gi¼1;…;Nsim

, follow a multivariate

Gaussian distribution:

yDjθ;σ2;γ ∼N Nsim Hθ;σ2Rð Þ ð6Þ

where H ¼ h x1ð Þ;…; h xNsimð Þ½ � T is the Nsim × q basis design
matrix and R is the Nsim × Nsim correlation matrix with (i, j)

element c(xi, xj). Again, owing to the property of the Gaussian
process, the output y∗ at any new input x∗ follows a Gaussian
distribution conditioned on yD, given by the following:

y* jyD; θ;σ2;γ ∼N m′;σ2c′
� � ð7aÞ

m
0 ¼ hT x*

� �
θþ rT x*

� �
R−1 yD−Hθ
� � ð7bÞ

c
0 ¼ c x* ; x*

� �
−rT x*
� �

R−1r x*
� � ð7cÞ

where r x*ð Þ ¼ c x* ; x1ð Þ;…; cðx*; xNsimÞð Þ T .
The parameters θ, σ2, and γ in Eq. (7a) are the unknowns that

need to be updated. Of these, regression parameters θ and the
variance σ2 can be integrated out using a conjugate analysis and
Bayes’ theorem. More specifically, a weak prior for (θ, σ2) is as-
sumed to have the form p(θ, σ2)∝ (σ2)−1, which is within the
conjugate family as the likelihood, i.e., Eq. (6). Combining the
weak prior and the likelihood gives the posterior p θ;σ2jyD;γ� �

.
Then, θ and σ2 are successively integrated out from Eq. (7a) by
applying the Bayesian chain rule to p θ;σ2jyD;γ� �

and Eq. (7a).
This yields Student’s t-distribution with Nsim − q degrees of free-
dom, which describes the distribution of y∗ conditioned on yD and
γ:

y* jyD;γ ∼ St m′′; bσ2
c′′;Nsim−q

� �
ð8aÞ

m
0 0 ¼ hT x*

� �bθþ rT x*
� �

R−1 yD−Hbθ� �
ð8bÞ

bσ2
¼ Nsim−qð Þ−1 yD−Hbθ� �T

R−1 yD−Hbθ� �
ð8cÞ

c
0 0 ¼ c x* ; x*

� �
−rT x*
� �

R−1r x*
� �þ rT x*

� �
R−1H−hT x*

� �� �
� HTR−1H
� �−1

rT x*
� �

R−1H−hT x*
� �� �T ð8dÞ

where bθ ¼ HTR−1Hð Þ−1HTR−1yD. From a Bayesian viewpoint, the
remaining unknown γ in Eq. (8a) should also be integrated out by
employing a certain prior for γ. The integral, however, is highly
intractable and would require computationally intensive methods
like Markov Chain Monte Carlo sampling strategies. Instead, γ is
often estimated by solving an optimization problem, e.g.,
maximizing its marginal likelihood or finding its marginal
posterior mode. In this study, we use the marginal posterior
mode estimation, recommended by Gu et al. (2018) due to its
robustness. Substituting the marginal posterior mode estimation
of γ into Eqs. (8a)–(8d), finally, gives the GP emulator, denoted asbf xð Þ. It provides a prediction of the simulator output at any new
input x∗ in the form of Eq. (8b), as well as an assessment of the
prediction uncertainty, like a 95% credible interval (CI(95%)) of
the prediction. To give a direct impression on the emulation
technique, we present an example of how a GP emulator is con-
structed to approximate a simple one-dimensional function
(O’Hagan, 2006), as shown in Fig. 1.
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Gaussian process emulator for a vector output
Let f(x) denote a simulator with a p-dimensional input x = (x1,…,
xp)

T∈ℝp and a k-dimensional output y = (y1,…, yk)
T∈ℝk. For

example, f(x) is the landslide run-out model, x is the triplet consisting
of the release volume and the two flow resistance parameters, and y is
maximum flow height or velocity over time at k locations. In a
straightforward Many Single emulator approach (Gu & Berger, 2016),
each component of the simulator, i.e., {yj= fj(x)}j= 1, …, k, is assumed to
follow an independent Gaussian process having the form of Eq. (3),

with independent parameters {θj}j= 1, …, k, σ2
j

n o
j¼1;…;k

, and {γj}j= 1, …,

k. For each independent emulator, the range parameters γj= (γj1,
…, γjp)

T need to be estimated by solving an optimization problem as
described in the “Gaussian process emulator for a scalar output”
section. As a consequence, the training of the k emulators may take
a lot of time when k is large, since k optimization problems need to be
solved.

