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Application of hydrological modelling for temporal
prediction of rainfall-induced shallow landslides

Abstract In some rainfall-triggered landslides, intensity-duration
thresholds can have limited prediction ability; therefore, investi-
gation of alternative approaches that can be used for temporal
prediction of rainfall-induced landslides is needed. This paper
presents a methodology for predicting rainfall-induced shallow
landslides based on a lumped conceptual hydrological model.
The production storage level during the rainfall event and the
rainfall sum during the event are used for landslide prediction.
Based on these two hydro-meteorological variables a threshold is
defined that could be used for rainfall-induced landslides predic-
tion as part of an early warning system. The presented methodol-
ogy is tested using the meso-scale Selška Sora River catchment
case study in western Slovenia where 20 active landslides from the
Slovenian National Landslide Database are used to calibrate and
evaluate the methodology performance. The results are compared
to three different (i.e. local, regional, and global) intensity-
duration thresholds. The results of the presented approach are
superior in terms of several goodness-of-fit criteria compared to
tested local and global ID thresholds. Because only daily rainfall,
evapotranspiration, and discharge data are needed to calibrate the
selected hydrological model and only daily rainfall and evapo-
transpiration to run the model, the presented approach could also
be useful for data-scarce areas where detailed physically based
landslide prediction models that require many data cannot be
constructed. Moreover, we have also derived the probabilistic
version of the proposed threshold for triggering of shallow land-
slides using copula functions.

Keywords Hydrological model . Lumpedmodel . Shallow
landslides . Intensity-duration threshold . Rainfall . Catchment
scale

Introduction
Rainfall-induced landslides and debris flows are one of the most
frequent geo-hazards that can cause large economic damage and
can even be responsible for human casualties (e.g. Haque et al.
2016; Mikoš et al. 2004; Petley 2012). Therefore, reliable early
warning systems (EWS) are needed in order to issue warnings
on time and consequently reduce the number of casualties and
economic damage. Often, empirical rainfall thresholds (also
known as intensity-duration (ID) curves or thresholds) are used
as part of early warning systems for shallow landslides and debris
flows (e.g. Huang et al. 2015; Liu et al. 2016; Mathew et al. 2014;
Segoni et al. 2014). However, as recently pointed out by Bogaard
and Greco (2018), ID thresholds have some limitations that should
be taken into consideration and the use of these thresholds as part
of the EWS should be taken with more caution. Some definitions
of rainfall thresholds consider also antecedent rainfall (e.g. Aleotti
2004). However, this approach only considers rainfall in a selected
time-period (e.g. 5 or 10 days) before the event without consider-
ation of the complex hydrological processes (at least, e.g.

evapotranspiration) in the catchment area. Moreover, the majority
of ID thresholds developed so far do not apply antecedent condi-
tions as well as hillslope (hydrological) processes despite the fact
that these are important for landslide initiation (Bogaard and
Greco 2018). Moreover, Bogaard and Greco (2018) also argued that
ID thresholds for short and long rainfall durations have limited
physical meaning. The alternative for the prediction of landslide
initiation is the use of spatially distributed physically based models
that require large data input (e.g. Aristizabal et al. 2016; Bogaard
and Greco 2018; Peres et al. 2018). Data collection and model
calibration is often very complex, which consequently means that
physically based models are not often incorporated in the
operational EWS, especially at larger spatial scales. Thus,
Bogaard and Greco (2018) concluded that more focus should be
given on the development of conceptual models for regional land-
slide hazard assessment that would also take into consideration
hydrological processes that occur during the rainfall events that
trigger landslides. Some examples where more focus is on hydro-
logical processes at larger spatial scales and the conceptual frame-
work of the triggering mechanisms can be found in the literature.
For example,, the Norwegian forecasting and warning service for
rainfall- and snowmelt-induced landslides uses Hydrologiska
Byråns Vattenbalansavdelning (HBV) (distributed 1 km2 grid ver-
sion of the conceptual HBV model is used) and S-flows models to
calculate water and heat dynamics (Krøgli et al. 2018). Based on
the models’ results relative water supply and degree of soil water
saturation are used in combination with pre-defined thresholds
for landslide forecasting (Krøgli et al. 2018). However, definition of
the thresholds lacks in objectivity (Krøgli et al. 2018). Moreover,
Segoni et al. (2018) recently used average soil moisture to enhance
the performance of the regional-scale landslide EWS where soil
moisture estimates were calculated using the topographic kine-
matic approximation and integration (TOPKAPI) model
(Ciarapica and Todini 2002). The incorporation of soil moisture
in the EWS reduced the number of false and missed alarms
(Segoni et al. 2018). However, a soil map and a land-use map are
among other input data needed to derive the TOPKAPI parame-
ters (Ciarapica and Todini 2002).

According to the reviewed literature and due to the need to
replace empirical ID thresholds with a more hydrologically based
approach (as suggested by Bogaard and Greco 2018), we propose
an approach to rainfall-induced shallow landslides prediction
using information obtained from a lumped conceptual hydrolog-
ical model (Perrin et al. 2003; Pushpalatha et al. 2011; Valery et al.
2014a, b). Additionally, the daily time step was used to reduce the
amount of required input data. Thus, the main aim of this study
was to evaluate the performance of the proposed approach that
applies daily rainfall data and modelled daily production store (i.e.
reservoir) level for predicting rainfall-induced shallow landslides.
The methodology is tested using the Slovenian National Landslide
Database and the active landslide data provided for the MASPREM
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project (e.g. Jemec Auflič et al. 2016; Komac and Hribernik 2015;
Rosi et al. 2016) on a meso-scale catchment located in the western
mountainous part of Slovenia. The proposed methodology perfor-
mance is compared to the ID thresholds that were developed for
specific river basins in Slovenia (Rosi et al. 2016) and the global ID
threshold suggested by Guzzetti et al. (2008).

