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Rapid prediction of the magnitude scale of landslide
events triggered by an earthquake

Abstract A landslide event is characterized by the distribution of
landslides caused by a single triggering event. The severity of
earthquake-induced landslide events can be quantified by the
landslide-event magnitude, a metric derived from the frequency-
size distribution of landslide inventories. However, reliable landslide
inventories are not available for all earthquakes, because the prepa-
ration of a suitable inventory requires data, time, and expertise.
Prediction of landslide-event magnitude immediately following an
earthquake provides an estimate of the total landslide area and
volume based on empirical relations. It allows to make an assess-
ment of the severity of a landslide event in near-real time and to
estimate the frequency-size distribution curve of the landslides. In
this study, we used 23 earthquake-induced landslide inventories and
propose a method to predict landslide-event magnitude. We selected
five predictors, both morphometric and seismogenic, which are
globally and readily available. We used the predictors within a
stepwise linear regression and validated using the leave-one-out
technique. We show that our approach successfully predicts
landslide-event magnitude values and provides results along with
their statistical significance and confidence levels. However, to test
the validity of the approach globally, it should be calibrated using a
larger and more representative dataset. A global, near real-time
assessments regarding landslide-event magnitude scale can then be
achieved by retrieving the readily available ShakeMaps, along with
topographic and thematic information, and applying the calibrated
model. The results may provide valuable information regarding
landscape evolution processes, landslide hazard assessments, and
contribute to the rapid emergency response after earthquakes in
mountainous terrain.

Keywords Landslides . Earthquakes . Inventory . Landslide-
event magnitude . Hazard . Rapid response

Introduction
An earthquake-induced landslide event refers to landslides trig-
gered by a particular earthquake. Such landslides are one of the
most destructive secondary hazards associated with earthquakes
in mountainous environments (e.g., Jibson et al. 2000). Therefore,
the estimation of earthquake-induced landslide hazard is an im-
portant risk mitigation component in seismically active mountain-
ous areas (Wasowski et al. 2011).

Earthquake-induced landslide (EQIL) inventories are the pri-
mary data source to extend our knowledge of the relationship
between earthquakes and the landslides they can trigger (e.g.,
Tanyaş et al. 2017). Using an EQIL inventory, we can assess the
distribution of landslides and better evaluate the total earthquake
impacts considering this secondary seismic hazard (e.g., Robinson
et al. 2017). An EQIL event is characterized by the distribution of
landslides caused by a single earthquake.

The impact of EQIL events can be quantified using landslide
inventories (e.g., Malamud et al. 2004). Keefer (1984) used the

number of triggered landslides (NLT) to define an EQIL-event
magnitude scale (mLS), which quantifies the severity of the event,
and it is defined as follows:

mLS ¼ logNLT ð1Þ

According to the method proposed by Keefer (1984), the mag-
nitude scale of an EQIL-event triggering 102–103 landslides is
classified as “class 2”; 103–104 landslides is classified as” class 3″,
etc. This is an important concept because we could better evaluate
the relation between landslide causes and impacts as a quantitative
approach simplifies a complex phenomenon into a single, or a few,
standard values (i.e., landslide-event magnitudes) which can be
compared between triggering events (Tanyaş et al. 2018a).

Malamud et al. (2004) used Keefer’s (1984) method to define
mLS (Eq. 1) and improved this method using the size statistics of
the landslides associated with various triggers such as earthquakes,
rapid snowmelt, or large storms. Malamud et al. (2004) established
that the frequency-area distribution of landslides follows an in-
verse power law for medium- to large-sized landslides, while the
distribution shows a rollover at smaller landslide sizes. They
modeled the frequency-area distribution of three well-
documented event inventories and defined empirical curves to
identify mLS. Tanyaş et al. (2018b) examined the frequency-area
distributions of 45 earthquake-induced landslide inventories and
showed that the form of the rollover does not follow the modeled
empirical distribution curves. They noted that the power-law tail is
the most important part of the frequency-area distribution be-
cause it gives insight in characteristics of landslide size distribu-
tion and contains the greatest volume of material (e.g., Bennett
et al. 2012).

Many studies make use of the empirical distribution of land-
slide sizes, independently on the trigger of the landslide event
(Malamud et al. 2004). For example, Guzzetti et al. (2005) extract-
ed the probability of landslide size from frequency-size statistics of
landslides and used this information for quantitative analysis of
landslide hazard. The power-law region of the distribution can
also be reproduced by different physically based models (Alvioli
et al. 2014, 2018b; Hergarten 2012).

A magnitude scale for the landslide events can be defined by
identifying the power-law fits for medium and large landslides.
Thus, the examined landslide inventory may be partial (i.e., some
small landslides may be missing), but the assigned mLS is equiv-
alent to the one associated to complete landslide event based on a
frequency-area distribution, obtained by properly rescaling a fre-
quency density curve to the measured distribution in the power-
law region as in Malamud et al. (2004). Malamud et al. (2004) also
proposed equations to estimate the maximum landslide area
(ALmax) (Eq. 2) and total landslide area (AT) (Eq. 3) triggered by
one event (e.g., earthquake, rainstorm) in relation with mLS,
defined as follows:



ALmax ¼ 1:10� 10−3 � N0:714
LT ð2Þ

AT ¼ 3:07� 10−3 � 10mLS ð3Þ

Regarding the estimation of mLS, Tanyaş et al. (2018a) intro-
duced an updated method that better fits the observations. They
determined a slope (power-law exponent) of the power-law fit for
each specific landslide inventory and used this value instead of the
average value (2.4) used by Malamud et al. (2004) to define the
empirical frequency-area distribution curves. To construct the
empirical curves, Tanyaş et al. (2018a) rotated the power-law fits
around a reference point identified considering the most reliable
EQIL inventories. They then determined the mLS using the con-
structed empirical frequency-area distribution curves. They also
checked the variation in mLS in their proposed method based on
different reference points and identified 95% confidence limits for
various mLS intervals (Table 1). The mLS values determined by
Tanyaş et al. (2018a) are presented in Table 2.