In this study, we use however an alternative approach, namely the
parallel partial GP emulator developed by Gu and Berger (2016) to
simultaneously emulate the relation between the p-dimensional input
and k-dimensional output. Similar to the Many Single emulator ap-
proach, each element of the simulator is assumed to follow an indepen-
dent Gaussian process of the form Eq. (3). Themain difference is that all
of the k Gaussian processes are assumed to share common range
parameters γ, which are then estimated from the overall likelihood
(Gu & Berger, 2016). The q-dimensional basis functions h(x) = (h1(x),
h2(x),…, hq(x))

T are also assumed to be the same. These modifications
greatly reduce the emulator training time. Once the estimation of the
common γ is obtained, the parallel partial GP emulator is determined,
which is now a collection of k Student’s t-distributions. Here, it is

denoted as bf j xð Þ
n o

j¼1;…;k
. The exact form of the emulator can be

found in Gu and Berger (2016).

Emulator uncertainty in Sobol′ sensitivity analysis
The efficiency improvement by using GP emulators comes at a
cost, i.e., additional emulator uncertainty. We can quantify this
type of uncertainty as it can be evaluated from the emulator
directly. Yet, we need to find a way to account for this uncertainty
in the subsequent analysis. Alongside the development of emula-
tion techniques and global sensitivity analysis methods, a number
of approaches have been developed in recent years to address this
issue in global sensitivity analyses, e.g., Janon et al. (2014, Le
Gratiet et al. (2014), Marrel et al. (2009), Oakley and O’Hagan
(2004).

For this study, we choose to integrate the method proposed
by Le Gratiet et al. (2014), which combines the work of Janon
et al. (2014), Oakley and O’Hagan (2004). It can simultaneous-
ly take the Monte Carlo–based sampling uncertainty (Sobol′
sensitivity analysis) and emulator uncertainty into account
when calculating the Sobol′ indices. We adapt the method to
combine the sampling scheme presented in Saltelli et al. (2010)
and the GP emulators developed by Gu and Berger (2016, Gu
et al. (2018).

The adapted method for a simulator with a scalar output,
namely f(x), is shown in Algorithm 1. For a simulator with a k-
dimensional output, i.e., f(x), the method is essentially similar.
Minor modifications are as follows.

& In steps 1–3, a parallel partial GP emulator bf j xð Þ
n o

j¼1;…;k
is

built (the “Gaussian process emulator for a vector output”

section) instead of bf xð Þ.
& Steps 5–14 are repeated for each bf j xð Þ to evaluate the Sobol′ indices

at the jth element of the k-dimensional output, where j= 1,…, k.

Algorithm 1 Emulator-based Sobol′ index evaluation
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Implementation
The methodology presented in “Methodology” consists of several
components, including the Voellmy-type landslide run-out model,
multi-output GP emulation (Gu & Berger, 2016), Sobol′ sensitivity
analysis (Saltelli et al., 2010), and an algorithm that deals with
emulator uncertainty in Sobol′ sensitivity analysis (Le Gratiet
et al., 2014). To implement it, we rely on open-source software
and packages that have been recently developed for each compo-
nent. It should be noted that although these individual building
blocks exist to date, they do not interact seamlessly as of now. A
software framework that allows us to efficiently couple and lever-
age these building blocks together does not exist. Our Python-
based implementation provides such a framework. Its benefit is
that only one controlling Python script is required to automati-
cally run simulations at design points based on a Latin hypercube
design (see the “Emulator design and validation” section), con-
struct GP emulators, and conduct Sobol′ sensitivity analysis. It
coordinates the individual building blocks which involve different
programming languages and dependencies, from within a single
Python environment. It therefore automatizes the workflow, re-
duces the redundant manual and potentially error-prone data
format transformation between different software and packages,
and minimizes the requirement of users’ knowledge on the depen-
dent software and packages. The principle components of the
implementation are as follows:

& Simulator: Mergili et al. (2017) presented the open-source soft-
ware r.avaflow for simulation of a variety of mass flows, which
relies on GRASS GIS 7. It employs a Voellmy-type model
(“Computational landslide run-out model based on the
Voellmy rheology” section) and a multi-phase mass flow model
(Pudasaini & Mergili, 2019). Here, the former is the simulator
under investigation. We implemented a Python-based wrapper

to automatically prepare a batch job, run simulations, and
extract outputs given the selected values of input variables xD,
without explicitly starting GRASS and r.avaflow.

& Emulator: Gu et al. (2019) presented the R package RobustGaSP
(Robust Gaussian Stochastic Process Emulation), in which they
implemented the marginal posterior mode estimator for the
range parameters γ (see the “Gaussian process emulator for a
scalar output” section) and the parallel partial GP emulator (see
the “Gaussian process emulator for a vector output” section).
We implemented a Python-based wrapper based on rpy2 (the
Python interface to the R language) to utilize RobustGaSP
within the unified Python-based framework.

& Emulator-based Sobol′ analysis: Herman and Usher (2017) pre-
sented the Python package SALib (Sensitivity Analysis Library in
Python), in which the numerical procedure of calculating the
Sobol′ indices for a simulator is implemented. We extended their
codes to realize Algorithm 1 which enables emulator-based Sobol′
analysis for multi-output simulators.