Data and methods

Hydrological modelling
In this study, we tested two versions of a lumped conceptual
hydrological model that has been developed by the Institut na-
tional de recherche en sciences et technologies pour
l’environnement et l’agriculture (IRSTEA) hydrology group (e.g.
Perrin et al. 2003; Pushpalatha et al. 2011; Valery et al. 2014a, b). We
compared another simple model version named Génie Rural à 4
paramètres Journalier (GR4J) and another complex version named
Cema Neige Génie Rura l à 6 paramètres Journal ier
(CemaNeigeGR6J). Both hydrological model versions are imple-
mented in R software airGR package (Coron et al. 2017a; Coron
et al. 2017b). The GR4J model was proposed by Perrin et al. (2003)
with an aim to obtain model robustness with a small number of
model parameters (i.e. the model uses 4 parameters). Figure 1
shows schematic representation of the GR4J model structure
where not all model steps are shown but only those relevant for
this specific case study (i.e. routing steps are not shown). The GR4J
model was developed based on the three-parameter Génie Rural à
3 paramètres Journalier (GR3J) version (Edijatno et al. 1999) and
improved low-flow simulations (Perrin et al. 2003). The only
required input data needed to model the discharge (Q) are precip-
itation (P) and potential evapotranspiration (Perrin et al. 2003). In
this study, we used reference evapotranspiration data (PE) since
reference evapotranspiration data calculated using the Penman-
Monteith method and potential evapotranspiration calculated
using the Oudin et al. (2005) method yielded similar behaviour.
Based on these two input variables (i.e. P and PE), the model
calculates net rainfall (Pn on Fig. 1). If net rainfall is not zero, a
part of net rainfall is used to fill the production store (Ps on Fig. 1)
(i.e. a conceptual underground reservoir) (Perrin et al. 2003). The
production store is emptied either by the actual evaporation rate
(Es on Fig. 1) in case that a net evapotranspiration capacity (En on
Fig. 1) is not zero or by percolation (Perc on Fig. 1) from the
reservoir (Perrin et al. 2003). Percolation and the difference be-
tween net rainfall and rainfall that is used to fill the production
store (Pn-Ps on Fig. 1) is then used for further discharge calcula-
tions using several routing steps that are not the primary focus of
this study where the routing reservoir is also used (Perrin et al.
2003). Additional description of routing can be found in Perrin
et al. (2003). It should also be noted that Perc is always smaller
than S and that S cannot be larger than X1 (Perrin et al. 2003).
Moreover, all the input data (PE, P, and also Q) influence the
production storage level S on a given day, which means that the
model structure shown in Fig. 1 takes into account several hydro-
logical processes that occur in the catchment, while production
storage can be regarded as catchment storage. As mentioned, the
GR4J model uses 4 parameters, of which from this study’s per-
spective the most important is the maximum production store
capacity (X1 on Fig. 1), the other three parameters (X2, X3, X4) are
used for routing calculations (Perrin et al. 2003). A detailed

description of the GR4J model is available in Perrin et al. (2003).
Additionally, we also tested the CemaNeigeGR6J model that also
includes the snow accounting routine (Valery et al. 2014a, b). This
snow routine adds two more parameters to the GR6J model ver-
sion (i.e. in total eight parameters are used by the CemaNeigeGR6J
model since the GR6J model adds two more parameters to the
GR4J model version and thus GR6J uses 6 parameters). Valéry
et al. (2014a) provide detailed description of the snow routine used
in the CemaNeigeGR6J model and Pushpalatha et al. (2011) pro-
vide a description of the Génie Rural à 6 paramètres Journalier
(CR6J) model. The CemaNeigeGR6J model version additionally
requires mean air temperature (T) data and the hypsometric curve
of the catchment in order to be able to calculate Q (Coron et al.
2017a; Coron et al. 2017b; Valéry et al. 2014a). It should be noted
that also the CemaNeigeGR6J model version uses the production
store reservoir as the GR4J model version, which is shown in Fig. 1.
Table 1 shows an overview of input data needed to run GR4J and
CemaNeigeGR6J models.

Calibration of both model versions was performed using the
methodology proposed by Michel (1991), which is implemented is
R software airGR package (Coron et al. 2017a; Coron et al. 2017b).
We selected the Nash-Sutcliffe (NS) coefficient (Nash and Sutcliffe
1970) as the efficiency criterion. Perrin et al. (2003) provide initial
parameter values and their ranges needed for the model calibra-
tion. The NS criterion was also used for comparing the models’
ability to predict Q.

Data
The methodology was tested on the meso-scale Selška Sora River
catchment located in the mountainous western part of Slovenia
(Fig. 2). The Selška Sora River is part of the Sava River catchment
that drains into the Danube River. In general, the area belongs to
the pre-alpine region, and it extends from 334 to 1676 m a.s.l. The
study area is characterised by a diverse morphology and heterog-
enous geological settings, which make the area prone to landslides.
Geologically, the study area is constituted mainly of Mesozoic
carbonate rocks (limestone and dolomite), Mesozoic clastites
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Fig. 1 Schematic representation of the conceptual hydrological model version
GR4J up to the routing part of the model (adopted from Perrin et al. 2003)
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(shale, siltstone, marlstone, greywacke, sandstone, conglomerate,
breccias, tuff), and Permian and Carboniferous clastites
(claystone, sandstone, shale). The valleys are mainly filled by
alluvial deposits, and the feet of the slopes are regularly covered
by scree, both of Quaternary age (Grad and Ferjančič 1974). The
soil depth varies from 1 to 3 m and, in some locations, more than
10 m. Landslides in the study area usually occur at the end of
summer and in autumn, from September to November, due to
particular weather conditions with heavy rain (Jemec and Komac
2013). The entire Selška Sora River catchment up to the confluence
with the Poljanska Sora (P. Sora) River catchment was selected
(Fig. 2). The basic characteristics of the selected area are shown in
Table 2. This pre-alpine area with mountainous climate was select-
ed since it is one of the areas with the highest landslide density in
Slovenia (Zorn and Komac 2008).

Table 3 shows the basic characteristics of the data used in this
study. The selected study period was from 2005 to 2014 and the
daily time step was used. The data period from 2005 until 2006
was used as the warm-up period of the hydrological model.

Daily Q, P, T and PE data from different stations located in
the Selška Sora River catchment or close to it were used in this
study, since there is no station that would have all the required
data available. Therefore, we used the discharge data from the
Železniki gauging station. The location of this station is also
indicated in Fig. 2 and has a catchment area of 104 km2. Pre-
cipitation data were used from the Davča rainfall station (sta-
tion elevation is 987 m a.s.l.). Since there is no station available
with air temperature and evapotranspiration data in the Selška
Sora River catchment, we used the data from the closest stations
with data available (e.g. Maček et al. 2018 provided a description
of stations with reference evapotranspiration data). Air temper-
ature data were obtained from the Bohinjska Češnjica meteoro-
logical station located less than 8 km from the Selška Sora River
catchment boundary at 596 m a.s.l. and is not shown in Fig. 2.
Moreover, evapotranspiration data were gathered from the Lju-
bljana meteorological station that is located less than 20 km
from the Selška Sora River catchment boundary at 299 m a.s.l.,
and is also not shown in Fig. 2.

In order to test the performance of the ID thresholds, we also
used high-frequency 5-min rainfall data measured at the loca-
tion of the Davča rainfall station (shown in Fig. 2). It should be
noted that pluviographic stations that are used to measure 5-
min rainfall data are not capable of measuring snow precipita-
tion. Thus, snow events (i.e. three landslide events were includ-
ed in the Slovenian national database) were excluded from the
analysis in this study.

