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Sensitivity analysis of automatic landslide mapping:
numerical experiments towards the best solution

Abstract The automatic detection of landslides after major events
is a crucial issue for public agencies to support disaster response.
Pixel-based approaches (PBAs) are widely used in the literature for
various applications. However, the accuracy of PBAs in the case of
automatic landslide mapping (ALM) is affected by several issues.
In this study, we investigated the sensitivity of ALM using PBA
through digital terrain models (DTMs). The analysis, carried out in
a study area of Poland, consisted of the following steps: (1) testing
the influence of selected DTM resolutions for ALM, (2) assessing
the relevance of diverse landslide morphological indicators for
ALM, and (3) assessing the sensitivity to landslide features for a
selected size of moving window (kernel) calculations for ALM.
Ultimately, we assessed the performance of three classification
methods: maximum likelihood (ML), feed-forward neural network
(FFNN), and support vector machine (SVM). This broad analysis,
as combination of grid cell resolution, surface derivatives calcula-
tion, and performance classification methods, is the challenging
aspect of the research. The results of almost 500 experimental tests
provide valuable guidelines for experts performing ALM. The most
important findings indicate that feature sensitivity in the case of
kernel size increases with coarser DTM resolution; however, the
peak of the optimal feature performance for the selected study
area and landslide type was demonstrated for a resolution of 20 m.
Another finding indicated that in combining a set of topographic
variables, the optimal performance was acquired for a DTM reso-
lution of 30 m and the support vector machine classification.
Moreover, the best performance of the identification is represent-
ed for SVM classification.
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Introduction
Landslide inventories provide a fundamental data source for land-
slide susceptibility, hazard, and risk assessment (Petschko et al.
2016). Landslide inventory maps are produced by conventional
(consolidated) and innovative (remote sensing) methods
(Guzzetti et al. 2012). Broad overviews concerning landslide inves-
tigations can be found in Guzzetti et al. (2012) and Scaioni et al.
(2014). Among traditional methods, visual interpretations of ste-
reoscopic aerial photography and geomorphological field recon-
naissance are widely used. However, conventional map-generating
techniques require expert knowledge, are highly subjective, and
have limited reproducibility (Dou et al. 2015). In contrast, semi-
automated or automated approaches exploiting remote sensing
(RS) data can overcome such issues (Dou et al. 2015).

Today, research in the landslide recognition field is mainly
focused on three areas: (1) deep exploration of high-resolution
RS data to reveal landslide-related information, (2) the automation
of landslide identification and feature extraction from RS data,
and (3) the integration of diverse RS data. Recently, considerable
efforts have been exerted in research on automatic landslide

mapping (ALM) to exclude subjectivism, reduce time, and increase
efficiency in landslide detection. This task is challenging but also
complex (Scaioni et al. 2014). In the last few years, several studies
have investigated this issue to develop more or less automated
remote sensing techniques for ALM (Stumpf et al. 2017). Automat-
ic techniques include analysis of RS data, such as optical images
(Chen et al. 2017; Dou et al. 2015; Kurtz et al. 2014), synthetic
aperture radar (SAR) data (Del Ventisette et al. 2014; Wasowski
and Bovenga 2014), and light detection and ranging (LiDAR)
digital terrain models (DTMs) (Leshchinsky et al. 2015; Lin et al.
2013b; Tarolli et al. 2012; Van Den Eeckhaut et al. 2012). The
availability of high-resolution (HS) optical images (spaceborne,
airborne, and terrestrial) affords more accurate and efficient land-
slide mapping than ever before (Li et al. 2016). Studies on the
analysis of spectral data are mainly focused on mapping landslides
resulting in the disappearance of vegetation cover (Stumpf et al.
2017) or seasonal and long-term changes in land use (Guzzetti
et al. 2012). Unfortunately, such methods are ineffective in the case
of slow-moving landslides in vegetated and agricultural areas (Van
Den Eeckhaut et al. 2012) and also in cloudy areas (Li et al. 2016).
In contrast, interferometric synthetic aperture radar (InSAR) consti-
tutes the basis for a suitable technique to detect and monitor slow-
moving landslides (Tofani et al. 2013). This technique is cloud inde-
pendent but is limited to areas without dense vegetation cover, with
favourable slope exposition and with substantial movements along
the line of sight of the satellite (Wasowski and Bovenga 2014).
Another promising technology is LiDAR owing to its multiple-echo
or full-waveform capability, which allows easy filtering of vegetation
and other non-ground objects, as well as the provision of detailed
topography (Tarolli 2014). Hence, LiDAR is extremely helpful in
landslide detection in areas covered by vegetation—even
dense—where other techniques cannot be applied (Lin et al.
2013a). Jaboyedoff et al. (2012) provide a comprehensive overview
of laser scanning applications in landslide investigations.

Looking at the ALM approaches based on RS data, we can
discern two main groups: pixel-based (PBA) and object-oriented
approaches (OOA). Generally, PBA relies solely on the spectral
characteristics of the analysed image. This makes PBA more us-
er-friendly. However, the main limitation of PBA concerns the
speckled appearance of the classification results (Keyport et al.
2018) and the amalgamation of landslides (Marc and Hovius 2015).
OOA integrates segments into meaningful objects using user-
defined rules (Feizizadeh et al. 2017). These rules can be defined
by statistics, shapes, texture, and contextual information (mutual
relationships of image objects), which can often not be applied in
PBA (Li et al. 2016). However, OOA is more site-specific and
contains too many classification steps to be transferred easily to
other regions (Van Den Eeckhaut et al. 2012).