It should be noted that our Python-based framework is imple-
mented in a modular way. The sensitivity of any other landslide
run-out model can therefore be studied using our workflow by
simply replacing the simulator.

Case study

Case background
Pizzo Cengalo (see Fig. 2), located in the Swiss Alps, is subjected to
rock fall and landslide events for decades due to its geological pre-
conditioning factors (Walter et al., 2020). Two recent landslide
events in that area are well-documented and widely studied. The
first event occurred on December 27, 2011. Around 1.5 million m3

Fig. 1 One-dimensional example of GP emulation. The dashed black line represents the true function y = x +3 sin (x/2) that we want to approximate (O’Hagan, 2006);
the black dots denote the training data; the dotted red line represents the mean of the trained GP emulator corresponding to Eq. (8b); the dotted blue lines represent the
95% credible intervals; note how the credible interval reduces to zero at the given training data. The embedded plot shows the GP output for input x∗ = 4 (location
indicated by the green vertical line), which results in a student-t distribution of y∗ at the input x∗ = 4
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of rock detached from the northeastern face of Pizzo Cengalo and
evolved into a rock avalanche traveling 2.7 km down the Bondasca
valley. The second event occurred on August 23, 2017. Approxi-
mately 3 million m3 of rock was released from the northeastern
face of Pizzo Cengalo, leading to a rock avalanche traveling 3.2 km
down the Bondasca valley. A part of the rock avalanche turned into
an initial debris flow, followed by a series of additional debris
flows within 48 h, which reached the village Bondo (Walter et al.,
2020).

Our case study is based on the topography and release area of
the 2017 landslide event. A pre-event digital elevation model
(DEM) and a post-event DEM are available, both with 1-m resolu-
tion. They are based on airborne laser scans after the 2011 and after
the 2017 events, as well as aerial images acquired by the Swiss
topographic services Swisstopo (Walter et al., 2020). Release area
and initial mass distribution of the event can be obtained from the
height difference map of the two DEMs. As the topographic input,
we use a merged DEM based on the pre-event and post-event
DEMs. The merged DEM reflects the post-event topography in
the release area and pre-event topography in other areas. In
addition, we use the same release area as the 2017 landslide event,
as shown in Fig. 2. The grid size of the computational mesh for the
simulator is set to be 10 m.

It should be noted that the intention of the case study is not to
back-analyze the 2017 landslide event. Other publications are de-
voted to that research question (Mergili et al., 2020; Walter et al.,
2020). Our focus is to apply the novel emulator-based global
sensitivity analysis to the Bondo event in order to assess the
model’s sensitivity to flow resistance parameters μ and ξ, as well
as the release volume v0 (see “Computational landslide run-out
model based on the Voellmy rheology” section).

Ranges of uncertain inputs
Sosio et al. (2008) summarized typical ranges for μ and ξ based on a
variety of literature. For rock avalanches and debris flows, the
range for μ is 0.05–0.25 and that for ξ is 200–1000 m/s2. Schraml
et al. (2015) presented many back-analyzed μ − ξ sets, consisting of
published values in the literature and their own case study. For
most of the rock avalanche and debris flow events, μ lies within the
range 0.02–0.25 and ξ varies between 100 and 2000m/s2. Aaron and
McDougall (2019) presented back-analyses results of a rock ava-
lanche dataset consisting of 45 past rock avalanche events. Their
calibrated values of μ vary between 0.025 and 0.29, except in 4 cases
in which the path material is bedrock. The calibrated values of ξ are
in the range 200–2100 m/s2.

Based on the reference studies, we set the ranges 0.02–0.3
and 100–2200 m/s2 for μ and ξ respectively. As regards the
release volume v0, we assume it varies between 1.5 and 4.5
million m3, namely ±50% based on the 3-million m3 release
volume of the 2017 landslide event. This is achieved by multi-
plying the distribution of the initial mass of the 2017 landslide
event with a value between 0.5 and 1.5. To sum up, the three
uncertain inputs result in a three-dimensional input space,
where μ, ξ, and v0 vary independently within 0.02–0.3, 100–
2200 m/s2, and 1.5–4.5 million m3.

Emulator design and validation
To prepare the emulator training data, Nsim = 200 samples are
drawn from the three-dimensional input space using the

maximin Latin hypercube design which maximizes the mini-
mum distance between design points to achieve optimum
space-filling properties (Aleksankina et al., 2019) (see Fig. 3).