Tanyaş et al. (2018a) also proposed an updated equation to
estimate total landslide area (AT) triggered by an earthquake in
relation with mLS (Eq. 4):

AT ¼ 0:0125e 1:7651�mLSð Þ ð4Þ

However, calculation of mLS requires a landslide inventory
which is not available for most of the landslide triggering earth-
quakes. The preparation of a landslide inventory is a tedious
process (e.g., Wasowski et al. 2011), despite advances in mapping
techniques, and it may take months to complete when based on
visual image interpretation, or weeks when based on (semi-)
automated image classification (Martha et al. 2010). In any case,
the time required to create an EQIL inventory is too long to
provide information for rapid emergency response phase after an
earthquake (Robinson et al. 2017).

To capture the effect of an EQIL-event without having an
inventory, some statistical relations were proposed, using a global
dataset, between earthquake magnitude and the area affected by
landslides or the maximum landslide distance, either from the
epicenter or the rupture zone (Keefer 1984; Rodriguez et al.
1999). However, Jibson and Harp (2012) found that the proposed
landslide distance buffers differ between plate-boundary
earthquakes and intraplate earthquakes, where seismic wave
attenuation is generally much lower and thus the proposed
relation could not be used for accurate estimation of any of
these landslide distance limits.

Marc et al. (2016) proposed an expression to estimate the total
volume and area of EQIL. Their expression is based on
seismogenic characteristics (e.g., seismic moment and asperity
depth), landscape steepness, and material sensitivity (rock

strength and pore pressure). However, the required inputs such
as the parameters describing rock strength, earthquake asperity
depth, and ground motion attenuation are often not precisely
known (Li et al. 2017).

Given these circumstances, rapid prediction of mLS of EQIL
events could provide us valuable information not only for studies
regarding landscape evolution (e.g., Malamud et al. 2004) and
hazard assessments (Guzzetti et al. 2005) but also for applications
in emergency response. We could evaluate the severity of an EQIL
event in near-real time, providing a rapid prediction of mLS.

In this study, we used 23 EQIL inventories and their mLS values
calculated by Tanyaş et al. (2018a). We propose a method to
predict mLS that can lead to estimates of the total triggered
landslide area, total landslide volume, and frequency-area distri-
bution of landslides. We construct a stepwise linear regression
model using both seismogenic and morphologic predictors. We
predict the mLS of EQIL events and validate our method using the
leave-one-out technique.

Materials

Available data
An EQIL inventory database including 66 inventories from around
the world was presented by Tanyaş et al. (2017), which included
detailed information regarding their mapping methodologies.
From this database, Tanyaş et al. (2018a) examined the inventories
for which landslide area information is available and calculated
the mLS values for 45 EQIL inventories from 32 earthquakes
(Fig. 1). We examined those 45 EQIL inventories which were
analyzed by Tanyaş et al. (2018a) in terms of their mLS values
and excluded some of them following the inventory selection
criteria presented below. The list of EQIL inventories, their main
characteristics, and references are presented in Table 2.

We used both seismogenic and morphologic independent var-
iables in a linear regression analysis. As seismogenic variables, we
collected earthquake magnitudes and the estimated values of peak
ground acceleration (PGA), peak ground velocity (PGV), and
Modified Mercalli Intensity (MMI) from the US Geological Survey
(USGS) ShakeMap system (Allen et al. 2008; Garcia et al. 2012).
The ShakeMap system provides the deterministic estimates of
ground-motion parameters in near-real time. Additionally, we
used Global Centroid-Moment Tensor (CMT) half duration (the
duration of the rupture process) (Dziewonski et al. 1981; Ekström
et al. 2012) as another seismogenic variable.

We used the Shuttle Radar Topography Mission (SRTM) digital
elevation model (about 30-m resolution) (NASA Jet Propulsion
Laboratory (JPL) 2013) to create morphologic variables.

Selection of inventories
Each of the available EQIL inventories has a varying level of
quality and completeness, which are difficult to assess both quan-
titatively and qualitatively due to lack of metadata regarding

Table 1 Variation in mLS (Tanyaş et al. 2018a)

mLS

2 ≤mLS < 3 3 ≤mLS < 4 4 ≤mLS < 5 5 ≤mLS < 6 6 ≤mLS < 7

Variation ± 0.30 ± 0.33 ± 0.20 ± 0.36 ± 0.63
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mapping preferences and the subjectivity of mapping procedure.
We checked the mapping techniques of selected landslide inven-
tories to get a general idea about the quality of mapping. In each
inventory, the landslide-affected area was analyzed systematically
by visual interpretation of satellite images and/or aerial photogra-
phy. In addition, Tanyaş et al. (2017) introduced an evaluation
system to help users assess the suitability of the available inven-
tories for different types of studies. They listed four essential
criteria to check whether the inventory suitable for a landslide
susceptibility or hazard assessment, or to investigate the distribu-
tion, types, and patterns of landslides in relation to morphological
and geological characteristics (Table 3). Based on this approach,
Tanyaş et al. (2017) assigned scores to each inventory. We indicated
those scores in Table 2 to have a general idea about the quality of
mapping in the examined inventories. Scores show that each
inventory meets at least half of the criteria and we decided to
use these in this study.

