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Abstract The purpose of this study is to establish the criteria for a
landslide early warning system (LEWS). We accomplished this by
deriving optimal thresholds for the cumulative event rainfall–
duration (ED) and identifying the characteristics of the rainfall
variables associated with a high probability of landslide occur-
rence via a Bayesian model. We have established these system
criteria using rainfall and landslide data for Chuncheon, Republic
of Korea. Heavy rainfall is the leading cause of landslides in
Chuncheon; thus, it is crucial to determine the rainfall conditions
that trigger landslides. Hourly rainfall data spanning 1999 to 2017
from seven gauging stations were utilized to establish the ED
thresholds and the Bayesian model. We used three different cali-
bration periods of rainfall events split by 12, 24, 48, and 96 non-
rainfall hours to calibrate the ED thresholds. Finally, the optimal
threshold was determined by comparing the results of the contin-
gency table and the skill scores that maximize the probability of
detection (POD) score and minimize the probability of false de-
tection (POFD) score. In the LEWS, by considering the first level as
“normal,” we developed subsequent step-by-step warning levels
based on the Bayesian model as well as the ED thresholds. We
propose the second level, “watch,” when the rainfall condition is
above the ED thresholds. We then adopt the third level, “warning,”
and the fourth level, “severe warning,” based on the probability of
landslide occurrence determined via a Bayesian model that con-
siders several factors including the rainfall conditions of landslide
vs. non-landslide and various rainfall variables such as hourly
maximum rainfall and 3-day antecedent rainfall conditions. The
proposed alert level predicted a total of 98.2% of the landslide
occurrences at the levels of “severe warning” and “warning” as a
result of the model fitness verification. The false alarm rate is 0%
for the severe warning level and 47.4% for the warning level. We
propose using the optimal ED thresholds to forecast when land-
slides are likely to occur in the local region. Additionally, we
propose the ranges of rainfall variables that represent a high
landslide probability based on the Bayesian model to set the
landslide warning standard that fits the local area’s characteristics.

Keywords Rainfall threshold . Landslide early warning
system . Bayesian model . Probabilistic method . Landslide
warning levels

Introduction
Rainfall-induced landslides can result in damage to life and prop-
erty. On a global scale, 4862 landslides were recorded between
2004 and 2016, causing 55,997 fatalities (Petley 2012; Froude and
Petley 2018). The majority of human losses to landslides occur in
Asia, usually in the summer months of the Northern Hemisphere
(Petley 2012). Chuncheon is located in the northern central part of
South Korea in eastern Asia, and the major cause of landslides is

the heavy rainfall that occurs in the summer monsoon season. For
instance, on 27 July 2011, landslides in Chuncheon caused by heavy
rainfall resulted in approximately 37 casualties (Sung 2012) and
approximately 4 million USD in property damage according to the
historical records in the National Disaster Management System for
Chuncheon City. Therefore, it is of great importance to obtain
predictions and alerts for landslides considering their causes and
probability of occurrence to issue timely landslide hazard warn-
ings to prevent similar tragedies. To determine the alarm level of
landslide occurrence, it is necessary to define the rainfall threshold
for the initiation of landslides and identify the rainfall conditions
associated with a high probability of landslide occurrence.

Researchers have studied the relationship between rainfall and
landslides, ever since Caine (1980) proposed the rainfall intensity–
duration (ID) thresholds by analyzing 73 rainfall events related to
shallow landslides and debris flows around the world. Guzzetti
et al. (2008) revised and supplemented ID thresholds to suggest a
minimum rainfall threshold for landslide initiation on a global
scale which identifies changing trends in rainfall intensity at 48 h
of rainfall duration, and to calculate regional rainfall thresholds
according to the Köppen climatic regions. In addition to the ID
threshold, research on ED thresholds is based on the conditions of
rainfall events that caused landslides in the past (Innes 1983;
Wieczorek 1987; Crosta 1998; Kanji et al. 2003). Gariano et al.
(2015) recently calculated and verified ED thresholds in Italy.
Piciullo et al. (2017) also calculated ED thresholds in Italy and
applied the same verification method to the study of a local
landslide early warning model. Peruccacci et al. (2017) derived
the 5th percentile ED threshold curve for rainfall-induced land-
slide in Italy as well as the ED thresholds for each local area
according to environmental conditions such as geomorphic set-
ting, geology, soil, land cover, climatic region, and average annual
rainfall.

Studies on the rainfall thresholds at which landslides begin
typically focus on ID and ED thresholds (Guzzetti et al. 2008;
Segoni et al. 2018b). Since the ID and ED thresholds are based on
rainfall events, the definition of a rainfall event has a significant
effect on the threshold setting. A rainfall event is divided by a non-
rainfall period in an objective way to separate the case whether the
rainfall event affects the landslide. In general, studies distinguish
rainfall events based on a 24-h non-rainfall period (Guzzetti et al.
2008; Saito et al. 2010; Chen et al. 2015; Kim et al. 2013;Oh and Park
2014; Hong et al. 2016; Kang and Kim 2016; Lee and Kim 2017; Park
et al. 2018). Brunetti et al. (2010) separated rainfall events based on
a non-rainfall period to account for different meteorological re-
gimes, 48-h periods without rainfall during the dry and warm
season (May–September), and 96-h periods without rainfall dur-
ing the wet and cold season (October–April). Hong et al. (2016)
analyzed ID rainfall thresholds for landslide occurrence depending
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on the various kinds of rainfall events, split by 6, 12, 24, 48, 72, and
96 h without rainfall.

The ID and ED thresholds are deterministic methods and can
be used to determine the critical threshold values for the initiation
of landslides. Deterministic methods can clearly distinguish rain-
fall thresholds for debris flows (Berti and Simoni 2005; Coe et al.
2008; Berti et al. 2012). However, in most cases, landslides can be
affected not only by rainfall but also by time-related factors such
as soil moisture (Valenzuela et al. 2018), the distribution of pore
water pressure, the weathering and binding of materials, and long-
term changes in local stress fields (Fell et al. 2000; Leroueil 2001).
Slope failure is challenging to predict based only on rainfall, and it
can be more easily identified using a combination of related
factors. There are certain cases where a landslide does not occur
even when the rainfall thresholds are exceeded. Thus, the proba-
bility of landslide occurrence should be estimated based on more
specific rainfall variables.