In both approaches, various widely used DTM derivatives have
been explored for landslide detection. In some studies, certain mor-
phometric parameters have been used exclusively to detect land-
slides (Chen et al. 2014; Lin et al. 2013b; Van Den Eeckhaut et al. 2012)
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and in other studies, they have sometimes been integrated with other
RS data (Chen et al. 2017; Kurtz et al. 2014; Mezaal et al. 2017).
McKean and Roering (2004) applied local surface roughness, calcu-
lating variability in slope and aspect and the two-dimensional topo-
graphic curvature through the Laplacian operator to detect and
characterize landslides. Also, Glenn et al. (2006) used local surface
roughness delivered by LiDAR-DTM to differentiate diverse morpho-
logical components within isolated landslides. The two studies present
differences in surface roughness throughout the diverse parts of a
landslide. Van Den Eeckhaut et al. (2012) applied slope, plan curvature,
roughness, openness, and multiple flow direction to detect a landslide
using only DTM andOOA. Tarolli et al. (2012) used landform curvature
for automatic detection of landslide crowns. Lin et al. (2013b) detected
large-scale landslides using a shading map with aspects of different
azimuth and aerial photos in the Namasha-Liuoguey area in Taiwan.
Kurtz et al. (2014) used slope and curvature together with
multiresolution images and a top-down hierarchical framework to
extract landslides. Chen et al. (2014) used PBA, applying random forest
and DTM-delivered layers such as mean aspect, DTM and slope
textures, based on four textural directions. Shortly afterwards, Li et al.
(2015) applied DTM, slope, aspect and surface roughness, and their
textures and filtered modifications to identify forested landslides using
machine learning and OOA. Still more recently, Chen et al. (2017)
applied curvature, hillshade, roughness, flow direction, and slope
simultaneously with satellite images and OOA to map a landslide in
the Three Gorges Reservoir in China. Mezaal et al. (2017) applied 39
features in calculating the grey-level co-occurrence matrix (GLCM)
from hillshade, height (normalized digital surface model nDSM), slope,
and aspect to optimize a neural network architecture for ALM.

An important aspect in the effectiveness of ALM is the selection
of features. Recent papers have demonstrated that the combina-
tion of many DTM derivatives with sophisticated machine learning
classifiers (support vector machine or random forest) is computa-
tionally time-consuming (Chen et al. 2014; Mezaal et al. 2017) and
can cause over-fitting issues (Chen et al. 2014). The best classifi-
cation results have been achieved by selecting the most relevant
features (Danneels et al. 2007; Kursa and Rudnicki 2010; Li et al.
2015; Mezaal et al. 2017; Pawłuszek and Borkowski 2017a; Stumpf
and Kerle 2011).

Another very important aspect affecting the performance of ALM is
scale. Scale is considered an effect of DTM resolution and the size of
the window-moving calculation (also called the kernel size) of these
topographical parameters. The selection of the appropriate scale is
necessary to achieve high performance in landslide mapping (Paudel
et al. 2016). Using a coarser DTM resolution, the topographic repre-
sentation can be too smooth to detect a landslide or its features.
Keijsers et al. (2011) concluded that landslide prediction is better with
fine resolution for DTMs because this is free of the smoothing effect. In
contrast, Tarolli and Tarboton (2006) found that the optimal DTM
resolution for the detection of most likely landslide initiation points
(in the case of shallow landslides) is 10m. However, Tarolli et al. (2012)
tested the effectiveness of different landform curvature maps with
different smoothing factors for feature extraction. They analysed dif-
ferent kernel sizes to calculate curvature from 0.5 m DTM and found
that curvature calculation is strongly scale dependent, and a 21 × 21
kernel size (10.5 m wide) was the most suitable scale for the extraction
of landslide crowns and bank erosion in their specific study area.

To summarize, the accuracy of ALM is affected by several
aspects: the selection of appropriate morphological indicators

and scale (DTM resolution and kernel size for the calculation of
DTM derivatives). Also, the classification method is critical. Al-
though different scholars have discussed such issues, there is still a
lack of systematic studies on the aspects influencing sensitivity in
the context of ALM accuracy.

The main objective of this study is to perform a detailed
sensitivity analysis of ALM, bringing together all the most impor-
tant surface derivatives and morphometric parameters, the con-
cept of scale (cell size, but also kernel size), and classification
methods. This broad analysis, which contained almost 500 exper-
imental tests, represents the challenging aspect of our research. In
detail, 17 topographic parameters were calculated and combined,
examining the optimal scale (DTM resolution and kernel size) for
ALM. The performance parameters were then analysed through
the feed-forward neural network (FFNN) and support vector ma-
chine (SVM) classification methods.

General settings of the study area
This study focused on a selected region of the Flysch Carpathian
Mountains in Poland, known for its frequent occurrence of
landslides. As part of the Landslide Counteracting Framework
(SOPO) project (Bąk et al. 2011; Borkowski et al. 2011), approxi-
mately 60,000 landslides have been inventoried in the Polish
part of the Carpathian mountains, 13% of which contained in-
frastructural elements in their area, such as buildings, roads, or
transmission lines (Marciniec and Zimnal 2015). The study area
covers an area of 26.3 km2. It is located in southern Poland
within a zone comprising 49° 43′ to 49° 46′ N latitude and 20°
38′ to 20° 43′ E longitude in the Łososina Dolna municipality
(Fig. 1). Most of the municipality area comprises agricultural
land (42%), while forests account for 34% of the total area
(Kroh et al. 2014). The landslide activity located in the study
area is mostly associated with hydrogeological conditions, con-
trolled by the fluctuation of the water level in the Różnów Lake
(Borkowski et al. 2011). Several landslides have been covered by
forest and therefore their identification is very challenging.
Hence, optical data are rendered useless and an inappropriate
data source for ALM.

Data

Landslide inventory map (SOPO system)
The Polish Geological Institute has created a BLandslide
Counteracting System^ called SOPO (Bąk et al. 2011; Borkowski
et al. 2011). One of the aims of The SOPO project was to produce
detailed evidence in the form of a digital database of all recently
active and inactive landslides in Poland (Perski et al. 2010). Field
investigations during the SOPO project show 372 landslides with a
total area of 6.72 km2 within the study site. This means that the
landslide areas cover more than 25% of the study area. The
minimum, maximum, and average landslide sizes are 0.05, 30,
and 1.7 ha, respectively. Within the study area, landslides present
various activity states, such as active, periodically active (active
over the past 50 years), and dormant. They usually occur on
slopes above rivers and creeks. Following the updated Varnes
classification (Hungr et al. 2014), the landslides investigated are
of types 11, 12, and 14—on clay/silt rotational, planar, and com-
pound slides (Kroh 2016). Fieldwork identifying and mapping
landslides using the framework of the SOPO system were
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performed from October 2010 to June 2011 (Gorczyca and
Wrońska-Wałach 2011).