Considering other available information about inventories pro-
vided by Tanyaş et al. (2017), we discarded several of them to
increase the reliability of the applied method. The list of selected
EQIL inventories and the exclusion criteria are presented in
Table 2.

We excluded incomplete EQIL inventories for which we know
that only part of the landslide-affected area was mapped. For
example, the 1989 Loma Prieta EQIL inventory is such a partial
inventory where McCrink (2001) only mapped part of triggered
landslides to test a dynamic slope stability method. Similarly, part
of the landslide-affected area associated with the 2006 Kiholo Bay
earthquake was mapped in detail by Harp et al. (2014) to check if
the landslide-distribution pattern is predictable using a high-
resolution ground-motion simulation model. EQIL inventories
that can be attributed to more than one earthquake were also
excluded, such as the 1980 Mammoth Lakes (Harp et al. 1984),
the 1993 Finisterre (Meunier et al. 2008), the 1997 Umbria-Marche
(Marzorati et al. 2002), and the 2004 Mid-Niigata (GSI of Japan
2005; Sekiguchi and Sato 2006; Yagi et al. 2007). In each of these
inventories, the earthquake associated with the triggered land-
slides is not clear, and thus this can cause a problem in the
representation of seismogenic variables regarding these invento-
ries. Also, we excluded the 2007 Niigata Chuetsu-Oki inventory
(Kokusai Kogyo 2007) because pre-earthquake landslides were not
eliminated in this inventory (Collins et al. 2012). If we have more
than one inventory for the same earthquake, we only included the
one that has the largest number of landslides and covers the largest
area (Table 2). We also excluded the earthquakes without
ShakeMap data, such as the 1998 Jueili and 2007 Aysen Fjord
earthquakes. For the rest of the inventories, we checked the un-
certainties of the ShakeMaps data. The relative uncertainty level of
each ShakeMap output is described by a quality grading developed
by Wald et al. (2008). The grades of the selected ShakeMaps data
(Table 2) show that none of them belongs to the poorest grades,
which are D and F.

Methods
Delineation of the geographical boundary of a landslide event is
usually no trivial task. For example, in the case of inventories
prepared by field campaigns, a crucial step is to determine the
area that was actually surveyed by the researchers (Bornaetxea
et al. 2018; Guzzetti et al. 2012). Inventories prepared by visualTa
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interpretation of aerial or satellite imagery (Alvioli et al. 2018c;
Casagli et al. 2017; Guzzetti et al. 2012), as is the case for many of
the inventories considered in this work, should indicate the
boundary of the available images, or the actual area mapped.
However, in many cases, this information is not available.

The peak ground acceleration (PGA) contours, which show a
correlation with landslide density (e.g., Meunier et al. 2007), was
used to identify the landslide-affected area. Wilson and Keefer
(1985) are the first who proposed a minimum threshold of 0.05 g
to such a boundary. They used the data gathered by Keefer
(1984) regarding the 40 EQIL inventories. However, EQIL inven-
tory maps were only available for a few of the 40 reported
earthquakes (Tanyaş et al. 2017), and the general relations and
conclusions reported were pieced together from various re-
sources, listed in Keefer and Tannaci (1981). Similar minimum
PGA thresholds that covers all triggered landslides were also
reported for individual EQIL inventories as 0.01 g for the 1980

Irpinia earthquake (Del Gaudio and Wasowski 2004) and 0.02–
0.04 g for the Mineral, Virginia earthquake (Jibson and Harp
2012). Recently, Jibson and Harp (2016) analyzed six EQIL
events and explored the absolute minimum PGA value consid-
ering the very smallest failures (< 1 m3) triggered by the corre-
sponding earthquakes. They examined four of those inventories
by field studies and showed that PGA contour covering all
landslides ranges from 0.02 to 0.08 g. They investigated two
other inventories using aerial-photographic interpretations and
pointed out the PGA range of 0.05–0.11 g as an absolute outer-
most limit of triggered landslides.

Jibson and Harp (2016) also stated that the proposed outermost
limits of triggered landslides can only be valid where susceptible
slopes are extensive. Yet, the actual area that is affected by land-
slides depends on the local topographic, lithologic, climatic, and
land cover conditions, which are different for each earthquake-
affected area, and the interaction between these features and

Fig. 1 Distribution of examined earthquakes with a landslide inventory listed in Table 2

Table 3 Evaluation scheme for EQIL inventories (Tanyaş et al. 2017)

Essential criteria Execution performance Score

i) Was the study area analyzed systematically by visual interpretation? 0–100% 0–1

ii) Was the boundary of the mapped area indicated? No/Yes 0/1

iii) Were the pre- and post-earthquake landslides eliminated from the inventory? 0–100% 0–1

iv) Was the mapping resolution of inventory enough to differentiate the individual landslides? (L = linear resolution of roll-over point) L > 25 m: < 0.5
25 m ≥ L > 5 m: ≥ 0.5
5 m ≥ L: 1

0/1
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ground shaking causes the specific landslide distribution pattern.
Thus, for some of the inventories such a common PGA limit could
be larger or smaller than the real landslide-affected area. In this
study, we also assumed that the susceptible slopes are extensive in
our examined sites to estimate the boundary of a landslide-
affected area.