Studies of ID and ED thresholds (Guzzetti et al. 2008; Saito et al.
2010; Lee and Sung 2018; Gariano et al. 2015; Piciullo et al. 2017;
Peruccacci et al. 2017; Gariano et al. 2020) using the quantile
regression analysis method or frequentist method can provide
the percentile regression equation for each percentile. However,
ID and ED thresholds have a limit in that they are established
using only the characteristics of rainfall events that cause
landslides. Rainfall intensity is the average value of cumulative
rainfall divided by rainfall duration, and cumulative rainfall is the
sum of the hourly precipitation in a rainfall event. Therefore, both
rainfall variables do not directly reflect the hourly maximum
rainfall. Gariano et al. (2020) pointed out that ED thresholds are
preferable to ID thresholds as the two variables measure indepen-
dent quantities. That is why we calibrate only the ED thresholds.
However, the ED thresholds do not provide rainfall characteristics
with a probability of landslide occurrence when rainfall conditions
are above the rainfall thresholds. They also do not reflect the
amount of antecedent rainfall before the rainfall event since their
thresholds are set according to each rainfall event’s rainfall vari-
ables. Antecedent rainfall is crucial to the landslide occurrence
mechanism due to the increase of pore water pressure and the
deterioration of slope stability (Crozier 1999; Iverson 2000; Glade
et al. 2000; Segoni et al. 2018b; Valenzuela et al. 2018). Wicki et al.
(2020), Rosi et al. (2020), Kim et al. (2020), Yang et al. (2020), and
Ponziani et al. (2012) highlighted the necessity of using antecedent
rainfall or other proxies to account for more complex hydrological
conditions.

To overcome these limitations, after Berti et al. (2012), we first
analyzed the probability of landslide occurrence using a Bayesian
method, including rainfall events that caused landslides and rain-
fall events that did not cause landslides. Second, we considered the
antecedent rainfall and the hourly maximum rainfall in the Bayes-
ian model. Finally, we analyzed the probability of a landslide
occurrence by the interval range of rainfall variable values using
one-dimensional and two-dimensional Bayesian methods in which
to determine the landslide early warning system (LEWS) criteria.

This study aims to establish the criteria for a warning model
within a LEWS. We propose to derive ED threshold equations and
use them as thresholds for the second level of landslide warning.
Furthermore, to establish the third and fourth warning levels (the
second-highest and highest levels, respectively), the Bayesian mod-
el determines the probability of landslide occurrence based on the

interval of rainfall variables, including rainfall intensity, cumula-
tive event rainfall, rainfall duration, antecedent rainfall, and hour-
ly maximum rainfall.

Study area
Chuncheon (1116.83 km2) is located in the central northern part of
the Republic of Korea (Fig. 1). According to the Köppen–Geiger
climate classification, Chuncheon belongs to the Dwa (monsoon-
influenced hot-summer humid continental climate) region with
dry winters and intense rainfall in the summer (Peel et al. 2007).
The average annual rainfall in Chuncheon is 1312.9 mm and the
average monthly rainfall is 19.6 mm in January (winter). The
average monthly rainfall (maximum rainfall) in the typical mon-
soon period (June, July, August, and September) in Chuncheon is
128.4 (459.6) mm, 375.3 (932.5) mm, 299.8 (785.2) mm, and 144.2
(491.9) mm, respectively. Chuncheon has not been hit by an earth-
quake with a magnitude greater than 2.0 for 40 years, and there-
fore the area is fit for investigating rainfall-triggered landslides.
Chuncheon has a basin surrounded by a mountainous topography
with elevations ranging from 5.2 to 1437.5 a.s.l. Its main geomor-
phic feature is this basin that has been affected by differential
erosion. The basin’s interior is composed of biotite granite (the
Chuncheon granite), and the mountainous area is mainly com-
posed of gneiss and schist. Lee et al. (2020) analyzed the geo-
environmental variables that represent this highly susceptible area
in Chuncheon characterized by an elevation of 100~200 m, a slope
of 15~25°, concave curvature, high stream power index, a distance
of 100~200 m to the river, young timber age, loose timber density,
artificial forest, coniferous forests, a soil depth of 50~100 cm, and
sandy loam soil. The main types of landslides that occur in
Chuncheon include translational slides (debris slides, earth slides,
and debris block slides), rotational slides (debris slump and earth
slump), and flows (debris flows and earth flows) (Lee et al. 2020).
The typical sizes of the landslides tend to have a length of 20 to
200 m and a width of 3 to 20 m from the landslide investigation
reports in 2013 by Chuncheon City.

Data

Rainfall data
Hourly rainfall data were collected using seven tipping-bucket rain
recorders installed by the Han River Flood Control Office
(HRFCO) of the Korean Ministry of Land, Infrastructure, and
Transport (MLIT). We used data from gauging stations (Jichon,
Hwaak, Gapyeong 2, Cheonjeon, Bukbang, Chuncheon, and
Seomyeon) in Chuncheon. The analysis period spanned 19 years
from 1999 and 2017 for all stations but Jichon, where the analysis
spanned from 2003 to 2017 due to different starting dates of
rainfall measurement. Although there is uncertainty in defining
rainfall events that caused landslides, they can be defined consis-
tently by distinguishing them based on the specific period of non-
rainfall (Guzzetti et al. 2008; Brunetti et al. 2010; Berti et al. 2012).
We constructed rainfall variables according to the definition of
four types of rainfall events split by 12 h, 24 h, 48 h, and 96 h of
non-rainfall. As only the dates of the heavy rainfall that caused
landslides in Chuncheon were available, we defined cumulative
rainfall for an event in the three different ways as follows:

First, the “total cumulative amount of rainfall” refers to the
sum of all hourly rainfalls within one rainfall event. For instance, if
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Fig. 1 Location of Chuncheon City and its geomorphic setting
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we divide the rainfall event by 12 h of the non-rainfall, the starting
point of cumulative event rainfall is after over the 12 h of non-
rainfall period, and the ending point of cumulative event rainfall is
just before over the 12-h non-rainfall period. Second, the “amount
accumulated up to the point of the hourly maximum rainfall”
means that the starting point of the cumulative event rainfall is
the same as the starting point of the “total cumulative amount of
rainfall,” and the ending point of cumulative event rainfall is the
hourly maximum rainfall of the rainfall event since, according to
some authors, in specific conditions many landslides tend to occur
at the highest recorded hourly rainfall (Wieczorek 1996; Chen et al.
2015). If the same hourly maximum rainfall occurs twice, we used
the most recent hourly maximum rainfall value as the classifica-
tion criterion. Third, the “amount accumulated up to 3 hours after
the point of the hourly maximum rainfall” means that the ending
point of cumulative event rainfall is 3 h after the hourly maximum
rainfall in a rainfall event. This is due to the fact that the cumu-
lative rainfall after the peak rainfall can affect landslide occurrence
(Kim et al. 2013; Chen et al. 2015). Based on these definitions, we
constructed three versions of the rainfall duration, cumulative
event rainfall, and rainfall intensity. Besides, we established rain-
fall variables such as hourly maximum rainfall, 3-day antecedent
rainfall, and 14-day antecedent rainfall according to the four types
of rainfall event for the Bayesian model.