LiDAR data
LiDAR data were gathered within the System of the Country’s
Protection called ISOK. ISOK is the informatics system which
provides comprehensive knowledge and information on water
management in Poland (http://www.isok.gov.pl). Within this pro-
ject, airborne laser scanning (ALS) was performed for almost the
whole country. ALS data were captured within the ISOK project
using the Rigel LiteMapper 6800i System based on the Q680i laser
scanner. The average point density in the study area is 4–6 points/
m2, and the estimated root mean squared error (RMSE) for the
height component is about 0.15 m. Pawłuszek et al. (2014) assessed
the accuracy of this point cloud, finding that it varies for different
types of land use from 10 cm for roads to around 20 cm for forests.
To separate points representing bare earth, TerrScan software was
used. The filtering method implemented in TerraScan is based on a
local, adaptive triangular irregular network model introduced by
Axelsson (2000). Subsequently, LiDAR-based DTM was used to
generate topographical layers to facilitate the identification of
landslide areas.

Methodology
A general overview of the methodology applied is given in Fig. 2.
The natural neighbour interpolation method (Sibson 1981) was
used to produce a 1-m DTM, already proven to be an appropriate
interpolator for geomorphologic analysis (Pirotti and Tarolli 2010).
The DTM with 1 m resolution was used to generate other DTM
layers and resolutions. Second, 20 different DTM derivatives were
calculated for various DTM resolutions and kernel sizes.

Third, based on DTM and specific DTM-delivered layers,
double-layer MLC was performed. Stratified random sampling
was employed, with 20% of total image pixels used for training
and the remaining 80% used for accuracy assessment. Based on
this, the relevance of each DTM-delivered layer was assessed.
Moreover, based on the accuracy indices of an abundant number
of classification tests, the sensitivity of specific landslide morpho-
logical layers for different DTM resolutions and different moving
window sizes was also evaluated. Fig. 3 shows a graphical repre-
sentation of the experimental tests performed for features sensi-
tivity analysis as test cube.

Eventually, the final automatic landslide mapping was per-
formed by applying two strategies. The first strategy uses the most
relevant features based on the kappa value (kappa-based feature

Fig. 1 Location of the study area. Shaded relief map derived by 1 m DTM
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selection). Feature layers with kappa values higher than 0.2 within
each feature type (Appendix 1—features with bold red font) were
used for final ALM (Appendix 2). This threshold was selected
because it has been assumed that kappa values lower than 0.2
represent low agreement between reference data and classification
data (Viera and Garrett 2005). The second strategy uses features
calculated using the minimum window size (Appendix 3). These
two strategies were executed to assess the impact of selected kernel
size on the calculation of features when performing ALM with a
composition of many different DTM-delivered layers. Moreover,
within both strategies different maximum likelihood (ML), FFNN
and SVM classification methods were applied to test performance
in automatic landslide mapping using PBA. Figure 4 represents
graphical representation of different experimental tests using dif-
ferent classifiers and some of their parameters.

Fine to coarse DTM generation
Pixel size is highly involved in the efficiency of mapping and its
selection can be optimized, to a certain level, to satisfy both process-
ing capabilities and the representation of spatial variability (Hengl
2006). It was concluded that no optimal pixel size exists, but rather a
range of relevant resolutions. Althoughmany papers have argued the
influence of pixel size on the accuracy of specific modelling, the
selection of pixel resolution is exceptionally based on the inherent

spatial variability of the input data for any scientific justification,
mostly drawing on information theory (Borkowski and Meier 1994;
Hengl 2006). In contrast, some papers have demonstrated that the
selection of the finest DTM resolution is not always the optimal
choice (Pawłuszek et al. 2014; Mora et al. 2014; Penna et al. 2014;
Tarolli and Tarboton 2006; Pawłuszek et al. 2017). The selection of an
inappropriate spatial resolution for DTM may result in
misjudgement of landslide identification or misinterpretation of
landslide features or morphology (Mora et al. 2014). To examine,
experimentally, the performance of automatic landslide mapping
using PBA with reference to DTM resolution, DTM with grid cell
sizes equal to 1, 2, 5, 10, 20, and 30 m were generated.

Generation of landslide morphological indicators (DTM derivatives)
All DTM-derived landslide topographic indicators were provid-
ed in raster format with the pixel size calculated according to
the DTM resolution tested. The most popular and widely ap-
plied landslide topographic indicators were calculated indepen-
dently for different resolutions of DTMs and kernel sizes. Some
of these are presented in Fig. 5. Among these derivatives are the
principal components of hillshades generated from eight differ-
ent directions, linear aspects, flow direction, side exposure in-
dex, roughness index, curvature (Bolstad’s variant, minimum
maximum and mean Evans’ variant), mean slope, standard
deviation of the mean slope, topographic position index,

DTMs generation
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openness, and standard deviation of aspect. Table 1 presents the
main information, calculation patterns, and references of DTM
derivatives used in this study.

Feature selection methods
Kursa and Rudnicki (2010) reported that the selection of only themost
appropriate features enhances the quality of landslide identification.
The landslide topographic indicators were selected according to two
strategies. Within the first strategy, all layers with a minimum kernel

size were used. Within second strategy, all layers presenting the best
kappa index were used (red bold font in Appendix 3). Kappa is an
important index that measures agreement between classification or
identification results and reference data. Appendix 1 presents feature
performance in the case of ALM. The most intense colour of cubes
(Fig. 3) represent the most relevant feature used for the final ALM. It
allows to claim that results are not a product of guesswork (Viera and
Garrett 2005). For the selection of the most relevant features, the
assumption that kappa index has to be greater than 0.2 was used. This

D
T

M
d

e
r
iv

a
t
iv

e
s

roughness

mean slope

min curvature

max curvature

mean curvature

curvature
(bolstadt)

σ mean slope

TPI

openness

aspectσ

DTM resolution

Fig. 3 Feature sensitivity assessment—experimental test cube. The colour intensity represents the performance (best performance corresponds to more intense colour) of
DTM derivatives with reference to the kernel size and DTM resolution employed. The most intensive colour and black boundaries represent the best performance of the
feature in reference to DTM resolution and kernel size

DTM resolution

d
iv

e
rs

e
c
la

s
s
ifi

c
a
ti
o
n

p
a
ra

m
e
te

rs

C
la

s
s
ifi

c
a

t
io

n
 
m

e
t
h

o
d

1m 2m 5m 10m 20m 30m

ML

FFNN

SVM 100
200

400

300

500

RBF
1^

2^
3^

4^
6^

iterationskernel function

Fig. 4 Experimental cube. Graphical representation of classifier performance assessment. The colour intensity represents the performance (best performance corresponds
to more intense colour) of classifiers with reference to DTM resolution and the parameters of certain classifiers. The most intensive colour and black boundaries represent
the best performance of the classifier in reference to DTM resolution and some parameters (MLC—no parameters were tested)

Landslides 15 & (2018) 1855



thresholds was selected according to the general kappa classification
which announce that kappa lower than 0.2 represents slight agreement
between classification results and ground truth data (Viera andGarrett
2005). Appendix 1 represents the accuracy parameters, which allow to
diagnose the initial features and eliminate of the least important
features.