Note that in the case of EQIL, there can be a significant
difference between the area that includes the entire landslide
population, and one that includes the vast majority (e.g., 90%)
of them. Hancox et al. (2002) use the term “main area affected
by landslides.” Despite the lack of explanation regarding the
parameter in the referred paper, we adapted that term here,
modifying it slightly to the main landslide-affected area, and
defined it to include the area containing 90% of the mapped
landslides. To define the term main landslide-affected area, we
examined the inventories and we systematically calculated the
percentage of the total number of landslides contained within
various PGA contours. We began examining from the highest to
lowest PGA contours provided by the USGS ShakeMap system
and keep examining until we find the PGA contour covering
90% of the mapped landslides. All other analyses were conduct-
ed for the identified main landslide-affected areas.

Eliminating the flat regions as non-susceptible zones to
landsliding is a generally accepted approach in landslide modeling
studies (e.g., Kritikos et al. 2015). Thus, we defined those regions
and subtracted them from the main landslide-affected areas. To
identify the flat areas, we used the GRASS GIS module
r.geomorphon by Jasiewicz and Stepinski (2013) to extract the
“flat” landform class, and an algorithm that gets rid of the sparse
pixel result developed by Alvioli et al. (2018a). The algorithm starts
from the pixels classified as “flat” by r.geomorphons and shrinks
the borders of the flat raster map by a few pixels and then grows it
again; the procedure is repeated until sparse pixels disappear.

In our regression model, we did not use the variables such as
lithology, land cover or climate that we could not evaluate their
contribution to landsliding. For example, we did not include
lithologic units because without knowing their geotechnical prop-
erties, the description of a lithologic unit is not enough to evaluate
its role in landslide initiation process. Instead, we used morpho-
logic variables which were used in statistical landslide probability
assessments (e.g., Budimir et al. 2015; Reichenbach et al. 2018). For
example, Budimir et al. (2015) examined EQIL causal factors in
their review papers. They investigated nine studies and presented
the percentages at which covariates were found to be significant.
Budimir et al. (2015) stated that in all those studies slope was
found as a significant variable. On the other hand, distance to
streams was found significant in at least 20% of those studies,
while profile curvature, topographic wetness index (TWI), and
surface roughness were found significant in at least 10% of those
studies. Tanyaş et al. (2017) analyzed about 554,000 landslide
initiation points from 46 EQIL events and examined the frequency
values of earthquake-induced landslides in intervals of slope,
surface roughness, local relief, and distance to streams. They
stated that the highest landslide frequencies are concentrated in
particular intervals for all of these parameters. This implies that
these variables may be good candidates to check their significance
in our regression analysis as well.

Slope is a factor controlling the normal and shear stresses,
which take a role in slope stability. Local relief is the maximum

difference in height in a local neighborhood of each pixel and can
be related to slope instability caused by tectonic uplift. It partially
correlates with slope. Both slope and local relief are related to the
magnitude of static stress loading in hillslopes (Parker et al. 2015).
TWI (Moore et al. 1991) is a proxy for potential soil wetness used
to estimate the spatial variability of wetness within a landscape
(e.g., Nowicki Jessee et al. 2018). It can take a role in slope stability
by changing the pore water pressure. We used vector ruggedness
measure (VRM) to consider surface roughness. It quantifies local
variation in terrain more independently of slope than other
methods such as land surface ruggedness index or terrain rugged-
ness index (Sappington et al. 2007). Tanyaş et al. (2017) showed
that the majority of EQIL are initiated at low VRM values, and the
number of observed EQIL decreases while VRM increases. Dis-
tance to stream is proxy related to fluvial undercutting (e.g.,
Kritikos et al. 2015) that cause high rates of shear stress as a result
of loss of lateral support (Korup 2004). Tanyaş et al. (2017) showed
that the majority of EQIL are initiated close to river channels and
the frequency of observed landslides gradually decreases while
going far away from channels. Profile curvature is a measure
describing the concavity/convexity of slope along the vertical di-
rection. Having a concave surface can increase slope instability by
increasing the subsurface drainage that can cause high water
pressure (Pierson 1980).

To create our morphologic variables used as covariates in our re-
gression model, we worked with a few of the modules of GRASS GIS
(Neteler andMitasova 2013) and SAGAGIS (Conrad et al. 2015). In total,
we derived six DEM derivatives (Table 4) using themodule given within
parentheses; slope (r.slope.aspect) (Hofierka et al. 2009), topographic
wetness index (r.topidx) (Cho 2000), vector ruggedness measure
(r.vector.ruggedness) (Sappington et al. 2007), distance to stream (r.wa-
tershed and r.grow) (Ehlschlaeger 1989), local relief (r.geomorphon)
(Jasiewicz and Stepinski 2013), and profile curvatures (r.param.scale)
(Wood 1996).