Landslide data
We obtained the landslide occurrence area from Chuncheon City’s
disaster register data for 19 years between 1999 and 2017. Of these
years, 757 landslides occurred at the seven distinct heavy rainfall
events in 1999, 2002, 2006, 2009, 2011, 2013, and 2016. We con-
structed point data as a center of parcel data in all the years except
2013. In particular, in 2013, Chuncheon City recorded relatively
accurate landslide location information on the updated landslide
occurrence list. For this reason, we compared landslide locations
in 2013 with orthophotos from the National Geographic Informa-
tion Institute (NGII) and digital aerial photographs provided on
an Internet portal (http://map.daum.net). Thiessen polygons were
created based on rainfall station data, and altitude data and ad-
ministrative area maps were overlaid and analyzed to determine
the range of influence for each station (Fig. 2) (Tiranti et al. 2019;
Wu and Yeh 2020). We then aggregated landslide occurrence
points with each influential range of the seven stations where
rainfall data were collected.

Methodology

Cumulative event rainfall–duration thresholds
To calculate the rainfall threshold for landslide initiation with
cumulative event rainfall and duration (ED) data, we first con-
ducted a quantile regression analysis (Koenker 2009) using the R
programming language to establish a threshold of second percen-
tiles. The expression for the ED threshold is as follows:

E ¼ αDβ ð1Þ

where α is a constant representing the threshold curve and is
the intercept value of the cumulative event rainfall amount E when
the rainfall duration D is equal to 1. Since β is a positive value, the

larger the value of β, the steeper the slope of the threshold
equation.

Verification of ED thresholds
Gariano et al. (2015) utilized a validation method using a contin-
gency table and skill score of rainfall-induced landslide thresholds,
and this method was later used in the research of Piciullo et al.
(2017) and Lee and Kim (2017). The basic concepts of contingen-
cies include whether the event occurs or not and whether the
model predictions are correct or wrong (Wilks 2011; Accadia
et al. 2003; Frattini et al. 2010; Staley et al. 2012). Contingencies
(true positives [TPs], false positives [FPs], false negatives [FNs],
true negatives [TNs]) can be obtained based on the rainfall con-
ditions, which are either lower or higher than the rainfall thresh-
olds, and whether a landslide occurred or did not occur (Table 1).
The definition of the contingencies is as follows. TPs indicate that
the rainfall variable condition is higher than the threshold and that
one or more landslides occurred. FNs are when the rainfall con-
ditions are lower than the rainfall thresholds and one or more
landslides occurred. FPs are when rainfall conditions are above the
thresholds but no landslides occurred or were reported. TNs refer
to cases where rainfall conditions are below the threshold and no
landslides occurred or were reported. From the values of contin-
gencies, we can calculate the probability of detection (POD), the
probability of false detection (POFD), the probability of false alarm
(POFA), and the Hanssen and Kuipers (1965) (HK) skill score
(Table 2). Among them, the HK skill score (also known as Peirce’s
skill score) is defined as the POD minus the POFD (Peirce 1884;
Hanssen and Kuipers 1965). Besides, the Euclidean distance from
optimal classification (δ) is calculated by adding SQRT to the sum
of the square of POFD and the square of 1 minus POD (Table 2).
The higher the HK skill score, and the lower the δ value, the higher
the accuracy of the landslide prediction. Based on these skill
scores, this study verified the adequacy of the ED thresholds for
landslide occurrence and established the optimal threshold for a
landslide early warning system.

Bayesian model for landslide probability
Probabilistic methods, such as Bayesian analysis, have the follow-
ing advantages (Berti et al. 2012). First, they can be used to
numerically evaluate more reliable thresholds for landslides since
they incorporate variability and uncertainty. For instance, existing
thresholds, such as ED thresholds, do not provide the probability
of landslide occurrence when rainfall exceeds the thresholds. This
causes uncertainty about how many times a landslide will occur
according to the interval of rainfall variables. However, probabi-
listic analysis can consider the distribution of rainfall that does not
result in landslides, which makes it much more informative and
assigns reliability to a given threshold. Second, probabilistic
methods can help in estimating extreme events by providing a
distribution of the probability of landslide occurrence. The cate-
gorized forecast levels can be derived from the results of landslide
probability according to the rainfall conditions. Meanwhile, deter-
ministic methods can only split rainfall cases into a landslide
occurred case or no landslide occurred one based on the rainfall
thresholds. Finally, the probabilistic approach, which is generally
used for quantitative risk assessment, determines the confidence
level of the prediction (Refice and Capolongo 2002; Berti et al.
2012).
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The Bayesian theorem utilizes conditional probabilities, and we
can determine the probability of “A” occurring under the condi-
tions of “B.” In the one-dimensional model, the conditional prob-
ability is obtained through the relationship between an event “A”
and a specific condition “B.” The formulation of the one-
dimensional Bayesian model is as follows:

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ ð2Þ

where A refers to landslides and B refers to rainfall conditions.
P(A) is the prior probability that landslide (A) occurs with or
without B-scale rainfall conditions. P(B) is the probability that B-
scale rainfall is observed regardless of the occurrence of landslides
(A). P(B|A) refers to the likelihood of a B-scale rainfall condition
when landslides (A) occur. P(A|B) is the conditional probability
that landslides (A) will occur when there is a B-scale rainfall

condition. To identify the probability of landslide occurrence
under certain rainfall conditions, we analyzed cumulative event
rainfall, rainfall duration, rainfall intensity, hourly maximum rain-
fall, 3 days of antecedent rainfall, and 14 days of antecedent rainfall
according to the one-dimensional Bayesian model.

In the two-dimensional model, conditional probabilities are
obtained from the relationship between event A and the two
conditions B and C. The equation of the two-dimensional Bayesian
model is as follows:

P AjB;Cð Þ ¼ P B;CjAð Þ � P Að Þ
P B;Cð Þ ð3Þ

where P(A) is the prior probability that landslide A will occur
regardless of the B and C rainfall conditions. P(B,C) refers to the
probability that B- and C-scale rainfall is observed regardless of
the occurrence of landslides (A). P(B,C|A) represents the

Fig. 2 The reference area from seven gauging stations and the locations of landslide occurrences between 1999 and 2017 in Chuncheon, Republic of Korea

Table 1 Contingencies used for landslide occurrence and rainfall thresholds

Predicted landslides Observed landslides
Occurred (+) Did not occur (−)

Rainfall thresholds Above the threshold (+) TP (+ ∣ +) FP (+ ∣ −)

Below the threshold (−) FN (− ∣ + ) TN (− ∣ − )
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likelihood of B- and C-scale rainfall conditions during landslide A.
P(A|B,C) is the conditional probability that landslide A will occur
under B- and C-scale rainfall conditions. In this study, to deter-
mine the probability of landslide occurrence under two rainfall
variable conditions, we analyzed “cumulative event rainfall and
rainfall duration,” “rainfall intensity and rainfall duration,” “cu-
mulative event rainfall and hourly maximum rainfall,” and “cu-
mulative event rainfall and 3-day antecedent rainfall” using the
two-dimensional Bayesian model. The analysis results were
displayed in the form of a 3D bar graph using the Origin Evalua-
tion 2020b software (OriginLab, Northampton, MA, USA).