This results in xD ¼ μi
�	

; ξi ; v0iÞTgi¼1;…;200. One run-out simula-

tion takes 32 min on average on a laptop with an Intel Core i7-9750H
CPU. For each simulation run, we extract the angle of reach and
impact area, as well as ðhmax

l1 ,…,hmax
lk ÞT and ð∥ul1∥max,…,∥ulk∥

maxÞT at
k= 47958 chosen locations. This corresponds to the two aggregated
scalar outputs and the two vector outputs in the “Computational
landslide run-out model based on the Voellmy rheology” section. At
each of the 47,958 locations, at least one of the 200 simulation runs
has a maximum flow height value larger than 0.1 m. Corresponding-
ly, two scalar GP emulators (the “Gaussian process emulator for a
scalar output” section) and two parallel partial GP emulators (the
“Gaussian process emulator for a vector output” section) are built
based on xD and its respective simulation outputs. Each parallel
partial GP emulator takes about 0.05 s to determine maximum flow
height or velocity at all 47,958 locations for a new input
configuration.

Before using the emulators for our further sensitivity anal-
ysis, we validate their performance. The proportion of valida-
tion outputs that lie in emulator-based 95% credible intervals
is chosen as the diagnostic, denoted as PCI(95%). This is com-
monly used in the literature (Bounceur et al., 2015; Gu &
Berger, 2016; Lee et al., 2011; Spiller et al., 2014). It is defined
as follows:

PCI 95%ð Þ ¼ 1
n
∑n

i¼11

((
f x*i
� �

∈bf x*i
� �

CI 95%ð Þ

)
ð9Þ

where n is the number of input configurations for validation,

f x*i
� �

and bf x*i
� �

CI 95%ð Þ denote the simulation output and the

CI(95%) of the emulator prediction at the input x*i respectively.
PCI(95%) would be close to 0.95 for an ideal emulator.

The two scalar emulators are validated using the leave-one-
out cross-validation method as implemented in the RobustGaSP
package (meaning n = 200) (see Fig. 4). Both emulators perform
well with emulator prediction values being close to simulator
outputs and PCI(95%) close to 0.95. As no cross-validation
scheme is implemented in the RobustGaSP package for a paral-
lel partial GP emulator, we validate the two parallel partial GP
emulators for ðhmax

l1 , ldots, hmax
lk ÞT and ð∥ul1∥max,…,∥ulk∥

maxÞT
using additional 20 simulation runs based on an independent
maximin Latin hypercube design (see Fig. 3). Figure 5(a) shows
PCI(95%) values at each location and their distribution in the
form of a box plot based on the maximum flow height emulator.
Figure 5(b) shows the same evaluation based on the maximum
flow velocity emulator. The lowest PCI(95%) value of the maxi-
mum flow height/velocity emulator is 0.6/0.65, and 95% of the
PCI(95%) values of both emulators are within 0.8–1. Both emula-
tors show good performance with mean values of PCI(95%) over
all locations being 0.93 and 0.94 respectively.

Preliminary convergence analysis
The base sample size N, realization sample size Nr, and bootstrap
sample size Nb need to be determined before using the validated
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emulators for Sobol' sensitivity analysis (see Algorithm 1). Here,
we present the results of a convergence analysis based on the
validated emulator for the angle of reach in order to determine
values for these sample sizes. Figure 6 shows how the estimated
Sobol′ indices and their CI(95%) values change with N increasing
from 200 to 10,000 with a step size of 200, while keeping Nr =Nb =
50. It can be seen that the estimated Sobol′ indices tend to con-
verge when N is large than 4000, and their CI(95%) lengths almost
do not decrease for N ≥ 6000. We conducted the same analysis
with Nr =Nb = 100 and Nr =Nb = 200. The results are similar to our
findings with Nr =Nb = 50, indicating little impact of Nr and Nb.
Therefore, we set N = 6000 and Nr = Nb = 50 for the following
sensitivity study. It leads to N (p + 2) = 6000 (3 + 2) = 30000
samples from the three-dimensional input space to estimate the

Sobol′ indices, namely μi
�	

; ξi ; v0iÞTgi¼1;…;30000. Among them,

2 N = 12000 samples are used to estimate the overall variance
term V(y) in Eqs. (2a)–(2b) (see section Sobol′ sensitivity analysis).

Results and discussions

Angle of reach and impact area
The box plot in Fig. 7(a) shows the distribution of emulator-
predicted angle of reach values corresponding to the 12,000 sam-
ples used to estimate the variance of the angle of reach (see the
“Preliminary convergence analysis” section). Due to input uncer-
tainties, the angle of reach could vary in a wide range, around 11.8–
25.7°. The mean is 17.9°. The standard deviation is 3.1° which
corresponds to the square root value of V(y) in Eqs. (2a)–(2b).
The bar plots in Fig. 7(a) display the estimated first-order and
total-effect Sobol′ indices, with CI(95%) denoting the Monte
Carlo–based sampling uncertainty and emulator uncertainty. Each
pair of bar plots corresponds to the first-order and total-effect
Sobol′ indices of one input variable. It is evident that angle of
reach is dominated by the dry-Coulomb friction coefficient μ of
which the first-order index is over 0.9, whereas both the turbulent

Fig. 2 Pizzo Cengalo-Bondo topography. The colormap shows the distribution of the released mass of the 2017 landslide event (shown in the 10-m resolution of
computational mesh grid used for the simulations). The solid line and dashed line denote the major and minor flow paths. The embedded plot in the bottom-left corner
shows the profile of the major flow path, on top of which locations A–F with respective angle of reach are noted for our later discussion in the “Maximum flow height and
velocity” section.