The landslides considered in this study were compiled from
different sources (Jemec Auflič et al. 2016; Komac and Hribernik
2015; Rosi et al. 2016). It should be noted that the database

Table 1 Overview of input data used in two different model versions (i.e. X ind-
icates that these data are needed to run the model)

Variable GR4J model CemaNeigeGR6J model

P X X

PE X X

T X

Hypsometric curve X

Fig. 2 The Selška Sora River catchment with the elevation map [m a.s.l.] and with indicated locations of landslides included in the Slovenian National Landslide Database,
the rainfall gauging station and the discharge gauging station
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entries are not verified for this study. This could consequently
mean that either the landslide location is not correctly defined
or the triggering date is not valid. However, the assumption
made in this study was that the landslide database entries were
correct. Only shallow landslide events from the joint database
were considered in this study, but not also large deep-seated
landslides, debris flows, or rockfalls, which means that events
can be classified as shallow landslides (Jemec Auflič et al. 2016).
In the presented study, we focus on landslides that occurred in
the Selška Sora River catchment up to the confluence with the P.
Sora River catchment (Fig. 2). After brief pre-processing (e.g.
merging duplicate events, removing events where 5-min rainfall
data were not available) of the landslides’ data we defined
altogether 20 events that were used for comparing ID threshold
performance with the methodology proposed in this study.

Prediction of rainfall-induced shallow landslides
The next steps were carried out to test the performance of the
proposed approach for rainfall-induced landslide prediction:

– The hydrological model was calibrated using daily data from
2007 to 2014 (2005–2006 data were used for model warm-up).

– Rainfall events were determined based on the daily data. Two
rainfall events were separated in case of no rain period (NRP)
equal to 1 day.

– Based on the start and end of the rainfall event the rainfall sum
during the event (Psum) and the sum of the production store
level (i.e. reservoir level S as shown in Fig. 1) during the event
(Rsum) were calculated.

– Psum and Rsum were plotted on a scatter diagram and a
Psum-Rsum threshold was defined with the aim to maximise
the critical success index (CSI) since this criterion penalises

both false positive and false negative prediction results
(Formetta et al. 2016). We decided to use the linear function
between two selected variables due to the simplicity of the
selected threshold. The following equation was used: Psum =
a*Rsum + b, where a and b (i.e. slope and intercept of the
linear equation) were determined in the process of maximiz-
ing the CSI.

– CSI, success index (SI), distance to perfect classification
(D2PC), accuracy (ACC), positive prediction power (PPP),
and negative prediction power (NPP) (detailed description is
provided by Formetta et al. 2016 and Martelloni et al. 2012)
were used for comparison of the proposed approach with the
ID thresholds. Moreover, Table 4 shows equations for the
selected performance indices, their range, and the optimal
index value. Furthermore, tp, tn, fp, and fn indicate true pos-
itive (i.e. the landslide occurred and was predicted), true neg-
ative (i.e. the landslide did not occur and was not predicted),
false positive (i.e. landslide did not occur and was predicted),
and false negative (i.e. the landslide occurred and was not
predicted) cases, respectively.

For the ID threshold evaluation, we used the high-frequency
rainfall data from the Davča gauging station. Rainfall events were
separated in case of NRP equal to 22 h. This value was selected
since it was also used by Rosi et al. (2016) in order to not impact
the ID threshold performance. However, we argue that the use of
the 24 h NRP would not significantly affect the results. Rainfall
Intensity Summarization Tool (RIST) was used for 5-min data pre-
processing (USDA, 2014). The next ID thresholds that were pro-
posed by Rosi et al. (2016) for the Sava River catchment and the
entire Slovenia were used: I = 53.2 ×D−0.84 (Sava River) and I =
37.7 ×D−0.68 (Slovenia), respectively. Additionally, we also tested
the performance of the global ID threshold that was suggested by
Guzzetti et al. (2008) and was also used by Bezak et al. (2016): I =
2.2*D-0.44 (Global Threshold).

Probabilistic Psum-Rsum threshold definition
Using the approach described in BPrediction of rainfall-
induced shallow landslides^ one can determine one specific
Psum-Rsum threshold that can be used for predicting rainfall-
induced landslides. However, if the probabilistic approach is
used as part of the EWS, as this is often the case in the
rainfall-induced EWS (e.g. Wei et al. 2018), and in the case of
flood EWS (e.g. Petan et al. 2015), we propose a copula
function-based (e.g. Salvadori et al. 2007) approach:

Table 2 Basic characteristics of the Selška Sora River catchment

Catchment area 224.3 km2

Minimum elevation [m a.s.l.] 334

Mean elevation [m a.s.l.] 826

Maximum elevation [m a.s.l.] 1676

Dominant land-use type Forest (77%)

1 h, 6 h, 12 h and 24 h rainfall with
100-year return period according to the
Davča rainfall station
(intensity-duration-frequency (IDF)
curve)

97 mm, 181 mm,
248 mm, and
274 mm

Table 3 Descriptive statistics of daily data used in this study

Q [m3/s] P [mm] T [°C] PE [mm]

Station Železniki Davča Bohinjska Češnjica Ljubljana

Minimum 0.4 0 −13.4 0

Mean 4.1 5.3 8.8 2.2

Median 2.4 0 9.5 1.7

Standard deviation 5.5 12.5 7.9 1.8

Maximum 76.2 228 27.3 7.7
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– Fit a 2-dimensional copula function to the Psum-Rsum sample
(SALL) (i.e. all determined events rather than merely the ones
that are classified as landslides) using a suitable marginal

distribution function. Test the adequacy of selected copulas
and select the most suitable one for this application according
to the selected goodness-of-fit test and the selection criterion.

Table 4 Selected criteria indices that were used in this study

Index Equation Range Optimal value

Critical success index (CSI) CSI ¼ tp
tpþfpþfn

[0,1] 1

Success index (SI) SI ¼ 1
2

tp
tpþfn þ tn

fpþtn

� �
[0,1] 1

Distance to perfect classification (D2PC) D2PC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tp

tpþfn

� �2
þ fp

fpþtn

� �2
r

[0,1] 1

Accuracy (ACC) ACC ¼ tpþtn
tpþfpþfnþtn

[0,1] 1

Positive prediction power (PPP) PPP ¼ tp
tpþfp

[0,1] 1

Negative prediction power (NPP) NPP ¼ tn
fnþtn

[0,1] 1
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Fig. 3 Comparison between the modelled and observed discharge values at the location of the Železniki discharge gauging station using the GR4J model structure for the
period from 2007 until 2014
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Repeat the procedure for the Psum-Rsum events that are clas-
sified as landslides according to the landslides database
(SLAND). Thus, two copula models are constructed using all
events rather than only those that are classified as landslides.