Classification methods used
Many factors, including the spatial resolution of the data used, diverse
data sources and data types, classification systems, and software avail-
ability, must be considered in selecting a classification method. Various
classifiers have their own merits (Kotsiantis et al. 2007; Lu and Weng
2007). For instance, when sufficient training samples are available and

Fig. 5 DTM derivative examples. (a) TPI (b) openness (c) aspect (d) roughness (e) man slope (f) max curvature
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Table 1 Description, calculation patterns, and references of DTM derivatives used

DTM derivative Description and references

Initial three principal components of hillshade (window independent
layer)

These three layers were calculated from eight hillshade layers, which represent
eight diverse sun directions. Principal component analysis (PCA) is a popular
variable-reduction tool (Abdi and Williams 2010). PCA was used to reduce
redundant information within hillshade layers and simultaneously remove noisy
information (comp. also, Pawłuszek and Borkowski 2017b). Further PCs pro-
vides only noise; thus, only three initial PC layers were used for further
investigations.

Linear aspect (window independent layer) The aspect shows the horizontal direction of a surface. Aspect layer is applied as
landslide topographical indicator (Chen et al. 2014; Li et al. 2015). In presented
study, aspect layer was calculated using GIS Geomorphometry & Gradient
Metrics toolbox provided by Evans et al. (2014)

Flow direction (window independent layer) Flow direction is the direction of steepest descent, and landslide main direction
is relatively parallel to the flow direction (Martha et al. 2010). Flow direction
was provided from the DTM analysis using ArcGIS using the Dinf (infinity
direction) approach. It calculates the flow in all possible directions and assigns a
value in radians counter clockwise from east between 0 and 2π, based on
steepest slope on a triangular facet (Tarboton 1997)

Side exposure index (SEI) (window independent layer) The SEI rescales aspect to a north/south axis and weights it by steepness of the
slope. The metric represents relative exposure ranging from − 100 to + 100
(coolest to warmest). Calculated with GIS Geomorphometry & Gradient Metrics
toolbox by Evans et al. (2014) (Balice et al. 2000).

Roughness index (window dependent layer—tested window sizes:
3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

The roughness index is widely used to identify landslide areas (McKean and
Roering 2004; Glenn et al. 2006; Li et al. 2015). In general, areas affected by
landslides activity are very rough. Moreover, different roughness indexes can
represent various landslide activities (Glenn et al. 2006). In presented study,
roughness index was calculated as the standard deviation of residual topog-
raphy (Cavalli et al. 2008). Residual topography was calculated as a difference
between original DTM and interpolated DTMki.

Curvature (Bolstad’s) (window dependent layer—tested window sizes:
3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

Concavity/convexity index (Bolstad’s variant). The index is based on features
that confine the view from the canter of a nxn window size. Calculated with GIS
Geomorphometry & Gradient Metrics toolbox by Evans et al. (2014) (Bolstad
and Lillesand 1992).

Curvatures (Evans ‘79)
1) minimum
2) maximum
3) mean
(window dependent layer—tested window sizes: 3 × 3, 5 × 5, 7 × 7,
9 × 9, 11 × 11, 13 × 13, 15 × 15)

Curvature is a second DTM derivative. It is one of the basic terrain parameter
and is widely applied in digital terrain analysis. This kind of curvature proposed
by Evans (1979) is alternative measures independent of slope and based
entirely on surface geometry. In presented study are three measures of
minimum (concavity) and maximum (convexity) and mean curvature. More
detailed information can be found in Evans (1979) and Tarolli et al. (2012).

Mean slope (window dependent layer—tested window
sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

The slope is the crucial landslide indicator because sliding of loose
material is directly related to the slope. Calculated with GIS Geomorphometry &
Gradient Metrics toolbox by Evans et al. (2014), which can be express
as follows:
∑
i

i¼n
∑
j

j¼n
ðatanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zij
xij

h i2
þ zij

xij

h i2� �

r

� 57:29578=n

where the double sigma represents the summation across the slopes in the
matrix using an ij index of the defined window matrix and n is the number of
observations in the matrix. Diverse window sizes were used to calculate mean
slope.

Standard deviation of mean slope (window dependent layer—tested
window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

Feature calculated by moving standard deviation filter from mean slope layer.
This filtered layer was applied in automatic landslide mapping by Chen et al.
(2014) and Li et al. (2015). Diverse windows sizes were used to calculate this
DTM derivative.

Topographic position index (TPI) (window dependent layer—tested
window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

The TPI is calculated as the difference between the cell elevation and the mean
elevation of neighbouring cells. TPI allows for the identification of different
topographic landforms, such as ridge, slope, and valley. Since the landslide
scarps occur mostly on the ridges, the TPI index may be seen as one of the
geomorphological indicators for landslide mapping. TPI was calculated using
Jenness et al. (2010) implementation.

Openness (window dependent layer—tested window sizes:
25 × 25,50 × 50,75 × 75,100 × 100,125 × 125)

Difference between original DTM and smoothed DTMki. DTMki map of each grid
cell represents the mean elevation value of a moving window size. Openness
represent residual topography from interpolated topography (Van Den
Eeckhaut et al. 2012).
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the features are normally distributed, a parametric classifier such as ML
may provide accurate results. However, when image data are anoma-
lously distributed, neural networking may demonstrate better perfor-
mance (Pal and Mather 2004). Many papers have demonstrated that
non-parametric classifiers may provide better performance than para-
metric classifiers in complex landscapes.