Results

ED thresholds
The ED threshold equations for rainfall events, with non-rainfall
periods of 12 h, 24 h, 48 h, and 96 h, are calculated as shown in
Table 3 and Fig. 3 according to the three types of rainfall events.

The slopes of the ED thresholds were relatively gentle under the
various types of rainfall events (12EDtotal, 24EDtotal, 96EDmax3, and
96EDmax), which shows that the longer the rainfall duration, the
smaller the rate of increase in the cumulative event rainfall that
resulted in landslides. The absolute value of β in the ED thresholds
(12EDtotal and 24EDtotal), based on the total cumulative rainfall,
had a minimum value of 0.205 (Table 3, Fig. 3). Additionally, the
absolute values of β in the ED thresholds (96EDmax3 and 96EDmax)
were 0.328 and 0.375, respectively. The effect of the difference in
cumulative event rainfall is more important than the rainfall
duration since the rate of change of cumulative event rainfall is
low compared to the rainfall duration.

Verification of ED thresholds
We calibrated the ED threshold equation from the rainfall condi-
tions of 42 rainfall events in which a landslide occurred during the
19 years between 1999 and 2017 in Chuncheon and constructed a
contingency table with all the rainfall events to verify the ED

Table 2 Definitions and formulas for skill scores

Skill score Definition Formula

The probability of detection
score (POD)

Percentage of rainfall variables above the threshold when landslides
occur

POD = TP/(TP + FN)

The probability of false detection
score (POFD)

Percentage of rainfall variable values above the threshold when no
landslide occurred or was reported

POFD = FP/(FP + TN)

The probability of false alarm
score (POFA)

Percentage of no landslide occurred or was reported when the rainfall
variables are above the threshold

POFA = FP/(TP + FP)

The Hanssen and Kuipers (1965)
skill score (HK)

The probability of detection score minus the probability of false
detection score

HK = {TP/(TP + FN)}−{FP/(FP + TN)}
=POD-POFD

δ The Euclidean distance from the perfect classification δ = SQRT{(POFD)2 + (1−POD)2}

SQRT, square root

Table 3 Cumulative event rainfall duration (ED) threshold formulations based on the definition of various types of rainfall events

Types of rainfall events with different
non-rainfall periods

ED threshold equation α β

12EDtotal E = 73.915D0.2046 (21 ≤D ≤ 167) 73.91476 0.2045692

12EDmax E = 3.5313D0.9285 (1 ≤D ≤ 83) 3.531283 0.9284508

12EDmax3 E = 2.1745D1.0685 (4 ≤D ≤ 86) 2.174461 1.0685249

24EDtotal E = 73.915D0.2046 (22 ≤D ≤ 231) 73.91476 0.2045692

24EDmax E = 6.3178D0.7343 (1 ≤D ≤ 190) 6.317764 0.7342732

24EDmax3 E = 5.6283D0.7652 (4 ≤D ≤ 193) 5.628273 0.7652164

48EDtotal E = 5.4002D0.7926 (36 ≤D ≤ 425) 5.400179 0.7925535

48EDmax E = 2.7804D0.8994 (1 ≤D ≤ 274) 2.780397 0.8993965

48EDmax3 E = 3.4756D0.8577 (4 ≤D ≤ 277) 3.475571 0.8576778

96EDtotal E = 8.6545D0.6257 (108 ≤D ≤ 1135) 8.654464 0.6257138

96EDmax E = 24.147D0.3753 (1 ≤D ≤ 483) 24.14699 0.3752865

96EDmax3 E = 32.185D0.3283 (4 ≤D ≤ 486) 32.18534 0.3283282

In the abbreviations in the first column, the first two numbers denote the non-rainfall periods as the criteria for dividing the event rainfalls, and the suffixes total, max, and max3
indicate different durations of cumulative rainfall, namely total cumulative rainfall, cumulative rainfall until the time of hourly maximum rainfall, and cumulative rainfall until the 3 h
after the time of hourly maximum rainfall, respectively. In the second column, D refers to the rainfall duration of the rainfall event and E refers to the cumulative event rainfall. α
means a constant and I-intercept value, and β is the slope value for the threshold curve
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threshold. The 12EDtotal threshold had the highest hit rate for
landslide occurrence in terms of the HK skill score and Euclidean
distance. The skill score analysis of the ED threshold equations
showed that the HK skill scores from the formulas of 12EDtotal,
24EDtotal, and 96EDmax3 were 0.979, 0.977, and 0.923, respectively
(Table 4). The Euclidean distance values from the optimal points
at 12EDtotal, 24EDtotal, and 96EDmax3 were close, namely 0.021,
0.023, and 0.058. When non-rainfall periods for the criterion for
a rainfall event were 12, 24, and 48 h, the thresholds with the total
cumulative rainfall obtained the highest skill scores. However, the
96ED thresholds with cumulative rainfall up until the 3 h after the
hourly maximum rainfall had the highest skill score among the
three different cumulative rainfall definitions.

Bayesian model
One-dimensional Bayesian model We analyzed six rainfall
variables—cumulative event rainfall, rainfall duration, rainfall in-
tensity, hourly maximum rainfall, 3-day antecedent rainfall, and
14-day antecedent rainfall—based on the rainfall event split by the
over 12 h of non-rainfall which has the highest skill score. The
results of analyzing the probability of landslide occurrence using
the intervals of rainfall variables with the 1-D Bayesian model are
as follows.
First, when the cumulative event rainfall exceeded 450 mm (0.2%
marginal probability of rainfall), the probability of landslide oc-
currence was 100%. However, when the cumulative event rainfall