Fig. 3 Two-dimensional projection of the 200 training samples (void circles) and 20 validation samples (solid diamonds) from two independent maximin Latin hypercube
designs. Left ξ−μ, middle v0−μ, right v0−ξ. The 200 samples are used to build the emulators (see the “Gaussian process emulation” section). The 20 samples are used to
validate the parallel partial GP emulators
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friction coefficient ξ and the release volume v0 show little influence
on the angle of reach, with both first-order indices being smaller
than 0.05. This result is expected since μ governs the slope angle
on which flow mass begins to deposit (McDougall, 2017). It is also
consistent with the common finding in former one-at-a-time sen-
sitivity analyses on landslide run-out models employing the
Voemlly rheology, such as Barbolini et al. (2000), Frey et al.
(2016), Hussin et al. (2012), Schraml et al. (2015). All of them found
that the run-out distance (indicated by the angle of reach) is
predominantly affected by the dry-Coulomb friction coefficient
μ. In particular, Barbolini et al. (2000) found that there is a
difference of about half an order of magnitude between the sensi-
tivity of run-out distance to μ and to other parameters like ξ,
release height, and release area. Furthermore, it is noteworthy that
the difference between the first-order and total-effect indices is
small, indicating weak interactions among the three input vari-
ables regarding the angle of reach.

Similarly, the box plot in Fig. 7(b) shows the distribution of
emulator-predicted impact area values. Owing to input uncer-
tainties, the impact area could vary between 1.5 and 4.5 million
m2 with a standard deviation 0.6 million m2. From the bar plots, it

can be seen that estimated first-order indices of μ, ξ, and v0 are
around 0.67, 0.15, 0.18 respectively. It indicates that μ contributes
the most to the variance of the impact area, followed by v0 and ξ.
Similar to the results on the angle of reach, the small difference
between the first-order and total-effect indices implies that the
three input variables barely interact with each other concerning
the impact area. Compared to the results of the angle of reach, the
importance of μ on the impact area decreases and that of ξ and v0
increases. A plausible explanation is that the angle of reach only
depends on the deposit (assuming that the release area remains
the same) where μ plays the dominant role, whereas the impact
area depends on all inundated regions where all three input var-
iables may have an impact.

Maximum flow height and velocity
Before discussing global sensitivity analysis results on maximum
flow height and velocity, we summarize the statistics that are
needed to interpret the results. Figure 8(a)–(c) show the mean,
standard deviation, and coefficient of variation of emulator-
predicted maximum flow height values at each location.
Figure 8(d)–(f) show the counterparts of emulator-predicted

Fig. 4 Leave-one-out cross-validation of the GP emulators for scalar outputs (a) angle of reach (in degree) and (b) impact area (in million m2). The error bars denote 95%
credible intervals of the emulator predictions

Fig. 5 Validation of the parallel partial GP emulators for vector outputs (a)

 
hmax
l1 ,…,hmax

lk

!
T and (b)

 
∥ul1∥

max,…,∥ulk∥
max

!
T with k = 47958, using 20

validation runs based on an independent maximin Latin hypercube design. In each panel, the colormap shows the PCI(95%) values at each
location; the box plot presents the distribution of PCI(95%) values. In the box plot, the whiskers denote the 2.5th and 97.5th percentiles; the
blue dashed line denotes the mean; the number of outliers for each outlier value is noted due to overlapping. The mean of PCI(95%) over
all locations for maximum flow height/velocity is 0.93/0.94
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maximum flow velocity values. The major and minor flow paths as
well as locations A–F along the major flow path are noted to
facilitate the description of results. The profile of the major flow
path and the angle of reach values corresponding to locations A–F
are shown in Fig. 2. Location A sits near the release area, where the
slope is steep. From location B to location D is the Bondasca valley.
Location C corresponds to the mean location of 12,000 angle of
reach values (17.9°), denoting the average run-out distance. From
location D to location E is the debris flow retention basin (Walter
et al., 2020). Location F is near the west boundary of the DEM.