It is very challenging to state definitively which classifier is the
most appropriate for a specific study. Depending on the classifiers
selected, various classification results may be acquired. Therefore,
to provide a better assessment of the impact of each DTM resolu-
tion on ALM, three classification techniques were tested: ML,
FFNN, and SVM. As previously mentioned, 20% of randomly
selected points were used for training. A stratified random sam-
pling approach was applied. The same training samples were used
for all classification tests. Classification tests were performed for
the six compositions created from the different landslide morpho-
logical indicators generated from six different DTM resolutions.

Maximum likelihood classification
ML is a supervised classification method which is determined by
the Bayes theorem. It employs a discriminant function to assign
pixels to user-defined classes with the maximum likelihood
(Asmala 2012). ML may be the most widely applied parametric
classifier in practice because of its robustness and the availability
of software (Lu and Weng 2007). ML classification cannot be
applied in the case of a unique band layer, and thus, all classifica-
tion tests performed to assess the relevance of each landslide
conditioning factor were undertaken for two layers: DTM and
the topographic layer being analysed.

Feed-forward neural networking
Artificial neural network approaches have been widely adopted in
recent years. Neural networks have several benefits, including their
non-parametric nature, arbitrary decision boundary capability,
easy adaptation to different data types and input structures, fuzzy
output values, and generalization for use with multiple images (Lu
and Weng 2007). However, the variation in the dimensionality of a
dataset and the characteristics of training and testing sets may
reduce the accuracy of image classification. After several trials, the
following network architecture was selected: FFNN with one hid-
den layer and sigmoid transfer function.

Support vector machine
The SVM classification technique is also a non-parametric clas-
sifier, which is based on statistical learning theory, optimization
algorithms and structural risk minimization theory; it has been
effectively used in landslide susceptibility mapping (Pawłuszek
and Borkowski 2017a; Pradhan 2013) and landslide identification
(Li et al. 2015; Van Den Eeckhaut et al. 2012). According to
Vapnik (1995), the main idea of SVM is to construct a hyperplane

that separates the data set into discrete predefined classes based
on created training samples (Mountrakis et al. 2011). The hyper-
plane refers to an optimal separation boundary plane to mini-
mize misclassification. It is iteratively performed in the learning
stage.

Accuracy assessment
The classification methods were implemented in ENVI 5.4 soft-
ware. All results were validated using accuracy assessment. There
are many methods in the literature for evaluating mapping accu-
racy, but thus far, there is no universal method (Congalton 1991;
Dou et al. 2015). Nevertheless, studies that measure the agreement
between two or more observers should include a statistic that takes
into account the fact that observers will sometimes agree or dis-
agree simply by chance (Viera and Garrett 2005). The kappa index
is a statistic that is widely used for this objective and thus we adopt
it as the most relevant index demonstrating the precision and
robustness of classification. Therefore, the kappa (K) index, pro-
ducer accuracy (PU), user accuracy (UA), and overall accuracy
(OA) were calculated. The OA is determined as the sum of cor-
rectly classified pixels divided by the total pixel number. PU
presents how many of the pixels in a specific class on the map
are classified correctly. UA is calculated by total number of cor-
rectly classified pixels for a particular class and dividing it by the
row total. The results obtained were assessed for accuracy based
on the K, OA, and PU values (Appendices 1, 2, and 3)

Results and discussion

Performance of specific morphological indicators
To assess the significance of topographic features, separate ML
classifications were performed for particular DTM derivatives.
Appendix 1 presents the double-layer (DTM + specific DTM de-
rivative) ML classification. Features with a kappa index greater
than 0.2 are indicated in red and these layers were selected for
final landslide identification, examples of the results of which are
presented in Fig. 6 (ML classification) and Fig. 7 (SVM classifica-
tion), with accuracy evaluations presented in Appendix 2. Based
on Appendix 1, the most significant features seem to be the
roughness index, openness, topographic position index, and cur-
vature (Bolstad’s variant and minimum curvature). Flow direction
presents a kappa index lower than 0.2, and thus, this layer was
excluded from further landslide detection using the composition
of topographic layers. For DTM resolutions of 20 and 30 m, the
third principal component (PC) of hillshade, maximum curvature,
and standard deviation of mean slope also exhibit low perfor-
mance. Aspect and standard deviation of aspect indicate moderate
performance in landslide detection. The kappa index for this layer
of different DTM resolutions and maximum kernel sizes oscillates
around 0.25. Figure 3 also represents the performance of DTM

Table 1 (continued)

DTM derivative Description and references

Standard deviation of aspect (window dependent layer—tested
window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15)

Topographic feature calculated by moving standard deviation filter from linear
aspect layer. This filtered layer was applied in automatic landslide mapping by
Chen et al. (2014) and Li et al. (2015). Diverse window sizes were used to
calculate this DTM derivative.
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derivative layers. The intensity of colour of the cubes represents
the performance of DTM derivatives with reference to the kernel
size and DTM resolution employed.

Performance of DTM resolutions
To assess the sensitivity of topographic features with reference to DTM
resolution, ML classification was performed for different DTM resolu-
tions (Appendix 1). As can be observed, the performance of specific
landslide indicators is higher if the DTM resolution is coarser. However,
in almost all cases, the best feature performance is demonstrated for the
20 m resolution of DTM. As an exception, for the roughness index and
openness, the best resolutions appear to be 30 and 10 m, respectively.

The performance of maximum curvature is higher for a finer resolution
of DTM. Based on the results obtained, it can be seen that some layers
are more sensitive to the DTM resolution selected than others in the
context considered in this study. For instance, the difference between
minimum kappa and maximum kappa for mean curvature is around
0.04, while for the roughness index, it is 0.15. For many features, the
difference in the kappa index can vary from 0.25 to almost 0.4, which
shows substantial sensitivity to the DTM resolution selected. A kappa
value of 0.25 can be observed for features calculated for the finest
resolution of DTM. It can be concluded that the performance of the
topographic indicators presented increases proportionally to the coarser
resolution of DTM.