– Using the fitted copula model generate a new SALL sample.
Using the inverse marginal distribution function transform
the generated values from the copula space [0, 1] to the real
space. Repeat the procedure for the SLAND.

– For each generated SLAND, connect this value (i.e. event) to the
closest generated SALL value using, for example, the nearest
neighbour approach (e.g. Elseberg et al. 2012).

– Determine the Psum-Rsum threshold intercept (i.e. inter-
cept of the linear equation since the linear equation is
used for threshold definition in this study) parameter with
the aim to maximise the CSI criterion. In this case study,
the slope of the linear equation was determined using the
procedure described in BPrediction of rainfall-induced
shallow landslides^ where the linear equation was used.
For the definition of the probabilistic threshold we did
not change the slope parameter that was determined in
BPrediction of rainfall-induced shallow landslides^.

– Repeat the procedure 10,000 times in order to obtain a large
sample of Psum-Rsum threshold intercept values. Using the
sorted sample one can estimate, for example, 10%, 50%, and
90% confidence thresholds. Since the slope of the linear equa-
tion is constant during the iterations, this will yield parallel
thresholds.

In this study, we tested three copula functions from the Archi-
medean family, namely the Frank, Clayton, and Gumbel-Hougaard
copula functions. Salvadori et al. (2007), for example, provide

detailed description of these copulas and the equations. All the
calculations using copula functions carried out in this study were
done using the R copula package (e.g. Kojadinovic and Yan 2010).
The parameters of copulas were estimated using the maximum
pseudo-likelihood approach that is also implemented in the afore-
mentioned package (Kojadinovic and Yan 2010). All three tested
bivariate copula functions have one parameter (e.g. Salvadori et al.
2007). As mentioned two different copulas were fitted to the data.
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Fig. 4 Psum and Rsum values for the GR4J (left) and CemaNeigeGR6J (right) models. Red triangles indicate landslide events according to the Slovenian National
Landslide Database. Black circles indicate all 463 rainfall events. Blue lines indicate the proposed Psum-Rsum threshold
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Fig. 5 Presentation of the cumulative daily Psum and Rsum values for 20 events
that were characterised as landslides according to the landslide database for the
GR4J model

Original Paper

Landslides 16 & (2019)1278



The first copula was fitted to all events (i.e. 463 events for the
period from 2006 until 2014) and the second copula function was
fitted to landslide events only (i.e. 20 events). The Cramér-von
Mises test (Sn) was applied to test the adequacy of different copula
models (Genest et al. 2009). The selected test compares empirical
copula with the parametric estimate of the copula defined under
the null hypothesis (Kojadinovic and Yan 2010). If more than one
of the tested copula functions is not rejected by the selected
goodness-of-fit test with the selected significance level, the k-fold
cross-validation method can be used as a selection criterion
(Grønneberg and Hort 2014). Moreover, the non-parametric dis-
tribution function defined by Hutson (2002) and Serinaldi (2009)
was used in this study.

Results and discussion

Psum and Rsum threshold definition
In the first part of the study, we calibrated GR4J and
CemaNeigeGR6J models using the methodology and data de-
scribed in BData and methods^. Figure 3 shows the comparison
between simulated and modelled discharge values for the selected
period using the GR4J model structure. It also shows seasonal
comparison and non-exceedance probability comparison of the
measured and modelled data. The calculated Nash-Sutcliffe coef-
ficient for the period from 2007 until 2014 using the GR4J model
was 0.74 (i.e. NS ranges from −∞ to 1 where NS value 1 indicates a
perfect fit between the modelled and observed values). Interest-
ingly, the more complex CemaNeigeGR6J model structure yielded
a relatively similar performance as the GR4J model. The NS coef-
ficient for the eight-parameter model was 0.77, which indicates
only a slight improvement of this model version over the four-
parameter model version. However, there was a relatively large
difference in the calibrated model parameter that defines the
maximum production storage level (i.e. X1 on Fig. 1) despite the
fact that both model versions use the same production store
structure (Pushpalatha et al. 2011). For the GR4J and
CemaNeigeGR6J models the estimated parameter value was
791 mm and 377 mm, respectively. However, these values are in
the range of the 80% confidence intervals and the X1 for the
CemaNeigeGR6J model is similar to the median value provided
by Perrin et al. (2003).

We firstly tried to use the production store level S and rainfall
amount P at the triggering date of the landslide events for the

threshold definition. However, the results showed that the rainfall
amounts for the triggering dates were relatively small, indicating
that there could be some issues with the database triggering dates
(e.g. landslides in remote areas could be spotted a few days after
the actual triggering day). Moreover, if we considered the rainfall
amount and production store level one day before the triggering
date, the results for some cases improved but not for all. This
confirmed potential database issues. Since most events were trig-
gered during the autumn period where for the selected case study
(i.e. located in the temperate continental climate), we often have
long duration rainfall events and because also maximum 1-h
rainfall intensities during the events were relatively small we
assumed that long duration rainfall events are the main triggering
mechanism of the landslides considered. Therefore, we decided to
use the rainfall sum during the entire rainfall event. Consequently,
we also used the production store sum during the event (i.e. Rsum)
since such variable definition improved the threshold perfor-
mance. It should be noted that Rsum is not only related to Psum
(i.e. Pearson correlation coefficient 0.75) but also to discharge
during the event (i.e. Pearson correlation coefficient 0.59), and
evapotranspiration during the event (i.e. Pearson correlation co-
efficient 0.46). The positive correlation between pairs of these
variables can mainly be attributed to the fact that longer duration
events also yield higher absolute values. This indicates that the
selected variable (i.e. Rsum) takes into account the hydrological
processes occurring in the catchment rather than rainfall charac-
teristics only (e.g. duration and amount). Moreover, this variable
can be regarded as an overall indicator of the wetness increase in
the catchment during the entire rainfall event.

We also checked the maximum 1-h rainfall intensity during the
selected 20 landslide events. We found that for these events the
intensities ranged from 2.2 mm/h to 84 mm/h. However, the
median value was only 8.9 mm/h, which is significantly lower than
the 2-year return period rainfall intensity characterised by the 1-h
rainfall duration derived from the IDF curve (i.e. for the Davča

Table 5 Several performance criteria that were derived using the defined Psum-
Rsum threshold for the GR4J and CemaNeigeGR6J models. Performance criteria
ranges and optimal values are given in Table 4

Goodness-of-fit
criterion

GR4J
model

CemaNeigeGR6J
model

SI 0.862 0.839

CSI 0.469 0.483

D2PC 0.251 0.301

PPP 0.556 0.609

NPP 0.989 0.986

ACC 0.963 0.968
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Fig. 6 Presentation of the landslide events that occurred in the adjacent P. Sora
River catchment (indicated with green crosses) using the GR4J model
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station this value is 27 mm/h). Moreover, only for one event out of
20 the maximum 1-h rainfall intensity exceeds the 2-year return
period value. Thus, we decided not to incorporate 1-h rainfall
intensities in the proposed methodology.