was less than 150 mm, no landslide occurred. As the cumulative
event rainfall increased, the probability of landslide occurrence
tended to increase (Fig. 4(a)). Second, when the rainfall duration
was 4–5 days (96–120 h) (0.2% marginal probability of rainfall), the
probability of landslide occurrence was the highest, at 73.3%.
When the rainfall duration was 3–4 days (72–96 h; 0.6% marginal
probability of rainfall), the probability of landslide occurrence was
the second highest, at 23.3% (Fig. 4(b)). Third, when the rainfall
intensity was 8–10 mm/h, the probability of landslide occurrence
was the highest, at 13.4%. The highest landslide probability for
rainfall intensity was lower than the highest landslide probability
for cumulative event rainfall, rainfall duration, hourly maximum
rainfall, and 3-day antecedent rainfall conditions (Fig. 4(c)).
Fourth, when the hourly maximum rainfall amount exceeded
40 mm, the probability of landslide occurrence was more than
20%. Meanwhile, when the hourly maximum rainfall was less than
20 mm, the probability of landslide occurrence was 0%. Therefore,
hourly maximum rainfall thresholds of 40 mm or more and
20 mm or less can be significant factors for predicting landslide
occurrence (Fig. 5(a)). Fifth, when the 3-day antecedent rainfall
exceeded 300 mm, the probability of landslide occurrence was the
highest, at 25% (Fig. 5(b)). Although the 3-day antecedent rainfall
ranged from 200 to 300 mm, the probability of landslides was low
as the rainfall variables (such as cumulative event rainfall, rainfall
duration, and rainfall intensity) of the rainfall event that are
directly related to landslide triggering are more significant than
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Fig. 3 ED threshold curves according to the types of rainfall event. In the abbreviations, the first two numbers denote the non-rainfall periods as the criteria for dividing
the event rainfalls, and the suffixes total, max, and max3 indicate different durations of cumulative rainfall, namely total cumulative rainfall, cumulative rainfall until the
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the 3-day antecedent rainfall. Sixth, when the 14-day antecedent
rainfall was 300–350 mm, the probability of landslide occurrence
was the highest, at 5.5% (Fig. 5c). This indicates that the 14-day
antecedent rainfall was not an essential variable for landslide
occurrence since the probability of a landslide occurring for all
values of 14-day antecedent rainfall was the lowest compared to
the other rainfall variables.
As the values of event rainfall duration, rainfall intensity, and
hourly maximum rainfall increased, the trend of landslide proba-
bility did not increase consistently and slightly decreased (Fig. 4(b,
c), Fig. 5(a)). This trend was either because we have considered
only one rainfall variable or because there were not many rainfall
events that caused landslides. Therefore, in the 2D Bayesian anal-
ysis, the probability of landslides is determined by considering the
two rainfall variables.

Two-dimensional Bayesian model In the two-dimensional Bayes-
ian model, we selected two rainfall variables among five
variables—the cumulative event rainfall, rainfall duration, rainfall
intensity, hourly maximum rainfall, 3-day antecedent rainfall. (The
14-day antecedent rainfall was not considered as it was not crucial
in the one-dimensional Bayesian model.) In other words, the two-
dimensional Bayesian model derived landslide probabilities based
on rainfall events which are defined by over 12 h of inter-event
time: cumulative event rainfall and rainfall duration, rainfall in-
tensity and rainfall duration, cumulative event rainfall and hourly
maximum rainfall, and cumulative event rainfall and 3-day ante-
cedent rainfall.
The landslide probabilities for cumulative event rainfall and
rainfall duration determined using the two-dimensional Bayesian
model are as follows (Table 5, Fig. 6). In the case of cumulative
event rainfall and rainfall duration, when the cumulative event
rainfall exceeded 450 mm (0.014–0.086% marginal probability of
rainfall), it was found that the probability of landslide occurrence

was 100% when the rainfall duration was more than 48 h. Further-
more, when the rainfall duration was 96–120 h (0.04–0.057%
marginal probability of rainfall), the probability of landslide oc-
currence was 100% when the cumulative event rainfall exceeded
250 mm. For a rainfall duration of 48–72 h (0.01% marginal
probability of rainfall), the probability of landslide occurrence
was 100% even when the cumulative event rainfall was 400–
450 mm. When the rainfall duration was short (24–48 h), the
probability of landslide occurrence was 100% when the cumulative
event rainfall was 300–350 mm (0.01% marginal probability of
rainfall). Furthermore, for shorter rainfall durations (12–24 h),
the probability of landslide occurrence was 57.1% when the accu-
mulated rainfall amount was 200–250 mm (0.1% marginal proba-
bility of rainfall).
Second, the two-dimensional Bayesian model of rainfall inten-
sity and duration shows the characteristics of the rainfall-
induced landslide in Chuncheon. The main characteristics of
the results are that landslides occur when there is a long rainfall
duration and mild rainfall intensity and when there is a short
rainfall duration and high rainfall intensity. The two-
dimensional Bayesian probabilities of rainfall intensity and du-
ration are as follows (Table 6, Fig. 7). For rainfall durations of
48–72 h (2–3 days), the probability of landslide occurrence was
100% when the rainfall intensity was 6–10 mm/h (0.029% mar-
ginal probability of rainfall). When the rainfall duration was 96–
120 h (4–5 days), the probability of landslide occurrence was
100% when the rainfall intensity was 4–8 mm/h (0.014–0.043%
marginal probability of rainfall); and when the rainfall intensity
was 2–4 mm/h (0.1% marginal probability of rainfall), the prob-
ability of landslide occurrence was 85.7%. When the rainfall
duration is 4–7 days, there will likely be a long period of soil
moisture saturation as there are only 12 non-rainfall periods
during the rainfall event. Thus, landslides can occur even with
low rainfall intensity.

Table 4 The values of contingencies and skill scores for the various types of rainfall threshold

Type of rainfall threshold TP FN FP TN POD POFD POFA HK δ

12EDtotal 42 0 145 6799 1 0.021 0.775 0.979 0.021

12EDmax 40 2 1782 5162 0.952 0.257 0.978 0.696 0.261

12EDmax3 40 2 1915 5029 0.952 0.276 0.980 0.677 0.280

24EDtotal 42 0 135 5633 1 0.023 0.763 0.977 0.023

24EDmax 40 2 965 4803 0.952 0.167 0.960 0.785 0.174

24EDmax3 42 0 998 4770 1 0.173 0.960 0.827 0.173

48EDtotal 40 2 444 4127 0.952 0.097 0.917 0.855 0.108

48EDmax 42 0 1450 3121 1 0.317 0.972 0.683 0.317

48EDmax3 40 2 1042 3529 0.952 0.228 0.963 0.724 0.233

96EDtotal 40 2 210 2682 0.952 0.073 0.840 0.880 0.087

96EDmax 40 2 152 2740 0.952 0.053 0.792 0.900 0.071

96EDmax3 41 1 153 2739 0.976 0.053 0.789 0.923 0.058

TP, the number of landslide occurrences when the rainfall was higher than the threshold; FN, the number of landslide occurrences when the rainfall did not exceed the thresholds;
FP, the number of cases when a landslide did not occur when the rainfall exceeded the threshold; TN, the number of cases when a landslide did not occur when rainfall was lower
than the threshold; POD, the probability of detection score; POFD, the probability of false detection score; POFA, the probability of false alarm score; HK, the Hanssen and Kuipers
skill score; δ, Euclidean distance from the perfect classification
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Third, the Bayesian two-dimensional model was used to determine the
probability of landslide occurrence by the interval of the hourly