Rożnów Lake

identified landslide
existing landslide

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Examples of automatic landslide mapping using MLC classification and a 1 m DTM, b 2 m DTM, c 5 m DTM, d 10 m DTM, e 20 m DTM, and f 30 m DTM
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Performance of moving window sizes
To assess the sensitivity of topographic features with reference to kernel
size,ML classificationwas performed for different kernel sizes (3 × 3, 5 ×
5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15) (Appendix 1). Some features dem-
onstrate significant sensitivity to the kernel size; however, this is also
linked to the DTM resolution used. In the case of almost all features, the
sensitivity of the kernel size for the finest DTM resolution (1–2 m) is not
significant. In many cases, the kappa index changes by around 0.03 and
changes in OA do not exceed 4%. However, in the case of coarser DTM
resolution, topographic layers are more sensitive to the kernel size used.
For instance, observing the roughness index (rows 8 to 14 in Appendix
1), it can be seen that the performance of the roughness index increases
proportionally to the coarser DTM resolution and to the finer kernel
size. In the cases of 10, 20, and 30 m resolutions, the roughness index
demonstrates the best performance for the minimum kernel size. Sim-
ilar findings can be observed for mean curvature, mean slope, standard
deviation of mean slope, and openness. However, the opposite is found
for TPI and the standard deviation of aspect. These layers demonstrate
better performance when the kernel size is bigger. In the case of
curvature (Bolstadt’s variant), lower sensitivity to the kernel size used
can be observed. Changes in the kappa index oscillate between 0.01 and
0.03 for the 30 m DTM resolution. This demonstrates that the selection
of window size for such topographic features is not meaningful. The
opposite can be observed for other features. In the case of coarser DTM
resolution, the sensitivity of features to the kernel size increases, while in
the case of finer resolution, it is also not significant.

Performance of feature selection methods
Appendices 2 and 3 present the accuracy assessment for ALM using
various classification methods and DTM resolutions, respectively. The
difference between these two strategies is the feature selection method.
In Appendix 2, the results of ALM are presented for the topographic
layer composition created from the most relevant topographic indica-
tors, selected based on the kappa index (kappa-based feature selection
method). In Appendix 3, the results of ALM are presented for topo-
graphic layer composition, for which features were calculated using
minimum kernel size (minimum kernel size feature selection method).
The accuracy assessment of these two strategies demonstrates that the
classification results do not change significantly with reference to kernel
size in relation to the topographic layers calculated. The kappa index
does not change more than 0.05. However, this slight change was found
in the case that a composition of 16 layers was used for classification.
When only two layers are selected, the kernel size matters (DTM +
roughness index), especially for coarser DTM resolutions (Appendix 1).

Performance of classification methods
Appendices 2 and 3 present also accuracy assessment for different
classificationmethods and some of their parameters.ML classification,
as an example of a parametric classifier, presents the lowest perfor-
mance. In almost all cases, the best performance is presented by SVM
classification; however, this classification method is time-consuming.
Moreover, for the finest resolutions of DTM (1 and 2 m), this classifi-
cationmethod cannot be executed, while FFNN andML can. However,

(a) (b)

(c) (d)

identified landslide
existing landslide

Fig. 7 Examples of automatic landslide mapping using SVM classification and a 5 m DTM, b 10 m DTM, c 20 m DTM, and d 30 m DTM
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it can be observed that the accuracy increases proportionally to the
coarser DTM resolutions. This could be caused by single pixels that are
specific to finer DTM resolutions. FFNN demonstrates quite similar
performance to SVM. Some of the valuable parameters of these
classifiers were also tested to assess the sensitivity of the classifier to
a number of parameters used. Some classifier parameters were also
tested to assess the stability of the classifier. The experimental evalu-
ations presented in Appendices 2 and 3 show that changing the kernel
function (radial basis function vs polynomial) does not change the
performance of classifiers to any great extent. Notably, more unstable
results are provided by FFNN classification. The findings suggest that
the number of iterations used for classification should be lower if the
resolution of theDTMused is finer. For instance, for 500 iterations, the
kappa indices for DTM 30 and 5 m are 0.47 and 0, respectively
(Appendix 3). In contrast, for 100 iterations, the kappa indices for
DTM 30 and 5 m are 0.41 and 0.40, respectively. Figure 5 represents
also the performance of the classification methods used and some of
their parameters. The intensity of the colour of cubes represents the
performance of classifiers with reference to DTM resolution and the
parameters of certain classifiers.

Optimal strategy for automatic landslide mapping
Based on the above discussion, the accuracy of ALM can be achieved
with the agreement of a kappa index of around 0.5 and overall accuracy
of around 80%. Applying a DTM resolution of 30 m, features with the
best kappa (red bold font in Appendix 1) and FFNN classification
present a kappa index of 0.5 and OA of 77%. In the case of SVM
classification and the same DTM resolution and features, the kappa
index is 0.55 and the OA is 81.4%. Similar results have also been
demonstrated by other authors (Leshchinsky et al. 2015; Mezaal et al.
2017). Lower kappa values are likely related to under-prediction of
landslides and over-prediction of non-landslide areas. Under-
prediction is also particularly evident in the case of old denudated
landslides, where the morphology has been changed by agricultural
activities or physical processes. Over-prediction of landslides can be
observed in river valley bottoms and anthropogenic forms, where the
approach presented identified steep and rough sections of rivers or
anthropogenic slopes as landslide areas. The best agreement (Kappa =
0.55) was achieved for the kappa-based feature selection method using
SVM, with seven-degree polynomial kernel function and 30 m DTM
resolution. The best accuracy for correctly classified landslide pixels
(PA= 79%) is demonstrated by FFNN classification with 400 iterations
and 30 m DTM and features created using the minimum kernel size.
From the perspective of fast and easy-to-use rapid mapping with refer-
ence to after-event response, the SVM classification seems to be quite
balanced. The selection of kernel function using the approach presented
does not change the accuracy significantly and good agreement between
results and reference data can been achieved. Moreover, the expert can
ignore the kernel size of the calculation of diverse topographic indicators
while performing the classification withmany DTMderivatives (around
16). However, the selection of only one—but themost relevant—feature
with the right kernel size can sometimes provide slightly better results in
landslide detection than the composition of 16 DTM derivatives. This
can be observed by comparing the results ofML classification for aDTM
resolution of 5 m (Appendix 2) and the roughness index (Appendix 1).