It can be seen from Fig. 8(a) and (d) that in general, the mean of
maximum flow height gradually decreases along the flow path

whereas the mean of maximum flow velocity first increases then
decreases reflecting the acceleration and deceleration process.
Along the path cross-section direction, both the mean of maxi-
mum flow height and that of maximum flow velocity generally
decrease from the center to the sides. In addition, the mean values
in the upstream area of location B are on average much larger than
the mean values in the downstream area of location B, possibly
because the average slope from the release zone to location B is
larger than that beyond location B (see Fig. 2) and the corner
around location B decelerates the flow mass.

The standard deviation shown in Fig. 8(b) and (e) reflects the
variation of maximum flow height and velocity at each location

Fig. 6 First-order (first row) and total-effect Sobol′ indices (second row) based on the GP emulator for the angle of reach, with Nr =Nb = 50 and N increasing from 200
to 10,000 with a step size of 200. Ŝμ, Ŝξ, and Ŝv0 denote estimated first-order Sobol′ indices of μ, ξ, and v0 ŜTμ, ŜTξ, and ŜTv0 denote estimated
total-effect Sobol′ indices of μ, ξ, and v0 (see step 14 in Algorithm 1 and Eq. (2a)–(2b)). In each panel, the dashed line and solid line show
the change of the estimated Sobol′ index and its 95% credible interval respectively; the estimated Sobol′ index tends to converge for N ≥
4000 and the length of its 95% credible interval hardly decreases for N ≥ 6000

Fig. 7 Sobol′ indices for aggregated scalar outputs (a) angle of reach and (b) impact area. The error bars of the bar plots indicate 95% credible intervals of estimated
Sobol′ indices, which account for Monte Carlo–based sampling uncertainty and emulator uncertainty. The box plots show the distribution of emulator-predicted angle of
reach values (in degree) and that of emulator-predicted impact area values (in million m2). They visualize the variation of the angle of reach and impact area resulting from
the uncertain input variables respectively. In each box plot, the whiskers denote the 2.5th and 97.5th percentiles; the blue dashed line denotes the mean; the red dotted
dashed line denotes the median; the red crosses denote the outliers

Original Paper

Landslides 18 & (2021)3308



resulting from uncertainties of the three input variables. It corre-
sponds to the square root of V(y) in Eqs. (2a)–(2b). In the
Bondasca valley between location B and location D, where the
channel is well defined, the standard deviation generally decreases
from the center to the sides in lateral direction, similar to the trend
observed in Fig. 8(a) and (d).

Figure 8(c) and (f) present the coefficient of variation
defined as the ratio of the standard deviation to the mean,
representing the relative variation. Comparing Fig. 8(c) and
(f) with Fig. 8(a) and (d), we find strong negative correlation
between the coefficient of variation and the mean. The coef-
ficient of variation generally increases both along the longitu-
dinal direction and from the center to the sides in the lateral
direction. A noteworthy feature is that Fig. 8(b) shows large
differences to Fig. 8(e), whereas Fig. 8(c) and (f) greatly
resemble each other. It indicates that for maximum flow
height and velocity, their absolute variation represented by
the standard deviation differs from each other, whereas their
relative variation represented by the coefficient of variation
shows great similarities.

Figures 9 and 10 present results of the Sobol′ sensitivity analysis
on maximum flow height and velocity at each location. The

uncertainties of estimated Sobol′ indices are found to be negligible
and have little impact on the discussion (see Fig. 7). The CI(95%) is
therefore omitted here to avoid redundancy. In addition, values
smaller than 0.1 are not shown in the color maps to highlight the
trends that we will shortly discuss.

Figure 9(a)–(c) show the first-order contributions of μ, ξ, and v0
to the variation of maximum flow height at each location. The

mean values of bSμ, bSξ, and bSv0 over the 47,958 locations are 0.3, 0.17,
and 0.27 respectively. A closer look shows that the dry-Coulomb
friction coefficient μ dominates in the downstream area beyond
location B, whereas its impact in the upstream area of location B is
limited; the turbulent friction coefficient ξ is an influential factor
in the upstream area of location B especially in areas around the
major flow path, whereas it has a negligible impact in the down-
stream area of location B; the release volume v0 contributes the
most in areas surrounding the release zone and has a significant
impact in areas near the minor flow path as well as areas sur-
rounding location B, whereas it shows little influence in the down-
stream area similar as ξ.

Figure 9(d)–(f) present the first-order contributions of μ, ξ, and
v0 to the variation of maximum flow velocity at each location. The

Fig. 8 Statistics of emulator-predicted maximum flow height (left column) and velocity (right column) at k = 47958 locations. For each location, the mean (first row),
standard deviation (second row), and coefficient of variation (third row) are calculated from 12,000 emulator-predicted maximum flow height and velocity values at that
location (see the “Preliminary convergence analysis” section). The polygon at the bottom-right corner of each panel denotes the release area. The local low/high values on
the left side of location A in each panel result from the local ridges (see Fig. 2)
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mean values of bSμ, bSξ, and bSv0 over all the locations are 0.34, 0.31,
and 0.11 respectively. A closer inspection shows that the variation
of maximum flow velocity in the downstream area beyond loca-
tion B is predominantly driven by μ, while it has mild impact in the
upstream area; ξ contributes the most to the variation of maxi-
mum flow velocity in the upstream area of location B, where the
mean values of maximum flow velocity are large (comparing Fig.
9(e) with Fig. 8(d)); v0 only has a mild impact in areas near the
release zone and near the minor flow path.