maximum rainfall according to the cumulative event rainfall (Table 7,
Fig. 8). When the cumulative event rainfall exceeded 450 mm (0.04–

a

b

c

Fig. 4 Results of the one-dimensional Bayesian analysis of the Chuncheon landslide dataset for cumulative event rainfall, event rainfall duration, and rainfall intensity.
Plots in the left column show the prior landslide probability P(A), the prior rainfall probability P(B), and the conditional probability of P(B|A). A comparison between the
frequency distributions of triggering rainfall versus overall rainfall is possible by comparing P(B|A) and P(B). Plots in the right column illustrate the landslide probability
P(A|B) for different ranges of the considered rainfall variable
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0.057% marginal probability of rainfall), the probability of landslide
occurrence was 100% when the hourly maximum rainfall amount
exceeded 20 mm/h. When the cumulative event rainfall exceeded
400–450 mm, the probability of landslide occurrence was 100% when
the hourly maximum rainfall exceeded 20 mm/h, except for hourly
maximum rainfall range 30–40 mm, because the hourly maximum

rainfall reflects only the hourly rainfall when the peak hourly rainfall
appears so that it may be affected by other rainfall variables. The
probability of landslide occurrencewas 100%when the cumulative event
rainfall was 350–400 mm and the hourly maximum rainfall was 30–
40mm/h (0.04%marginal probability of rainfall). The two-dimensional
Bayesian analysis of cumulative event rainfall and hourly maximum

a

b

c

Fig. 5 Results of the one-dimensional Bayesian analysis of the Chuncheon landslide dataset for hourly maximum rainfall, 3-day antecedent rainfall, and 14-day antecedent
rainfall. Symbols are the same as in Fig. 4

Original paper

Landslides 18 & (2021)1730



rainfall helped to identify not only the normal state of rainfall but also
the threshold of peak hourly rainfall with the potential to trigger
landslides.
Fourth, the Bayesian two-dimensional model was used to de-
termine the probability of landslide occurrence for different
cumulative event rainfall and 3-day antecedent rainfall
(Table 8, Fig. 9). When the cumulative event rainfall exceeded
300 mm, the probability of landslide occurrence was 100% when
the 3-day antecedent rainfall exceeded 100 mm (0.04–0.029%
marginal probability of rainfall). In the case of cumulative event
rainfall of 200–250 mm, the probabilities of landslide occur-
rence were 100% and 50%, respectively, at 3-day antecedent
rainfalls of 100–150 mm and 150–200 mm. When the cumulative
event rainfall was small (150–200 mm), the probabilities of

landslide occurrence were 100% and 66.7% at 3-day antecedent
rainfalls of 250–300 mm (0.04% marginal probability of rainfall)
and 100–200 mm, respectively. These results suggest that cumu-
lative event rainfall and 3-day antecedent rainfall are significant
in that they not only reflect the characteristics of rainfall events
but also take into account the prior rainfall associated with the
soil moisture content before the rainfall event.

Discussion

ED thresholds for landslide early warning system
According to the United Nations International Strategy for Disas-
ter Reduction (UNISDR) (UNISDR 2009), an early warning system

Table 5 Results of the two-dimensional Bayesian model for different rainfall durations and cumulative event rainfall

(P(A|B,C)) Rainfall duration (h)
≤ 12 12–24 24–48 48–72 72–96 96–120 120–168

Cumulative event rainfall
(mm)

≤ 150 0 0 0 0 0 0 No data

150–200 0 0.118 0.063 0 0 0.333 0

200–250 No data 0.571 0.143 0.077 0 0 0

250–300 No data 0 0.167 0 0.4 1 0

300–350 No data 0 1 0 0.5 1 No data

350–400 No data No data 0 No data 0.5 1 0

400–450 No data No data No data 1 0.4 1 No data

> 450 No data No data No data 1 1 1 1

>450
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Fig. 6 Graph showing the results of the two-dimensional Bayesian model for different cumulative event rainfalls and rainfall durations
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refers to “the set of capacities needed to generate and disseminate
timely and meaningful warning information to enable individuals,
communities and organizations threatened by a hazard to prepare
and to act appropriately and in sufficient time to reduce the
possibility of harm or loss.” Intrieri et al. (2013) described four
main processes of a landslide early warning system, namely de-
sign, monitoring, forecasting, and education. The design part
involves defining geological and meteorological geo-indicators
according to the mechanism of landslide triggering and defining
rainfall events that affect landslide initiation. The monitoring part
mainly includes measuring rainfall in the case of rainfall-induced
landslides. This study focused on which rainfall thresholds can be
applied as criteria for warning levels and for issuing an accurate
landslide alert at the appropriate time (forecasting).

It is not easy to consistently define the duration of a rainfall
event which affects landslides since it is difficult to obtain accurate
information about the exact occurrence time of landslides, which
is essential for obtaining accurate forecasts of landslide occurrence
(Brunetti et al. 2010; Gariano et al. 2015; Guzzetti et al. 2020).
Hence, in this study, it was possible to define the rainfall event
with the highest hit ratio of the ED thresholds among the various
rainfall event conditions based on the non-rainfall period (12, 24,
48, 96 h). The 12EDtotal threshold has the highest skill score among
the ED thresholds and is based on the rainfall event definition that
corresponds to “the total cumulative amount of rainfall, which is
defined by an over 12-hour inter-event time.” Figure 10 graphically
illustrates the formulation of E = 73.915D0.2046 (21 ≤ D ≤ 167). This
is a meaningful result because the optimal threshold was defined
with a 12-h break between consecutive rainfalls, whereas in most of

Table 6 Results of the two-dimensional Bayesian model for different rainfall durations and rainfall intensities

(P(A|B,C)) Rainfall duration (h)
≤ 12 12–24 24–48 48–72 72–96 96–120 120–168

Rainfall intensity
(mm/h)

≤ 1 0 0 0 0 0 No data No data

1–2 0 0 0 0 0 0.25 0

2–4 0 0 0.006 0.024 0.24 0.857 0.5

4–6 0 0 0.026 0 0.5 1 No data

6–8 0 0 0.158 1 No data 1 No data

8–10 0 0.217 0.333 1 No data No data No data

10–12 0 0.25 0 No data No data No data No data

> 12 0 0 No data No data No data No data No data

>12

10-1
2

8-10
6-8

4-6
2-4

1-2
<1 <12

12-24

24-48

48-72

72-96

96-120

120-1680.0

0.2

0.4

0.6

0.8

1.0

Rain
fall d

uratio
n (C)

(h)

Landslide
probability

(P
(A
|B
,C
))

Rainfall intensity (B) (mm/h)

Fig. 7 Graph showing the results of the two-dimensional Bayesian model for different rainfall durations and rainfall intensities
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the literature, a 24-h break is taken into account (Saito et al. 2010;
He et al. 2020). The short time, such as a 12-h break, was chosen
due to high permeability soil characteristics such as sandy loam
and the topographical features of the landslide occurrence area
consisting of a steep slope of 15° or more.