We also tested five seismogenic variables (PGA, PGV, MMI,
earthquake magnitude, and half duration) in linear regression
analysis (Table 4). MMI is a scale classifying the shaking strength
observed at a site. PGA is the largest peak acceleration recorded in
a strong-motion accelerogram of an earthquake, while PGV is the
largest increase in velocity experienced by a particle on the ground
during an earthquake (Bormann et al. 2013). If the variables such
as fault-rupture mechanism and fault geometry are known, they
are also taken into account, and a ShakeMap is created accordingly
(e.g., Wald 2013). Therefore, we can assume that fault-rupture
mechanism and fault geometry is represented by the resultant
ground-motion parameters provided by ShakeMap. One of these
ground-motion parameters is used in almost all statistical based
EQIL prediction models (e.g., Nowicki Jessee et al. 2018; Nowicki
et al. 2014; Robinson et al. 2017; Tanyas et al. 2019). PGA, PGV, and
MMI are collinear variables and thus we considered three of them
to identify the most significant ground motion parameter for this
study. The other two-seismogenic variables, earthquake magni-
tude, and half duration are proxies for energy released by ruptur-
ing and duration of rupturing, respectively.

Apart from two independent variables (earthquake magnitude
and half duration) which do not have any variation within a
landslide-affected area, we calculated both mean value and its
standard deviation for each independent variable to represent
the characteristics of main landslide-affected areas.
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We evaluated the significance level of each variable used in the
linear regression model based on p values. We selected a signifi-
cance level of 5%, which refers to a p value of 0.05 as a confidence
level, below which the relation between the examined independent
and dependent variables were considered significant (Moore et al.
2012). To decide on the best predictor subset, we run the stepwise
linear regression algorithm provided by Matlab (Version R2017b).
We applied a forward feature selection method which searches for
covariates to add to the model based on p value. The algorithm
tests the model with and without a potential covariate at each step
considering p value. The algorithm tests not only the individual
terms but also their interactions (e.g., multiplication of variables).
If any of the available covariates in the model has a p value less
than 0.05, the one with the smallest p value is added into a model
and this procedure is repeated until the significant covariates are
included into the model. This procedure provided us the set of
covariates giving the best model performance. We then checked
the collinearity between those variables using the variance infla-
tion factor (VIF) (Chatterjee and Hadi 2012); a VIF larger than 10 is
assumed as an indication of a collinearity.

Because we have limited observations, to validate our model,
we used the leave-one-out methodology and predicted mLS values
for each earthquake using the described stepwise linear regression
algorithm. Considering p values, we selected the best predictor
subset and the corresponding best model.

Results
To define the term main landslide-affected area, we compared
the differences in PGA values covering the various landslide
populations. For example for the Haiti inventory (Harp et al.
2016), PGA contours of 0.23 g, 0.36 g, 0.41 g, and 0.48 g contain
100%, 90%, 80%, and 70% of the entire mapped landslide
population, respectively. We calculated these values for all in-
ventories. Table 5 shows the PGA values and the percentage of
the total number of landslides falling within these limiting PGA
contours for each inventory. Table 5 shows that except for the
2007 Pisco, Peru earthquake (Mw 8.0), the 0.12 g is the

minimum PGA contour covering at least 90% of the mapped
landslides in each inventory. The 2007 Pisco earthquake is an
offshore event where significant part of the area covered by
large peak ground acceleration (PGA) locates at sea. Therefore,
for this earthquake, the 0.12-g PGA contour covers about 80% of
the mapped landslides (Table 5). Given these observations, we
took the 0.12-g PGA contour as an estimate for the boundary of
main landslide-affected area. This PGA value is slightly larger
than the PGA range (0.05–0.11 g) indicated in the literature (e.g.,
Jibson and Harp 2016) as the outmost limit of EQIL, and thus
consistent with the literature.

We calculated our predictors for the area bounded by the 0.12-g PGA
contour in each landslide-affected area. The stepwise regression algo-
rithm identified five predictors as the best subset explaining our depen-
dent variable: Earthquake magnitude (EqM), profile curvature (mean),
profile curvature (std), TWI (mean), and EqM× TWI (mean) (Table 6).
The regression equation is as follows:

mLS ¼ −262:6393−40:3712� EqM½ � þ 9160:0595

� profile curvature meanð Þ½ �−204:9325
� profile curvature stdð Þ½ � þ 40:0981

� TWI meanð Þ½ �−6:0393� EqM� TWI meanð Þ½ � ð5Þ

The regression model run using these predictors show that each
predictor has a p value less than 0.05 and thus, they all have high
significance in our model. We checked the collinearity between predic-
tors using VIF. We excluded our interaction term (EqM× TWI (mean))
from the collinearity evaluation (Friedrich 1982). The results show that
VIF values for all other variables are less than two and thus, the
collinearity is not an issue for the selected variables. Among the selected
variables, earthquake magnitude (EqM), profile curvature (mean), and
TWI (mean) have explicit physical meaning in our regression equation
in addition to their statistical significance. On the other hand, profile
curvature (std) and the interaction term (EqM×TWI (mean)) have only
statistical significance.