Comparing Fig. 9(a)–(c) with Fig. 9(d)–(f), we find that the
first-order contribution of μ to the variation of maximum flow
height only slightly differs from its contribution to the variation of
maximum flow velocity, with the mean over all locations increas-
ing from 0.3 to 0.34. ξ has more impact on maximum flow velocity
than on maximum flow height, with a difference of 0.14 on aver-
age. The influence of v0 on maximum flow height is more impor-
tant than its influence on maximum flow velocity, with a difference
of 0.16 on average. The dominant role of μ in the downstream area
agrees with the finding in the “Angle of reach and impact area”
section that μ predominantly affects the angle of reach. The

observation can be well explained based on Mangeney-Castelnau
et al. (2003). More specifically, Mangeney-Castelnau et al. (2003)
studied the forces involved in the momentum equation for the
Coulomb friction law and found that the force caused by the dry-
Coulomb friction is negligible in the early stage of the flow event
(corresponds to the upstream area) while it becomes dominant in
the later stage (corresponds to the downstream area). The impor-
tance of ξ in the upstream area with large mean values of maxi-
mum flow velocity is therefore expected since the turbulent
friction term in Eq. (1) is proportional to the square of flow
velocity and the role of the dry-Coulomb friction term is not
important in this area. It should be noted that the turbulent term
artificially limits the overestimated early-stage velocity which re-
sults from the hydrostatic hypothesis used in depth-averaged
shallow flow models, and therefore leads to more realistic early-
stage velocity (Garres-Díaz et al., 2021).

Figure 10(a)–(c) show the difference between total-effect and
first-order Sobol′ indices for maximum flow height at each loca-
tion, which indicates the interactions between different input

variables. Taking bSTμ−bSμ as an example, it accounts for all high-

Fig. 9 First-order Sobol′ indices for

 
hmax
l1 ,…,hmax

lk

!
T (left column) and for

 
∥ul1∥

max,…,∥ulk∥
max

!
T (right column). In each panel, values

smaller than 0.1 are not shown in the colormap; the box plot presents the distribution of respective first-order indices at all locations
(including values smaller than 0.1); the mean over all locations is notated in the box plot
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order effects related to μ, including the second-order interaction
between μ and ξ, the second-order interaction between μ and v0,
and the third-order interaction among μ, ξ, and v0. The mean

values of bSTμ−bSμ, bSTξ−bSξ, and bSTv0−bSv0 over all locations are 0.22,

0.21, and 0.16 respectively. The areas where bSTμ−bSμ, ŜTξ−Ŝξ, andbSTv0−bSv0 have large values (see Fig. 10(a)–(c)) are generally in
accord with the areas where the mean and standard deviation of
maximum flow height have small values (see Fig. 8(a)–(b)), and
the coefficient of variation of maximum flow height has large
values (see Fig. 8(c)). One exception is the area around the major

flow path between location A and location B. The value of bSTv0−bSv0
in this exception area is very small (see Fig. 10(c)). It means that all
high-order effects related to v0 in this area are negligible, including
the second-order v0−μ interaction, the second-order v0−ξ interac-
tion, and the third-order v0−μ−ξ interaction. The large values ofbSTμ−bSμ and bSTξ−bSξ in this area as shown in Fig. 10(a)–(b) are
therefore mainly due to the second-order μ−ξ interaction since

contributions from v0−μ, v0−ξ, and v0−μ−ξ are negligible. From
the inserted scatter plots in Fig. 10(a)–(c) which show respective
difference versus the standard deviation, it is evident that the
interactions generally decrease with increasing standard deviation.
It means that the larger the variation of maximum flow height, the
less the interactions between the three parameters.

Figure 10(d)–(f) show the difference between total-effect and
first-order Sobol′ indices for maximum flow velocity at each loca-

tion. The mean values of bSTμ−bSμ, bSTξ−bSξ, and bSTv0−bSv0 over all
locations are 0.21, 0.2, and 0.15 respectively. Similar to the results
on maximum flow height, the areas showing significant differences
greatly resemble the areas with low mean values, low standard
deviation values, and a high coefficient of variation values of
maximum flow velocity (see Fig. 8(d)–(f)). Again, the area around
the major flow path between location A and location B is an
exception. It can be clearly seen from the scatter plots of respective
difference versus the standard deviation that the interactions gen-
erally decrease with increasing standard deviation.