To determine the level of “watch” as the basis for predicting
landslides, it is possible to use ED thresholds as the initial condi-
tion for causing landslides since these thresholds are the lower
envelope of the rainfall events (Table 9). Guzzetti et al. (2020)
reported that few methods or techniques are available to deter-
mine thresholds for landslide early warning systems. Most previ-
ous studies developed a threshold for local characteristics as a
rainfall-induced landslide threshold for each ED threshold. How-
ever, in this study, it was possible to derive rainfall thresholds that
show the optimal rainfall conditions with high skill scores by

varying the definition of rainfall events. We propose to use
12EDtotal (E = 73.915D0.2046) as a basis for “watch”-level landslide
forecasting for practical application in LEWSs because it repre-
sents the two-percentile regression curve and lower envelope of
ED thresholds. In future studies, we will discuss the detailed
criteria for producing landslide alerts, including strategies for the
cross-use of rainfall forecasts and observations.

According to Guzzetti et al. (2020) and Intrieri et al. (2012),
experts in landslides should conduct detailed monitoring of rain-
fall and landslide occurrences when the second level, namely the
“watch” or “attention” level, is issued (Table 9). At this second
level, residents and administrators need to prepare a disaster
protection strategy for the level of the third level, “warning,” and
the “watch” level is different from the first and lowest level,
“normal” in which landslides rarely occur. For instance,

Table 7 Results of the two-dimensional Bayesian model for different hourly maximum rainfall and cumulative event rainfall

(P(A|B,C)) Hourly maximum rainfall (mm/h)
≤ 20 20–30 30–40 40–50 50–60 60–70 > 70

Cumulative event rainfall
(mm)

≤ 150 0 0 0 0 0 0 0

150–200 0 0.192 0 0 0 No data 0

200–250 0 0.13 0.2 0.4 No data No data 0

250–300 No data 0.167 0 0.667 0 No data 0

300–350 0 No data 0.333 0.333 0 No data No data

350–400 No data 0 1 0.333 No data No data No data

400–450 No data 1 0.25 No data 1 No data 1

> 450 No data 1 No data 1 1 1 1

>450
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Fig. 8 Graph showing the results of the two-dimensional Bayesian model for different hourly maximum rainfall and cumulative event rainfall
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approximately 2–19 landslides (Martelloni et al. 2012; Lagomarsino
et al. 2013; Segoni et al. 2015a, b, 2018a) or local occurrences of
landslides (Tiranti and Rabuffetti 2010; Tiranti et al. 2013, 2014) can
be observed at the “watch” level. However, there are cases where
landslides did not occur, even in conditions that exceeded the ED
threshold (Fig. 10). When constructing LEWSs, other variables
conveying useful information about the potential onset of land-
slides could be also the antecedent rainfall and the hourly maxi-
mum rainfall. However, the ED threshold values do not
incorporate these two rainfall variables. In this study, we identified

the rainfall conditions with a high probability of landslide occur-
rence and used these levels to classify the warning levels. The level
of “warning” and “severe warning” in the LEWS crisis alerting
phase can be set using the Bayesian method (Table 10).

Bayesian results of rainfall conditions for the landslide early warning
system
Previous studies used a one-dimensional Bayesian model to ex-
amine cumulative event rainfall, rainfall duration, rainfall intensi-
ty, 14-day antecedent rainfall, and 30-day antecedent rainfall based

Table 8 The results of the two-dimensional Bayesian model for different 3-day antecedent rainfall and cumulative event rainfall

(P(A|B,C)) 3-day antecedent rainfall (mm)
≤ 50 50–100 100–150 150–200 200–250 250–300 > 300

Cumulative event
rainfall (mm)

≤ 150 0 0 0 0 0 0 0

150–200 0 0 0.667 0.667 0 1 No
data

200–250 0.03 0 1 0.5 No data No data No
data

250–300 0.105 0.75 0.333 No data No data No data No
data

300–350 0.125 No data 1 No data No data No data No
data

350–400 0 0.5 No data No data 1 No data No
data

400–450 0.4 No data 1 1 No data No data 1

> 450 1 1 1 No data No data No data No
data
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Fig. 9 Graph showing the results of the two-dimensional Bayesian model for different 3-day antecedent rainfall and cumulative event rainfall
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on the daily rainfall (Berti et al. 2012; Robins 2016; Gonzalez and
Caetano 2017; Dikshit et al. 2018; Do and Yin 2018). In this study,
rainfall intensity, the hourly maximum rainfall, and the 3-day
antecedent rainfall, which are highly correlated with landslide
occurrence, were added to the two-dimensional Bayesian model,
while the 30-day antecedent rainfall, which was not highly corre-
lated with landslide occurrence, was excluded. In previous studies,
the two-dimensional Bayesian model was only used for calculating
the probability of landslide occurrence with the specific rainfall
conditions of rainfall intensity vs. duration or cumulative event
rainfall vs. duration. However, in this study, we tried to reflect the
extreme condition of event rainfall and the initial condition of
event rainfall by using hourly maximum rainfall and antecedent
precipitation, so the two-dimensional Bayesian model dealt with
cumulative event rainfall vs. hourly maximum rainfall and cumu-
lative event rainfall vs. 3-day antecedent rainfall (Table 11).

The ED threshold based on rainfall-triggered landslide shows the
rainfall characteristics when landslides begin to occur. The Bayesian
model can identify the rainfall variable’s range with a high probability
of landslide under conditions above the ED threshold. The Bayesian
model results have the advantage of providing the “warning” and
“severe warning” levels for a landslide early warning system. The study
areas of Berti et al. (2012) (the Emilia–Romagna region, Italy) and
Robins (2016) (Papua NewGuinea) were more extensive than this study

area, and their time unit was daily rainfall, not an hourly basis. In
particular, Berti et al. (2012) used the probabilities of landslide occur-
rence of 5% and 10% or more as the landslide predictive warning level.
In this study, we used hourly rainfall data instead of daily rainfall data.
Furthermore, we determined a high probability of landslide occurrence
using rainfall variables, including “the rainfall intensity vs. duration”
and “the cumulative event rainfall vs. duration,” as well as “the hourly
maximum rainfall vs. cumulative event rainfall” and “the 3-day ante-
cedent rainfall vs. the cumulative event rainfall.” The results shown in
Table 10 suggest that landslide occurrence probabilities of 40–90% and
90–100% should be classified as the “warning” and “severe warning”
levels, respectively.