In the next step, we defined rainfall events with the application
of the selected NRP (i.e. 1 day). In the 8-year period (i.e. 2007–
2014), 463 events were determined, which means approximately 58
rainfall events per year. Based on the start and end of each rainfall
event we calculated the rainfall sum during the event (Psum) and
the production store level sum during the event (Rsum). Figure 4
shows the calculated Psum and Rsum values in mm for both tested
hydrological model structures. Based on the maximised CSI crite-
rion, we also defined two Psum-Rsum thresholds, which are shown
in Fig. 4. For the GR4J and CemaNeigeGR6J models the threshold
equations are Psum = −0.041*Rsum + 269 mm and Psum =
−0.052*Rsum + 241 mm, respectively. We also tested the threshold
definition by maximizing the SI and D2PC criteria. However, the
defined thresholds had much lower intercept values, which conse-
quently leads to a large number of false alarms. Figure 5 shows also
the cumulative daily Psum and Rsum values in mm that are
characteristic of landslide event. Thus, it seems that the selected
threshold is perpendicular to the trajectories determined by the
cumulative Rsum and Psum values. Since an increase in Psummost
likely also increases Rsum, and Rsum cannot increase without the
precipitation input this could indicate that probability of events
that have high Rsum and low Psum (e.g. Rsum > 6000 mm and
Psum < 50 mm for the GR4J model version) is not high. Moreover,
the threshold position (i.e. negative slope value) on the Psum-
Rsum plot indicates that a rainfall-induced landslide can be

triggered either by a large rainfall input in case that Rsum is low
or by a smaller rainfall input in case that Rsum is larger.

Using the 20 landslide events that were used for the threshold
definition, which are also shown in Fig. 4, we calculated several
performance criteria (Table 5). Similarly, as for the performance of
the hydrological model in terms of its ability to predict Q values,
the performance of the proposed methodology for the prediction
of rainfall-induced landslides is quite similar to that of the GR4J
and CemaNeigeGR6J models (Table 5). We can argue that for the
Selška Sora River catchment the consideration of the snow routine
and additional hydrologic model parameters do not significantly
improve the performance results (Table 5).

We additionally investigated the events that were defined as
false positives (11 and 9 events for the GR4J and CemaNeigeGR6J
models, respectively) using the proposed approach (i.e. points
located above the defined threshold that did not result in a land-
slide event). Seven of eleven points for the GR4J model could be
associated with a landslide database entry that is related with the
adjacent P. Sora River catchment (Fig. 6). This means that the
landslide occurred in the adjacent catchment (Fig. 6). However,
at the same time, additional entries are associated with this area (P.
Sora River catchment) (Fig. 6), which would consequently lead to
an increase in the false negatives (five and six events are classified
as false negatives in Fig. 4 for the GR4J and CemaNeigeGR6J
models, respectively). Thus, we argue that the statistics shown in
Table 5 would not significantly change. If one would also want to
consider the P. Sora catchment, a more complex or a separate
hydrological model for this catchment should be constructed (i.e.
consideration of additional rainfall and discharge data). This
shows that the new proposed methodology should be developed
and applied to a regional scale of at least several 100 km2 rather
than to a local scale of a few km2 and with only few registered
active landslides. At the local scale, even a single false positive
event out of only a few registered landslides would lower the
goodness-of-fit of the proposed threshold. More case studies of
the proposed methodology are needed to test it and to clarify this
issue—the methodology applying the lumped hydrologic models
does not need distributed hydrological data but nevertheless needs
registered landslide data to test it.

Comparison with ID thresholds
In the next step of the study, we also compared the performance of
the proposed methodology that uses Psum and Rsum values in

Table 6 Several performances that were derived using two local (Sava River and
Slovenia; Rosi et al. 2016) thresholds and one global (Guzzetti et al. 2008)
threshold. Performance criteria ranges and optimal values are given in Table 4

Goodness-of-fit
criterion

Sava River
threshold

Slovenia
threshold

Global
threshold

SI 0.731 0.596 0.741

CSI 0.244 0.167 0.068

D2PC 0.501 0.800 0.469

PPP 0.323 0.500 0.068

NPP 0.982 0.972 0.997

ACC 0.946 0.965 0.548
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Fig. 7 Comparison between two local thresholds and one global ID threshold for
the Selška Sora River catchment case study

Original Paper

Landslides 16 & (2019)1280



order to predict rainfall-induced landslides with ID thresh-
olds. Figure 7 shows results for two local ID thresholds
(Slovenia and the Sava River defined by Rosi et al. 2016)
and one global (Guzzetti et al. 2008) ID threshold. For these
thresholds, the same goodness-of-fit criteria were calculated as
for the approach based on the conceptual hydrological model
(Table 6). One can notice that the proposed approach (using
Psum-Rsum threshold) generally yields better results com-
pared to the tested ID thresholds. A similar discussion about
false positive and false negative events as that provided in
BPsum and Rsum threshold definition^ is also valid for this
part of the analysis.

Psum and Rsum probabilistic threshold definition
In the final step of the study, we also computed the probabi-
listic thresholds using the approach described in BProbabilistic
Psum-Rsum threshold definition^. We tested the performance
of the one-parameter bivariate Frank, Clayton, and Gumbel-
Hougaard copula functions (e.g. Salvadori et al. 2007). The
Cramér-von Mises test (Sn) test (Genest et al. 2009) results
indicated that only the Gumbel-Hougaard copula function
could not be rejected with the selected significance level of
0.05 for SALL and SLAND sub-samples (i.e. test results with the
corresponding p-values in brackets were 0.04 (0.05) and 0.04
(0.11) for the SALL and SLAND sub-samples, respectively). More-
over, Frank (i.e. test results with the corresponding p-values
in brackets were 0.05 (0.005) and 0.05 (0.02) for the SALL and
SLAND sub-samples, respectively) and Clayton (i.e. test results