Fig. 10 Difference between total-effect and first-order Sobol′ indices for

 
hmax
l1 ,…,hmax

lk

!
T (left column) and for

 
∥ul1∥

max,…,∥ulk∥
max

!
T (right

column). In each panel, values smaller than 0.1 are not shown in the colormap; the scatter plot shows the difference versus the standard
deviation shown in Fig. 8(b) and (e), where difference values larger than 0.1 are plotted using the same color bar as that used for the
colormap, and difference values smaller than 0.1 are plotted in black; the mean over all locations is notated in the scatter plot
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Comparing Fig. 10(a)–(c) with Fig. 10(d)–(f), the following
trends can be observed for both maximum flow height and max-
imum flow velocity. First, most of the significant interactions
occur on the margins of the flow paths where mean values and
standard deviation values are relatively small, whereas values of
coefficient of variation are relatively large (see Fig. 8). This may be
due to the fact that a location on the margins is only reached by
some of the forward simulations (hence some of the three-
parameter combinations). Second, the interactions generally de-
crease with increasing standard deviation. Third, there are stron-
ger interactions between the two friction coefficients μ and ξ than
between the release volume v0 and each friction coefficient.

Conclusions
In this study, we have presented a computationally efficient approach
which enables variance-based global sensitivity analyses of compu-
tationally demanding landslide run-out models. The methodology
couples the novel open-source mass flow simulation tool r.avaflow
(Mergili et al., 2017), robust Gaussian process emulation for multi-
outputmodels (Gu& Berger, 2016; Gu et al., 2018; Gu et al., 2019), and
a recent algorithm addressing the emulator uncertainty (Le Gratiet
et al., 2014). We have implemented a unified Python-based frame-
work to seamlessly integrate r.avaflow, RobustGaSP, and SALib.
Based on the 2017 Bondo landslide event, we have employed the
approach to study the global sensitivity of selected run-out model
outputs to three input variables, namely the release volume and the
two friction coefficients. Our main findings are as follows.

& The proposed approach can be successfully used to study the
relative importance and interactions of input variables in land-
slide run-out models, when the trained Gaussian process em-
ulators are validated and the base sample size of Sobol′
analysis is properly chosen.

& The first-order effects of each input variable are broadly in line
with the results of common one-at-a-time sensitivity analyses
in the literature. The dry-Coulomb friction coefficient domi-
nates the angle of reach, and maximum flow height and veloc-
ity in the downstream area. The turbulent friction coefficient
contributes the most to the variation of maximum flow veloc-
ity in the area where maximum flow velocity values are ex-
pected to be large. The release volume is found to have a
significant impact on maximum flow height in the area sur-
rounding the release zone whereas it shows little impact on
maximum flow velocity.

& Interactions between the input variables could be analyzed for
the full flow path, which cannot be assessed by commonly used
one-at-a-time approaches. Significant interactions between the
input variables generally happen on the margins of the flow
path. The mean values and standard deviation values of max-
imum flow height and velocity are small in those areas. The
interactions generally decrease with an increasing variation of
maximum flow height and velocity. Furthermore, there are
stronger interactions between the two friction coefficients than
between the release volume and each friction coefficient.

Our study does not consider entrainment processes and topo-
graphic curvature effects, as mentioned in the “Computational land-
slide run-out model based on the Voellmy rheology” section. Studies

have shown that they can have an impact on simulation results and
therefore may influence the results of our sensitivity analysis. Work
towards this direction should be conducted in the future. Moreover,
traditional one-at-a-time sensitivity analyses based on multiple sites
have shown that the results of sensitivity analyses can be strongly
affected by the topography (Barbolini et al. 2000). To what extent our
conclusions based on the Bondo site can be used elsewhere therefore
requires further study.

It should be noted that the proposed methodology can be easily
extended for variance-based global sensitivity analysis on land-
slide run-out models that take entrainment processes and topo-
graphic effects into account, or on landslide run-out models
employing other basal rheologies, or potentially on any computa-
tionally demanding models, when the assumption of Gaussian
process emulation is fulfilled as stated in the “Gaussian process
emulation” section.

In addition, other computationally expensive tasks can also
benefit from the significant speed-up owing to emulation tech-
niques. While the run-out simulation takes 32 min on average to
determine maximum flow height at the 47,958 locations for a given
parameter setting, this time reduces to 0.05 s for evaluating the
emulator. Hence, whenever an application requires a large number
of model evaluations, like uncertainty quantification and model
calibration of landslide run-out models, computational costs for
training the emulator will be compensated. In our study, this
threshold is determined by the 200 training simulation runs,
around 107 h. The emulation techniques likewise have a great
potential whenever a splitting between off-line computation (e.g.,
emulator training) and on-line computation (e.g., urgent comput-
ing for early warning systems) is feasible.
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