Table 4 List of independent variables

Class Independent variables (mean values and their standard deviations) Source/GIS module Reference

Seismogenic PGA USGS ShakeMap (Garcia et al. 2012)

Seismogenic PGV USGS ShakeMap (Garcia et al. 2012)

Seismogenic MMI USGS ShakeMap (Garcia et al. 2012)

Seismogenic Earthquake magnitude USGS ShakeMap (Garcia et al. 2012)

Seismogenic Half duration Global CMT (Dziewonski et al. 1981; Ekström et al. 2012)

Morphologic Slope r.slope.aspect (GRASS GIS) (Hofierka et al. 2009)

Morphologic Topographic wetness index (TWI) r.topidx (GRASS GIS) (Cho 2000)

Morphologic Vector ruggedness measure (VRM) r.vector.ruggedness (GRASS GIS) (Sappington et al. 2007)

Morphologic Distance to stream r.watershed and r.grow (GRASS GIS) (Ehlschlaeger 1989)

Morphologic Local relief r.geomorphon* (GRASS GIS) (Jasiewicz and Stepinski 2013)

Morphologic Profile curvature r.param.scale (GRASS GIS) (Wood 1996)

*Search radius was taken as 90 m in the calculation of local relief
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We presented the adjusted R2, root-mean-square error (RMSE), and
mean absolute error (MAE) values for the best-fit line (Fig. 2). The
adjustedR2 value shows that themodel explains 86%of the variability of
the response data around its mean. On the other hand, the average
magnitude of the error is 0.39 (RMSE) and the absolute differences
between predicted and calculated mLS value is 0.30 (MAE).

To validate this model, for each predictor subset, we followed
the leave-one-out technique and predicted the entire mLS array.
Results show that adjusted R2 is 0.79, RMSE is 0.50, and MAE is
0.40 (Fig. 3a). The residuals show a random distribution around a

constant value without a distinct pattern and the average residual
value is 0.0004 (Fig. 3b). This supports our assumption that a
linear dependence exists between mLS and the variables. The
average uncertainty for the calculated mLS values, which were
shown by horizontal error bars in Fig. 3a and vertical error bars
in Fig. 3b, is 0.15. In a few cases (e.g., EQIL Inventory ID of 2, 10, 12,
20, and 21), the residuals are lower than uncertainties in calculated
mLS values. These are the cases that our predictions are successful.
In all cases, our predictions stay within the 95% confidence limits
for the best-fit line passing from the origin (Fig. 3a).

Table 5 PGA contours and percentages of their landslide coverage for each inventory. The italicized PGA values are the ones that are higher than PGA 0.12 g

ID Inventories PGA (g) contour covering the specified percentage of total landslide population