with the corresponding p values in brackets were 0.6 (1 × 10−5)
and 0.04 (0.04) for the SALL and SLAND sub-samples, respec-
tively) copulas were rejected at the selected significance level
of 0.05. This indicates that the Frank and Clayton copulas are
not suitable for the investigated sample. Moreover, test results
show that the Gumbel-Hougaard copula function gives ade-
quate fit to the data. This means this copula was used for
further calculations and we did not apply the k-fold cross-
validation method in order to select the best copula among
the Frank, Clayton and Gumbel-Houdaard copula functions.
In case that the Frank and Clayton copulas would not be
rejected by the selected statistical test, we would use the k-
fold cross-validation method to select the most suitable cop-
ula. Figure 8 shows probabilistic thresholds for 10%, 50% and
90% levels that were determined using the methodology de-
scribed in BProbabilistic Psum-Rsum threshold definition^.
One can notice that the 50% threshold (i.e. median) is located
slightly below the threshold that was defined in BPsum and
Rsum threshold definition^. The 10% threshold would slightly
increase (compared to the threshold defined in BPsum and
Rsum threshold definition^) true positive events and, on the
other hand, significantly increase false positive (i.e. false
alarm) events. The 90% threshold would decrease both true
and false positive events compared with BPsum and Rsum
threshold definition^ threshold. This can also be confirmed
by the results shown in Table 7 where we also calculated the
performance of the 10%, 50% and 90% thresholds. One can
notice that D2PC, PPP and ACC criteria results are increasing
with increasing probability. For example, this means that the
higher the threshold, the higher the PPP of the threshold. On
the other hand, SI and NPP results are decreasing with in-
creasing probability, which for example means that low
thresholds (i.e. smaller intercept values) have better NPP
while at the same time PPP is relatively low. Moreover, the
CSI that was also used to determine the deterministic thresh-
old has the optimal value somewhere between the 10% and
50% threshold (Table 7). Thus, as pointed out also by
Formetta et al. (2016), this criterion penalises both false neg-
ative and false positive predictions, which could, from the
perspective of this study, yield a more robust threshold be-
cause in any EWS too many false alarms are not desired.

Table 7 Several performance criteria that were derived for the probabilistic thre-
sholds that were defined using the copula approach. The performance criteria ra-
nge and optimal value are given in Table 4

Goodness-of-fit
criterion

10% threshold 50% threshold 90% threshold

SI 0.877 0.855 0.692

CSI 0.274 0.406 0.296

D2PC 0.177 0.253 0.600

PPP 0.288 0.469 0.533

NPP 0.993 0.988 0.973

ACC 0.903 0.952 0.959
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Fig. 8 Probabilistic 10%, 50% and 90% Psum-Rsum thresholds that were
determined using the approach described in BProbabilistic Psum-Rsum
threshold definition^. The threshold that was determined in BPsum and Rsum
threshold definition^ is also shown. GR4J model results are shown
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Conclusions
This paper presents a methodology for predicting rainfall-
induced shallow landslides, which is based on the lumped
conceptual hydrological model results. The main aim was to
propose an approach for the shallow landslide prediction that
would not use the ID thresholds, which were recently
criticised by Bogaard and Greco (2018). Therefore, we decided
to use the Rsum variable that depends on the input and
output data (i.e. P, PE and Q) that is used in the hydrological
model and takes into account the wetness increase during the
entire event. Moreover, the aim of this study was also to
propose the methodology that could easily be applied to
data-scarce areas where detailed data, which are needed to
calibrate and apply physically based models for landslide
prediction, are not available. The presented methodology is
tested using the pre-alpine meso-scale Selška Sora River
catchment case study in western Slovenia. Based on the pre-
sented results, the following conclusions can be made:

– We argue that the production store level, and consequently
Rsum, is a relatively good proxy of the hydrological conditions
in the catchment that have an important impact on landslide
triggering and can be regarded as a useful variable for
predicting rainfall-induced shallow landslides. The volume of
water in the production store reservoir (used to calculate
Rsum) is connected with rainfall, evapotranspiration, and run-
off. Due to the hydrological model structure, this kind of
information (i.e. proposed Psum-Rsum threshold) could also
be incorporated to early warning systems (EWS). Moreover,
probabilistic thresholds could be useful for this purpose. Using
rainfall and evapotranspiration forecasts and a calibrated hy-
drological model one can calculate production store and dis-
charge values for the forecasted period.

– For the selected Selška Sora case study where most of the
analysed landslides were triggered by the long-duration rain-
fall events, the Psum-Rsum combination yielded meaningful
results. However, in case that landslides are triggered by
rainfall events with different characteristics (e.g. intense
and short rainfall events), probably some other definition
of the variables should be used and an hourly model type
should be used instead of the daily model since an hourly
model with a similar structure also exists (e.g. Coron et al.
2017a; Coron et al. 2017b).

– The GR4J model structure yielded similar performance in
terms of discharge prediction (NS coefficient) and also shallow
landslide prediction (Table 5) as the CemaNeigeGR6J model
structure that also includes a snow routine and uses four
additional parameters. Thus, for areas (i.e. catchments) similar
to the Selška Sora River catchment and for lowland areas, the
GR4J should be preferred due to a more simple model struc-
ture (i.e. less parameters) and a smaller amount of input data
required (Table 1).

– The proposed Psum-Rsum threshold yielded better results in
terms of rainfall-induced shallow landslides prediction com-
pared to the ID threshold approach. Local and global thresh-
olds were tested and it seems that the selected global ID
threshold is not suitable for the Selška Sora River catchment
since it has very low PPP. Better results were obtained using
two local ID thresholds (Sava River and Slovenia).

– The proposed methodology should be additionally tested using
case studies where the landslide database is verified and there
are no issues related to the landslide location and triggering
date (e.g. a landslide could be detected a few days after the
actual event in remote areas).

Acknowledgments
This project was also approved by the International Programme
on Landslides (IPL) as IPL-226 Project (2017-2020); http://
iplhq.org/category/iplhq/ipl-ongoing-project/). We wish to thank
the Slovenian Environment Agency (ARSO) for making data pub-
licly available. Special thanks also to the Ministry of Defence and
the Administration of the Republic of Slovenia for Civil Protection
and Disaster Relief for financing the MASPREM project. The
critical and useful comments of anonymous reviewers greatly
improved this work, for which the authors are very grateful.

Funding information
The results of the study are part of the research project J1-8153
BStudying Landslide Movements from Source Areas to Zone of
Deposition using a Deterministic Approach^ that is financed by
the Slovenian Research Agency (ARRS).

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and
indicate if changes were made.