Conclusions
This paper presents an extended sensitivity analysis of automatic
landslide mapping (ALM) using a pixel-based approach. Analyses

of different aspects influencing the pixel-based approach and its
sensitivity are crucial for improving model performance and un-
derstanding their weight in the case of ALM. The sensitivity of 17
topographic parameters was investigated with reference to DTM
resolution and kernel size, as follows: roughness and curvature
(Bolstadt’s variant), as well as maximum curvature, minimum
curvature, mean curvature, and mean slope (Evans 1979) and the
standard deviation of mean slope, topographic position index,
openness, and standard deviation of aspect. The optimal combi-
nations (DTM resolution and kernel size) were found for all
topographic parameters and then used for the final ALM. More-
over, this paper presents changes in the performance of final ALM
based on the DTM resolution, kernel size, and classification meth-
od selected. In terms of classification methods, the study examined
maximum likelihood (ML), feed-forward neural networking
(FFNN), and the support vector machine (SVM). The results pro-
vide valuable guidelines for ALM using a pixel-based approach.

Specifically, based on the results, the study concludes that the
most relevant features for landslide detection are the roughness
index (Kappa = 0.39), openness (Kappa = 0.33), the topographic
position index (Kappa = 0.34), curvature (Bolstad’s variant; Kap-
pa = 0.34), minimum curvature (Kappa = 0.38), and mean slope
(Kappa = 0.38). Moreover, the performance of the features pre-
sented primarily increases proportionally to coarser DTM resolu-
tions; however, the peak of increasing accuracy is observed for a
DTM resolution of 30 m. The features analysed in this study are
more sensitive to the window size used, applying a coarse resolu-
tion of DTM, as can be observed from the minimum and maxi-
mum kappa values in Appendix 1. In the case of maximum
likelihood (ML) classification, sometimes one topographic layer
(roughness index) and DTM may provide better performance than
a set of topographic indicators and ML classification. ML classifi-
cation demonstrates lower performance in comparison to support
vector machine (SVM) and feed-forward neural network (FFNN)
classification. However, in the case of a coarser resolution of DTM,
the difference in kappa values between the classifiers did not
exceed 0.05. SVM demonstrated the best performance of classifi-
cation in the case of coarser DTM resolution and appeared not to
be very sensitive to the selection of kernel function. FFNN classi-
fication demonstrated the best performance for the finest resolu-
tion; however, the classifiers are very sensitive to the number of
iterations used.

Having considering the aforementioned results, the use of PBA
and an extended set of topographic variables delivered through
coarser DTM resolution and machine learning classification
methods (FFNN and SVM) allow effective ALM. This approach
provides a potential geospatial solution for managing landslide
hazards and conducting landslide risk assessments. The approach
presented notably requires less input analysis and expertise than
other approaches (e.g., object-oriented approaches). Nonetheless,
this approach presents some limitations, especially in the case of
the amalgamation of single landslides. This should be the subject
of future research. Another substantive issue that should be inves-
tigated in further research is sensitivity analysis of ALM for dif-
ferent landslide types and sizes.
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Table 2 Features sensitivity in reference to DTM resolution and size of window moving calculations
1m DEM resolution 2 m DEM resolution 5m DEM resolution 10m DEM resolution 20m DEM resolution 30m DEM resolution

Layers 1= DTM + Kernel 
size

PA_L
[%]

PA_NL
[%]

OA
[%] K

PA_L
[%]

PA_NL
[%]

OA
[%] K

PA_L
[%]

PA_NL
[%]

OA
[%] K

PA_L
[%]

PA_NL
[%]

OA
[%] K

PA_L
[%]

PA_NL
[%]

OA
[%] K

PA_L
[%]

PA_NL
[%]

OA
[%] K

2 First PC 
from 

hillshades

-

84.02 52.60 59.94 0.247 79.24 58.90 63.69 0.275 79.94 58.32 63.57 0.279 79.72 58.62 64.02 0.289 80.01 57.84 64.07 0.299 88.95 33.77 50.82 0.165

3 Second PC 
from 

hillshades

-

84.36 53.08 60.38 0.253 76.73 62.04 65.50 0.288 77.04 61.75 65.47 0.293 76.72 62.09 65.83 0.302 78.99 59.34 64.87 0.306 91.85 37.44 54.26 0.215

4 Third PC 
from 

hillshades

-

90.18 30.89 44.72 0.120 83.71 53.30 60.46 0.252 84.28 52.11 59.93 0.251 84.71 51.70 60.14 0.258 86.85 41.04 53.93 0.197 94.66 21.17 43.88 0.108

5 Linear 
aspect 

(Evans’79)

-

83.08 51.08 58.55 0.228 79.12 56.16 61.57 0.249 79.77 55.41 61.33 0.251 79.79 55.44 61.67 0.259 80.51 53.78 61.30 0.264 90.77 37.49 53.96 0.208

6 Flow 
direction

-

82.99 47.12 55.49 0.195 77.10 51.25 57.34 0.193 77.6 50.78 57.30 0.197 78.56 50.35 57.57 0.206 79.21 49.19 57.63 0.213 85.48 35.28 50.79 0.153

7 Side 
exposure 

Index

-

82.72 55.25 61.66 0.262 79.10 60.16 64.63 0.286 79.56 59.82 64.62 0.291 79.70 59.94 64.99 0.301 80.68 58.39 64.66 0.309 89.84 41.86 56.69 0.238

8

Roughness 

3x3 81.34 54.16 60.50 0.243 64.73 73.83 71.68 0.329 62.44 75.77 72.53 0.339 62.46 78.56 74.44 0.379 66.11 75.92 73.16 0.388 79.72 66.23 70.40 0.399
9 5x5 80.17 55.97 61.62 0.252 66.53 74.98 72.99 0.356 64.92 76.42 73.63 0.366 66.66 75.46 73.21 0.375 73.09 68.09 69.49 0.353 87.04 48.49 60.41 0.277

10 7x7 79.68 56.76 62.11 0.256 67.85 74.87 73.22 0.365 66.53 75.98 73.68 0.373 69.53 71.90 71.30 0.355 76.56 62.29 66.31 0.318 87.04 48.49  60.41 0.277

11 9x9 79.36 57.33 62.47 0.259 68.52 73.99 72.71 0.359 67.43 74.96 73.12 0.367 72.30 68.23 69.27 0.334 77.37 59.29 64.38 0.294 89.27 44.60 58.41 0.258

12 11x11 79.05 57.89 62.83 0.262 69.29 72.69 71.89 0.350 68.32 73.59 72.31 0.358 74.41 64.93 67.36 0.315 78.43 55.44 61.90 0.264 89.89 42.66 57.26 0.245