100% 90% 80% 70% 60% 50%

1 Guatemala/Harp et al. (1981) 0.08 0.14 0.17 0.33 0.38 0.43

2 Friuli/Govi (1977) 0.21 0.38 0.43 0.46 0.48 0.51

3 Izu Oshima Kinkai/Suzuki (1979) 0.12 0.2 0.24 0.26 0.28 0.36

4 Coalinga/Harp and Keefer (1990) 0.10 0.14 0.18 0.22 0.26 0.33

5 Limon/Marc et al. (2016) 0.30 0.33 0.35 0.36 0.38 0.41

6 Northridge/Harp and Jibson (1995, 1996) 0.13 0.27 0.30 0.34 0.38 0.41

7 Hyogo‐ken Nanbu/Uchida et al. (2004) 0.57 0.71 0.74 0.76 0.76 0.76

8 Chi‐Chi/Liao and Lee (2000) 0.05 0.32 0.41 0.51 0.56 0.60

9 Denali/Gorum et al. (2014) 0.17 0.27 0.32 0.35 0.36 0.37

10 Lefkada/Papathanassiou et al. (2013) 0.40 0.55 0.62 0.64 0.68 0.68

11 Kashmir/Basharat et al. (2014) 0.44 0.71 0.86 0.94 1.07 1.16

12 Pisco/Lacroix et al. (2013) 0.04 0.08 0.13 0.14 0.15 0.15

13 Wenchuan/Xu et al. (2014b) 0.08 0.33 0.41 0.48 0.53 0.58

14 Iwate-Miyagi Nairiku/Yagi et al. (2009) 0.25 0.37 0.40 0.47 0.70 0.95

15 Haiti/Harp et al. (2016) 0.23 0.36 0.41 0.48 0.52 0.57

16 Sierra Cucapah/Barlow et al. (2015) 0.31 0.56 0.59 0.64 0.65 0.67

17 Yushu/Xu et al. (2013) 0.09 0.12 0.14 0.21 0.31 0.35

18 Eastern Honshu/Wartman et al. (2013) 0.16 0.28 0.36 0.38 0.4 0.44

19 Lushan/Xu et al. (2015) 0.07 0.17 0.23 0.29 0.32 0.35

20 Minxian/Xu et al. (2014a) 0.09 0.12 0.13 0.15 0.16 0.17

21 Ludian/Tian et al. (2015) 0.12 0.14 0.16 0.17 0.18 0.19

22 Gorkha/Roback et al. (2017) 0.08 0.24 0.25 0.26 0.27 0.27

23 Kumamoto/NIED (2016) 0.23 0.42 0.45 0.48 0.52 0.54

Table 6 Results of the model developed using the selected five covariates

Coefficients Estimate Standard error p value

(Intercept) − 262.639279 40.820191 0.000006

Earthquake magnitude (EqM) 40.371160 5.787513 0.000002

Profile curvature (mean) 9160.059501 3235.300450 0.011520

Profile curvature (std) − 204.932535 70.415537 0.009747

TWI (mean) 40.098121 6.146669 0.000005

EqM × TWI (mean) − 6.039333 0.869701 0.000002
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We can predict mLS and other measures that we can estimate
using mLS, soon after an earthquake, in four steps (Fig. 4): (i) the
PGA map of an investigated earthquake is obtained from USGS
ShakeMap system and the SRTM DEM is obtained for the areas
bounded by minimum PGA value of 0.12 g; (ii) the independent
variables listed in Table 6 are collected/derived for non-flat areas;
(iii) the proposed regression equation (Eq. 5) is run using the
coefficients listed in Table 6 and mLS is predicted for the examined
earthquake; and (iv) the maximum landslide area (Eq. 2) and the
total landslide area (Eq. 4) are estimated using existing method-
ologies (Malamud et al. 2004; Tanyaş et al. 2018a). Further, the
variation ranges for the estimated mLS are calculated using the
confidence intervals given in Table 1. Frequency-size distribution
of the examined landslide event can be estimated using the em-
pirical curves proposed by Malamud et al. (2004).

We used the 2004Mid-Niigata earthquake as an example to show the
application of the proposedmethod (Fig. 5), which is presented in Fig. 4.
We have three landslide inventories (GSI of Japan 2005; Sekiguchi and
Sato 2006; Yagi et al. 2007) for this earthquake but all of them include
landslides triggered by a sequence of earthquakes rather than a single
main shock. Therefore, we discarded these inventories in the modeling
stage (see Table 2) because they may include more landslides and thus
the predicted mLS using a single earthquake may be lower than the
calculated mLS.

We predicted mLS using our proposed regression equation
(Eq. 5). Also, we predicted the maximum landslide area (ALmax in
Fig. 5) and the total landslide area (AT in Fig. 5) based on existing
methodologies (Malamud et al. 2004; Tanyaş et al. 2018a). The
predicted mLS (3.06 ± 0.33), the maximum landslide area (ALmax)
(0.16 km2 (− 0.07, + 0.11)), and the total landslide area (AT)
(2.82 km2 (− 1.24, + 2.12)) are close to the values calculated from
the 2004 Mid-Niigata inventory map created by Yagi et al. (2007)

(mLS = 3.11 ± 0.04; ALmax = 0.17 km2 and AT = 3.80 km2). As we
expected, our predictions are lower than the values calculated
from three of the inventories (see Table 2) due to the overprinting
of landslides from different earthquakes. We did not predict total
landslide volume using the equation suggested by Malamud et al.
(2004) because the examined inventories do not have volume
information to validate our prediction. We estimated the
frequency-area distribution of landslides (Fig. 5) which can be
useful for quantitative analysis of landslide hazard assessment.
Note that the form of the frequency-area distribution curve may
not be representative for small landslides (Tanyaş et al. 2018b) and
thus we suggest to focus on the power-law tail in this estimate.

Discussion
The most relevant advantage of our method is that we use both
static and dynamic parameters, which are publicly available. The
static predictors are DEM derivatives and thus they can be easily
derived for any location on the globe. Earthquake magnitude and
ShakeMap data can be obtained using USGS ShakeMap system in
near-real time.

The proposed method has also some limitations. Our approach
gives poor prediction results in a few cases as was shown in Fig. 3,
due to several reasons. First, offshore events may not be well
characterized using the proposed approach. In offshore earth-
quakes, most of the areas bounded by the 0.12-g PGA contour
are not located on land, and thus our morphological predictors
may not represent the landslide-affected area well. Figure 3 shows
that for two offshore earthquakes, we have residuals, which are
larger than MAE (0.40). The 1978 Izu Oshima Kinkai (3) and the
2010 Eastern Honshu (18) earthquakes give residual values of 0.57
and 0.50, respectively. Second, the quality of the ShakeMap data
may also affect our model performance since we identify the main

Fig. 2 Graph showing the model result. The confidence intervals which are shown by vertical error bars are calculated for each prediction separately. Uncertainties in
calculated mLS values are given by using ± 2σ error bars. Calculated mLS values are obtained from Tanyaş et al. (2018a)
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landslide-affected area using the PGA values from the raster files
provided by USGS ShakeMap system. The relatively poor quality
of ShakeMap regarding the 2010 Yushu earthquake may be the
reason for having a larger residual (0.69) than the average value
for this earthquake. Third, the inventories used for the calculation
of mLS values may be incomplete or may contain landslides which
were not triggered by the specific earthquake. If these landslides
are medium or large in size, this may affect the calculated mLS
value. Landslide mapping is a subjective procedure (e.g., Tanyaş
et al. 2017), and each landslide inventory can be exposed to various
levels of amalgamation and the delineated landslide polygons may
show minor/major differences comparing to the actual landslide
boundaries based on the quality of an inventory. However, evalu-
ating the quality and completeness of the inventories is not pos-
sible without examining the landslides from the original imagery
from which the inventories were made, which is very time-con-
suming. This implies an uncertainty in mLS that we could not
assess quantitatively. Further studies need to assess this

uncertainty. Fourth, the simplicity of the proposed method may
be the main reason for poor prediction in some cases. We used
earthquake magnitude (EqM), profile curvature (mean and stan-
dard deviation), topographic wetness index (TWI) (mean), and
EqM × TWI (mean) (Table 6) to derive our regression equation.
We used mean values and standard deviations for these variables
which may not represent the landslide-affected areas in a few
cases, affecting the prediction performance. Moreover, we could
not consider some variables that may play an important role in
landslide initiation and thus affect the resulting landslide-event
magnitude. For example, shear strength parameters of slope ma-
terial are not available globally. Although a global lithologic map is
available (e.g., Hartmann and Moosdorf 2012), the evaluation of
the strength parameters only based on lithologic descriptions is
not a reliable method. Similarly, we could not account for the
effect of previous earthquakes (Parker et al. 2015), or previously
occurred landslides (Samia et al. 2017) because we do not have
globally available datasets to quantify the effect of such variables.