References

Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–
265. https://doi.org/10.1016/j.enggeo.2004.01.007

Aristizabal E, Velez JI, Martinez HE, Jaboyedoff M (2016) Shia_landslide: a distributed
conceptual and physically based model to forecast the temporal and spatial occur-
rence of shallow landslides triggered by rainfall in tropical and mountainous basins.
Landslides 13:497–517. https://doi.org/10.1007/s10346-015-0580-7

Bezak N, Šraj M, Mikoš M (2016) Copula-based IDF curves and empirical rainfall
thresholds for flash floods and rainfall-induced landslides. J Hydrol 541:272–284.
https://doi.org/10.1016/j.jhydrol.2016.02.058

Bogaard T, Greco R (2018) Invited perspectives: hydrological perspectives on precipita-
tion intensity-duration thresholds for landslide initiation: proposing hydro-
meteorological thresholds. Nat Hazards Earth Syst Sci 18:31–39. https://doi.org/
10.5194/nhess-18-31-2018

Ciarapica L, Todini E (2002) Topkapi: a model for the representation of the
rainfall-runoff process at different scales. Hydrol Process 16:207–229. https://
doi.org/10.1002/hyp.342

Coron L, Perrin C and Michel C (2017a) airGR: suite of GR hydrological models for
precipitation-runoff modelling. R package version 1.0.9.64. URL: https://
webgr.irstea.fr/en/airGR/

Coron L, Thirel G, Delaigue O, Perrin C, Andreassian V (2017b) The suite of lumped GR
hydrological models in an R package. Environ Model Softw 94:166–171. https://
doi.org/10.1016/j.envsoft.2017.05.002

Edijatno NND, Yang XL, Makhlouf Z, Michel C (1999) Gr3j: a daily watershed model with
three free parameters. Hydrological Sciences Journal-Journal Des Sciences
Hydrologiques 44:263–277. https://doi.org/10.1080/02626669909492221

Elseberg J, Magnenat S, Siegwart R, Nüchter A (2012) Comparison of nearest-neighbor-
search strategies and implementations for efficient shape registration. Journal of
Software Engineering for Robotics 3(1):2–12

Original Paper

Landslides 16 & (2019)1282

http://iplhq.org/category/iplhq/ipl-ongoing-project/
http://iplhq.org/category/iplhq/ipl-ongoing-project/
http://dx.doi.org/10.1016/j.enggeo.2004.01.007
http://dx.doi.org/10.1007/s10346-015-0580-7
http://dx.doi.org/10.1016/j.jhydrol.2016.02.058
http://dx.doi.org/10.5194/nhess-18-31-2018
http://dx.doi.org/10.5194/nhess-18-31-2018
http://dx.doi.org/10.1002/hyp.342
http://dx.doi.org/10.1002/hyp.342
https://webgr.irstea.fr/en/airGR/
https://webgr.irstea.fr/en/airGR/
http://dx.doi.org/10.1016/j.envsoft.2017.05.002
http://dx.doi.org/10.1016/j.envsoft.2017.05.002
http://dx.doi.org/10.1080/02626669909492221


Formetta G, Capparelli G, Versace P (2016) Evaluating performance of simplified
physically based models for shallow landslide susceptibility. Hydrol Earth Syst Sci
20:4585–4603. https://doi.org/10.5194/hess-20-4585-2016

Genest C, Remillard B, Beadoin D (2009) Goodness-of-fit tests for copulas: a review and a
power study. Insurance: Mathematics and Economics 44:199–213. https://doi.org/
10.1016/j.insmatheco.2007.10.005

Grad K, Ferjančič L (1974) Osnovna geološka karta SFRJ, list Kranj, 1: 100, 000 =
Basic geological map of Yugoslavia, Map Kranj, scale 1: 100, 000. Zvezni
geološki zavod, Belgrade

Grønneberg S, Hort NL (2014) The copula information criteria. Scand J Stat 41(2):436–
459. https://doi.org/10.1111/sjos.12042

Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of
shallow landslides and debris flows: an update. Landslides 5:3–17. https://doi.org/
10.1007/s10346-007-0112-1

Haque U, Blum P, Da Silva P, Andersen P, Pilz JC, Sergey R, Male J-P, Jemec
Auflič M, Andres N, Poyiadji E et al (2016) Fatal landslides in Europe.
Landslides 13(6):1545–1554

Huang J, Ju NP, Liao YJ, Liu DD (2015) Determination of rainfall thresholds for shallow
landslides by a probabilistic and empirical method. Nat Hazards Earth Syst Sci
15:2715–2723. https://doi.org/10.5194/nhess-15-2715-2015

Hutson AD (2002) A semi-parametric quantile function estimator for use in bootstrap
estimation procedures. Stat Comput 12:331–338. https://doi.org/10.1023/
A:1020783911574

Jemec Auflič M, Šinigoj J, Krivic M, Podboj M, Peternel T, Komac M (2016)
Landslide prediction system for rainfall induced landslides in Slovenia
(Masprem). Geologija 59(2):259–271

Jemec Auflič M, Komac M (2013) Rainfall patterns for shallow landsliding in perialpine
Slovenia. Nat Hazards 67(3):1011–1023

Kojadinovic I, Yan J (2010) Modelling multivariate distributions with continuous margins
using the copula R package. J Stat Softw 34(9)

Komac M, Hribernik K (2015) Slovenian national landslide database as a basis for
statistical assessment of landslide phenomena in Slovenia. Geomorphology 249:94–
102. https://doi.org/10.1016/j.geomorph.2015.02.005

Krogli IK, Devoli G, Colleuille H, Boje S, Sund M, Engen IK (2018) The Norwegian
forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat
Hazards Earth Syst Sci 18:1427–1450. https://doi.org/10.5194/nhess-18-1427-2018

Liu DL, Zhang SJ, Yang HJ, Zhao LQ, Jiang YH, Tang D, Leng XP (2016) Application and
analysis of debris-flow early warning system in Wenchuan earthquake-affected area.
Nat Hazards Earth Syst Sci 16:483–496. https://doi.org/10.5194/nhess-16-483-2016

Maček U, Bezak N, Šraj M (2018) Reference evapotranspiration changes in
Slovenia, Europe. Agric For Meteorol 260-261:183–192. https://doi.org/
10.1016/j.agrformet.2018.06.014

Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of
landslide occurrence at regional scale. Landslides 9:485–495. https://doi.org/10.1007/
s10346-011-0308-2

Mathew J, Babu DG, Kundu S, Kumar KV, Pant CC (2014) Integrating intensity-duration-
based rainfall threshold and antecedent rainfall-based probability estimate towards
generating early warning for rainfall-induced landslides in parts of the Garhwal
Himalaya, India. Landslides 11:575–588. https://doi.org/10.1007/s10346-013-0408-2

Michel C (1991) Hydrologie appliquée aux petits bassins ruraux, Hydrology handbook (in
French), Cemagref, Antony, France

Mikoš M, Četina M, Brilly M (2004) Hydrologic conditions responsible for
triggering the Stoze landslide, Slovenia. Eng Geol 73:193–213. https://
doi.org/10.1016/j.enggeo.2004.01.011

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part
I — a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/
10.1016/0022-1694(70)90255-6