Determining the probability of landslide occurrence based on
rainfall conditions for local regions, as was performed in this
study, can increase the detail and accuracy of landslide crisis
alerts. By applying all the rainfall conditions with 90–100% and
40–90% probabilities of landslide occurrence, as shown in
Table 10, we accurately hindcasted 743 out of the 757 landslides
(98.2%) that occurred in Chuncheon between 1999 and 2017. How-
ever, this study is limited in that the model fit evaluation was
conducted with the same dataset used for the threshold definition.
For this reason, we must conduct model prediction performance
for further study by using future data that is not utilized for the
model construction. When all the cases satisfy either of the rainfall

Fig. 10 ED threshold (12EDtotal) for landslides in Chuncheon

Table 9 A four-level scheme for a landslide early warning system

Level Names used for the level Thresholds

Lowest level “Normal” When it starts in the summer season and under the 12EDtotal thresholds

Second level “Watch” Over the 12EDtotal thresholds

Third level “Warning” 40–90% probability of landslide occurrence (refer to Table 10)

Highest level “Severe warning” 90–100% probability of landslide occurrence (refer to Table 10)
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conditions corresponding to the “warning” and “severe warning”
levels shown in Table 10, we refer to the “warning and severe
warning” levels shown in Table 12. As a result of analyzing the
POD and the POFA for “warning and severe warning” levels, the
POD is 0.976, but the POFA is 0.397 (Table 12). If these two warning
levels are separated, the POD and POFA are 0.714 and 0.474 for the
“warning” level, and 0.571 and 0 for the “severe warning” level,
respectively. If a Bayesian probability model is applied to locations
where the leading cause of landslides is rainfall, the rainfall con-
ditions with a high probability of landslide occurrence could serve
as the criteria for the “warning” level or “severe warning” level in
landslide early warning systems.

Conclusion
This study analyzed ED thresholds for predicting landslides and
determined the rainfall conditions with a high probability of land-
slide occurrence. We propose the ED thresholds to be used to set
the level of the landslide warning. First, to improve the hit ratio of
predictive alarms, the ED thresholds with the highest skill score
were identified. Using the two optimal equations, we determined
the level of “watch” for the LEWS. Thus, when the rainfall

condition is above the ED threshold the “watch” level is issued.
However, this case was identified only using the characteristics of
rainfall events when landslides occurred, and we noted that land-
slides did not occur even though the rainfall was above the thresh-
old. A probabilistic method, such as a Bayesian model, can
overcome this limitation.

Second, we identified the probability of landslide occurrence as
one-dimensional and two-dimensional Bayesian models by in-
cluding not only the rainfall conditions of the landslide but also
the rainfall conditions of non-landslides. The Bayesian model can
reflect the rainfall intensity, rainfall duration, and cumulative
event rainfall, which are directly related to the occurrence of
landslides, as well as the 3-day antecedent rainfall and hourly
maximum rainfall. Therefore, the “warning” and “severe warning”
levels are proposed based on the rainfall conditions with 40–90%
and 90–100% probabilities of landslide occurrence, respectively.
As a result of model fit verification, it was possible to discern
98.2% of the landslides that occurred in Chuncheon, Republic of
Korea, between 1999 and 2017 by using the “warning” and “severe
warning” levels. The false alarm rates are 47.4% and 0% in the
“warning” level and the “severe warning” level, respectively.

Table 10 Probability of landslide occurrence depending on rainfall variables

Rainfall variable 40–90% probability of landslide occurrence:
warning

90–100% probability of landslide occurrence:
severe warning

Cumulative event rainfall 350 mm < E ≤ 450 mm 450 mm < E

Cumulative event rainfall—rainfall duration 200 mm < E ≤ 250 mm and 12 h < D ≤ 24 h 250 mm < E and 96 h <D ≤ 120 h

250 mm < E ≤ 450 mm and 72 h < D ≤ 96 h

Rainfall intensity—rainfall duration 2 mm/h < I ≤ 4 mm/h and 96 h <D ≤ 168 h 4 mm/h < I ≤ 8 mm/h and 96 h <D ≤ 120 h

4 mm/h < I ≤ 6 mm/h and 72 h <D ≤ 96 h 6 mm/h < I ≤ 10 mm/h and 48 h <D ≤ 72 h

Cumulative event rainfall—hourly maxi-
mum rainfall

200 mm < E ≤ 300 mm and
40 mm <Mh ≤ 50 mm

400 mm < E ≤ 450 mm and 50 mm <Mh

Cumulative event rainfall—3-day
antecedent rainfall

250 mm < E ≤ 400 mm and
50 mm < A3 ≤ 100 mm

300 mm < E and 100 mm < A3

150 mm < E ≤ 250 mm and
100 mm < A3 ≤ 200 mm

150 mm < E ≤ 200 mm and
250 mm < A3 ≤ 300 mm

Table 11 Rainfall variables used for the Bayesian model

Reference Identification of rainfall event Rainfall variables
1D Bayesian model 2D Bayesian model

Berti et al. (2012) Interpretation by the authors (Aleotti 2004) E (mm), D (days), I (mm/day),
A14 (mm), A30 (mm)

I (mm/day) and D (mm)

Robins (2016) The use of multiple time frames (Frattini et al.
2009)

E (mm), D(days) E (mm) and D (days)
I (mm/day) and D (days)

González and Caetano
(2017)

Not mentioned I (mm/day) I (mm/day) and D (days)

Dikshit et al. (2018); Dikshit
and Satyam (2019)

Total number of consecutive days of rainfall E (mm), D (days), I (mm/day) I (mm/day) and D (days)

Do and Yin (2018) Interpretation by the authors (Aleotti 2004) I (mm/day) I (mm/day) and D (days)

This study Non-rainfall used as criterion to truncate the
rainfall sequence (Brunetti et al. 2010)

E (mm), D (hours), I (mm/h),
Mh (mm),

A3 (mm), A14 (mm)

E (mm) and D (hours)
I (mm/h) and D (hours)
E (mm) and Mh (mm), E
(mm) and A3 (mm)

Mh, hourly maximum rainfall in a rainfall event; A3, 3-day antecedent rainfall before a rainfall event; A14, 14-day antecedent rainfall; A30, 30-day antecedent rainfall
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This study is meaningful in that it proposes to apply the ED thresh-
olds and Bayesian probability models to categorize warning levels of a
landslide early warning system. The results of this studymay inspire the
collective use of deterministic and probabilistic methods to construct
such early warning systems. The same research methodology can be
applied to other regions in future studies.
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