Fig. 3 Graphs showing the results of validation using the leave-one-out methodology: a the distribution of calculated versus predicted mLS values and the best-fit line
passing from the origin and b the residuals for predicted mLS values. The confidence intervals which are shown by vertical error bars are calculated for each prediction
separately in (a). The uncertainties in calculated mLS values (± 2σ) are given by horizontal error bars in (a) and vertical error bars in (b). Calculated mLS values are
obtained from Tanyaş et al. (2018a). The number in the lower graph refers to the EQIL inventory IDs listed in Table 5
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Last but not least, a considerable drawback of this study is that
there are only a limited number of digital landslide inventories
available. Although we worked with the largest EQIL dataset avail-
able (Tanyaş et al. 2017), the number of selected inventories is still
limited given the variation in seismogenic or environmental char-
acteristics of the examined landslide events. With a larger EQIL
inventory database, landslide events can be better categorized
based on common features and different regression coefficients
can be calculated for each of those categories. For example,

offshore earthquakes can be analyzed separately to address the
possible drawback mentioned above. Similarly, categorizing the
earthquakes having different faulting mechanism would be possi-
ble with a larger database. Although the ground motion estimates
provided by ShakeMap take into account the characteristics of
faulting mechanism such as fault type and geometry (e.g., Wald
2013), categorization of inventories considering these features may
help us to improve our mLS predictions as well. Now, we have only
10 landslide events associated with strike-slip faulting and 13

Fig. 4 Flowchart for the proposed method
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events with thrust faulting, while no EQIL inventory is available
that is associated with normal faulting (Table 2), which is not
sufficient to make separate categories.

Conclusions
We analyzed 23 EQIL inventories to develop an approach for the
near-real-time prediction of the landslide-event magnitude scale.
We restricted our analyses within non-flat regions located within
the main landslide-affected areas, which were identified using the
PGA contour containing 90% of the landslides and largest PGA
values. For each of the main landslide-affected areas, we calculated
mean values of three independent seismogenic and six morpho-
logic variables and their standard deviations (Table 4). Addition-
ally, we gathered earthquake magnitude and half duration for each
earthquake and examined 20 variables in total. We assumed a

linear dependence for mLS over the variables and identified five
variables as the best subset of the independent parameters using a
stepwise linear regression algorithm. Using the selected subset of
variables, we identified the coefficients of the regression model
and validated this model using the leave-one-out approach, since
we have limited observations.

Validation results show that our proposed approach provides a
relatively good prediction (adjusted R2 = 0.79, RMSE = 0.50, and
MAE = 0.40) for mLS. Although this has not been tested in prac-
tice, it is possible to make near-real-time predictions as the re-
quired predictors can be derived rapidly after an earthquake.

Rapid prediction of mLS can improve our ability to estimate the
intensity of landslide events within a day after an earthquake and,
thus, it can provide useful information in the emergency response
phase. Using the predicted mLS, we can also estimate maximum

Fig. 5 Illustration of the four-step procedure (Fig. 4) to predict mLS and related parameters for the 2004 Mid-Niigata earthquake. In STEP-1, the 0.12-g PGA contour as an
estimate for the boundary of main landslide-affected area is identified. In STEP-2, the independent variables are determined for non-flat regions located within the main
landslide-affected area. In STEP-3, the regression equation (Eq. 5) is run to predict mLS. In STEP-4, the number of triggered landslides (NLT) is estimated (Eq. 1) to predict
the maximum landslide area (ALmax) (Eq. 2), and the total landslide area (AT) (Eq. 4). The empirical frequency-size distribution curve corresponding to estimated mLS is
also identified in STEP-4. The empirical frequency-size distribution curves presented in STEP-4 are taken from Malamud et al. (2004)
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landslide area, total landslide area, and volume, which can help us
better understand the balance between crustal advection and seis-
mically induced mass wasting and thus the landscape evolution
process (e.g., Hovius et al. 2011). We can also estimate the
frequency-size distribution of landslide-event using the empirical
curves of Malamud et al. (2004). Tanyaş et al. (2018a) emphasized
the variation in the slope of frequency-size distribution curves and
argue that modeling the frequency-size distribution of landslides
may not be accurate using an average slope as Malamud et al.
(2004) did. However, in the absence of landslide-event inventory,
to provide estimates regarding the size distribution of landslides,
the empirical curves of Malamud et al. (2004) can be quite useful.
Our method needs further calibration using a larger dataset to
ensure its validity globally. With a larger EQIL database, this
model can be improved addressing some of the drawbacks men-
tioned above and predict mLS with smaller uncertainties.
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