Oudin F, Hervieu F, Michel C, Perrin C, Andreassian V, Antcil F, Loumagne C (2005) Which
potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2–

towards a simple and efficient potential evapotranspiration model for rainfall-runoff
modelling. J Hydrol 303(1–4):290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

Peres DJ, Cancelliere A, Greco R, Bogaard TA (2018) Influence of uncertain identification
of triggering rainfall on the assessment of landslide early warning thresholds. Nat
Hazards Earth Syst Sci 18:633–646. https://doi.org/10.5194/nhess-18-633-2018

Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model
for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/
s0022-1694(03)00225-7

Petan S, Golob A, Moderc M (2015) Hydrological forecasting system of the Slovenian
environment agency. Acta hydrotechnica 28(49):119–131

Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930.
https://doi.org/10.1130/g33217.1

Pushpalatha R, Perrin C, Le Moine N, Mathevet T, Andreassian V (2011) A downward
structural sensitivity analysis of hydrological models to improve low-flow simulation. J
Hydrol 411:66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034

Rosi A, Peternel T, Jemec-Auflič M, Komac M, Segoni S, Casagli N (2016) Rainfall
thresholds for rainfall-induced landslides in Slovenia. Landslides 13:1571–1577.
https://doi.org/10.1007/s10346-016-0733-3

Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an
approach using copulas. In: Springer. Dordrecht, Netherlands

Segoni S, Rosi A, Lagomarsino D, Fanti R, Casagli N (2018) Brief communication: using
averaged soil moisture estimates to improve the performances of a regional-scale
landslide early warning system. Nat Hazards Earth Syst Sci 18:807–812. https://
doi.org/10.5194/nhess-18-807-2018

Segoni S, Rosi A, Rossi G, Catani F, Casagli N (2014) Analysing the relationship
between rainfalls and landslides to define a mosaic of triggering thresholds for
regional-scale warning systems. Nat Hazards Earth Syst Sci 14:2637–2648.
https://doi.org/10.5194/nhess-14-2637-2014

Serinaldi F (2009) Assessing the applicability of fractional order statistics for
computing confidence intervals for extreme quantiles. J Hydrol 376:528–541.
https://doi.org/10.1016/j.jhydrol.2009.07.065

USDA (2014) United States Department of Agriculture. Rainfall intensity summarization
tool (RIST). Accessed from http://www.ars.usda.gov/News/docs.htm?docid=3251

Valery A, Andreassian V, Perrin C (2014a) ‘As simple as possible but not simpler’:
what is useful in a temperature-based snow-accounting routine? Part 1 -
comparison of six snow accounting routines on 380 catchments. J Hydrol
517:1166–1175. https://doi.org/10.1016/j.jhydrol.2014.04.059

Valery A, Andreassian V, Perrin C (2014b) ‘As simple as possible but not simpler’: what is
useful in a temperature-based snow-accounting routine? Part 2 - sensitivity analysis
of the cemaneige snow accounting routine on 380 catchments. J Hydrol 517:1176–
1187. https://doi.org/10.1016/j.jhydrol.2014.04.058

Wei LW, Huang CM, Chen H, Lee CT, Chi CC, Chiu CL (2018) Adopting the I3-R24
rainfall index and landslide susceptibility for the establishment of an early
warning model for rainfall-induced shallow landslides. Nat Hazards Earth Syst
Sci 18:1717–1733. https://doi.org/10.5194/nhess-18-1717-2018

Zorn M, Komac B (2008). Zemeljski plazovi v Sloveniji = landslides in Slovenia. Geografski
inštitut Antona Melika ZRC SAZU, Slovenia

N. Bezak ()) : M. Mikoš
Faculty of Civil and Geodetic Engineering,
University of Ljubljana,
Jamova cesta 2, 1000, Ljubljana, Slovenia
Email: nejc.bezak@fgg.uni-lj.si

M. Jemec Auflič
Geological Survey of Slovenia,
Dimičeva ulica 14, 1000, Ljubljana, Slovenia

Landslides 16 & (2019) 1283

http://dx.doi.org/10.5194/hess-20-4585-2016
http://dx.doi.org/10.1016/j.insmatheco.2007.10.005
http://dx.doi.org/10.1016/j.insmatheco.2007.10.005
http://dx.doi.org/10.1111/sjos.12042
http://dx.doi.org/10.1007/s10346-007-0112-1
http://dx.doi.org/10.1007/s10346-007-0112-1
http://dx.doi.org/10.5194/nhess-15-2715-2015
http://dx.doi.org/10.1023/A:1020783911574
http://dx.doi.org/10.1023/A:1020783911574
http://dx.doi.org/10.1016/j.geomorph.2015.02.005
http://dx.doi.org/10.5194/nhess-18-1427-2018
http://dx.doi.org/10.5194/nhess-16-483-2016
http://dx.doi.org/10.1016/j.agrformet.2018.06.014
http://dx.doi.org/10.1016/j.agrformet.2018.06.014
http://dx.doi.org/10.1007/s10346-011-0308-2
http://dx.doi.org/10.1007/s10346-011-0308-2
http://dx.doi.org/10.1007/s10346-013-0408-2
http://dx.doi.org/10.1016/j.enggeo.2004.01.011
http://dx.doi.org/10.1016/j.enggeo.2004.01.011
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2004.08.026
http://dx.doi.org/10.5194/nhess-18-633-2018
http://dx.doi.org/10.1016/s0022-1694(03)00225-7
http://dx.doi.org/10.1016/s0022-1694(03)00225-7
http://dx.doi.org/10.1130/g33217.1
http://dx.doi.org/10.1016/j.jhydrol.2011.09.034
http://dx.doi.org/10.1007/s10346-016-0733-3
http://dx.doi.org/10.5194/nhess-18-807-2018
http://dx.doi.org/10.5194/nhess-18-807-2018
http://dx.doi.org/10.5194/nhess-14-2637-2014
http://dx.doi.org/10.1016/j.jhydrol.2009.07.065
http://www.ars.usda.gov/News/docs.htm?docid=3251
http://dx.doi.org/10.1016/j.jhydrol.2014.04.059
http://dx.doi.org/10.1016/j.jhydrol.2014.04.058
http://dx.doi.org/10.5194/nhess-18-1717-2018

	Application of hydrological modelling for temporal prediction of rainfall-induced shallow landslides
	Abstract
	Introduction
	Data and methods
	Hydrological modelling
	Data
	Prediction of rainfall-induced shallow landslides
	Probabilistic Psum-Rsum threshold definition

	Results and discussion
	Psum and Rsum threshold definition
	Comparison with ID thresholds
	Psum and Rsum probabilistic threshold definition

	Conclusions
	References