13 13x13 78.79 58.41 63.17 0.266 70.48 71.19 71.02 0.341 69.43 72.04 71.40 0.348 75.87 62.36 65.82 0.299 79.54 53.48 60.81 0.254 90.03 41.69 56.63 0.238

14 15x15 78.57 58.90 63.49 0.269 71.69 69.49 70.01 0.331 70.8 70.23 70.37 0.338 76.85 60.41 64.61 0.286 80.62 52.26 60.23 0.251 89.65 41.18 56.16 0.231

OAmin=60.5;  OAmax=63.5 OAmin=70.0;  OAmax=73.2 OAmin=70.4;  OAmax=73.7 OAmin=64.6;  OAmax=74.4 OAmin=60.2;  OAmax=73.2 OAmin=56.2;  OAmax=70.4

Kappamin=0.243.Kappamax=0.269 Kappamin=0.329 ; 
Kappamax=0.365

Kappamin=0.338; 
Kappamax=0.374

Kappamin=0.286 ; 
Kappamax=0.379

Kappamin=0.251; 
Kappamax=0.388

Kappamin=0.231; 
Kappamax=0.399

15
Curvature 
(Bolstadt 
variant) 

3x3 82.14 53.35 60.06 0.241 68.48 66.40 66.89 0.275 64.98 69.28 68.23 0.284 64.36 71.34 69.55 0.309 65.81 70.26 69.01 0.320 84.18 53.69 63.11 0.305
16 5x5 80.62 55.00 60.98 0.246 69.92 65.90 66.85 0.280 68.8 66.56 68.26 0.291 68.38 68.34 68.35 0.306 71.53 65.43 67.15 0.313 85.88 48.03 59.73 0.265

17 7x7 79.75 55.92 61.48 0.249 71.14 65.17 66.58 0.281 68.33 67.71 67.86 0.292 70.98 66.09 67.34 0.302 72.98 64.85 67.14 0.318 83.66 50.78 60.94 0.274

18 9x9 79.20 56.54 61.83 0.251 72.14 64.44 66.26 0.281 69.8 66.6 67.38 0.291 72.64 64.80 66.81 0.300 72.18 67.43 68.77 0.339 84.97 50.92 61.44 0.284

19 11x11 78.80 57.02 62.10 0.253 73.03 63.82 65.99 0.281 71.07 65.62 66.95 0.290 73.57 64.85 67.08 0.308 74.36 66.37 68.62 0.344 85.81 50.44 61.37 0.286

20 13x13 78.52 57.40 62.33 0.254 73.79 63.35 65.81 0.281 72.16 64.76 66.56 0.289 71.71 67.12 68.30 0.318 75.99 64.81 67.96 0.340 86.18 49.74 61.00 0.282

21 15x15 78.29 57.70 62.50 0.256 74.41 63.03 65.71 0.282 73.09 64.14 66.32 0.289 72.35 67.61 68.82 0.328 77.27 63.18 67.14 0.332 86.33 48.82 60.41 0.275

OAmin=60.1;  OAmax=62.5 OAmin=65.7;  OAmax=66.9 OAmin=66.3;  OAmax=68.3 OAmin=66.8;  OAmax=69.5 OAmin=67.2;  OAmax=68.6 OAmin=59.7;  OAmax=63.1

Kappamin=0.241.Kappamax=0.256 Kappamin=0.271  
Kappamax=0.282

Kappamin=0.290.
Kappamax=0.292

Kappamin=0.309.
Kappamax=0.328

Kappamin=0.313.
Kappamax=0.344

Kappamin=0.265.
Kappamax=0.305

22

Max 
Curvature 
(Evans’79) 

3x3 75.89 59.47 63.30 0.256 76.51 59.61 63.59 0.263 82.96 54.86 61.69 0.267 89.09 46.27 57.22 0.239 91.01 33.31 49.54 0.163 81.39 30.95 46.54 0.090

23 5x5 72.66 62.45 64.82 0.263 74.47 61.7 64.71 0.270 85.13 52.5 60.44 0.259 93.13 38.81 52.70 0.205 88.90 29.16 45.97 0.119 67.89 48.97 54.81 0.137

24 7x7 71.31 63.74 65.50 0.266 75.21 61.23 64.52 0.270 87.34 49.07 58.37 0.244 94.64 30.52 46.91 0.153 82.74 37.98 50.57 0.145 69.22 52.36 57.57 0.179

25 9x9 70.81 64.28 65.80 0.268 76.61 60.1 64.00 0.269 88.94 41.09 52.72 0.190 92.03 28.5 44.75 0.124 82.34 41.22 52.79 0.168 69.35 53.65 58.50 0.191

26 11x11 71.00 64.23 65.80 0.269 78.09 58.81 63.35 0.266 90.16 39.83 52.06 0.187 90.08 30.56 45.78 0.127 82.53 42.79 53.96 0.182 69.16 54.49 59.03 0.198

27 13x13 71.53 63.84 65.63 0.269 79.32 57.51 62.65 0.262 90.93 39.36 51.90 0.188 89.45 32.46 47.04 0.136 82.85 43.38 54.47 0.189 68.57 55.06 59.24 0.199
28 15x15 72.21  63.29 65.37 0.268 80.46 56.25 61.95 0.258 90.57 40.18 52.43 0.192 89.3 33.62 47.86 0.143 82.89 43.61 54.66 0.191 67.83 54.97 58.94 0.192

OAmin=63.3;  OAmax=65.8 OAmin=46.0;  OAmax=54.6 OAmin=51.9;  OAmax=61.7 OAmin=44.7;  OAmax=57.2 OAmin=46.0;  OAmax=54.6 OAmin=46.5;  OAmax=59.2
Kappamin=0.256
Kappamax=0.269

Kappamin=0.119  
Kappamax=0.191

Kappamin=0.187  
Kappamax=0.267

Kappamin=0.124  
Kappamax=0.239

Kappamin=0.119  
Kappamax=0.191

Kappamin=0.090
Kappamax=0.198

29
Min 

Curvature 
(Evans’79) 

3x3 75.02 60.19 63.65 0.257 76.07 60.07 63.84 0.265 82.77 55.48 62.12 0.271 88.01 50.57 60.15 0.269 55.01 82.23 74.57 0.372 34.76 88.55 71.93 0.262

30 5x5 72.43  62.72 64.98 0.264 75.37 61.45 64.73 0.273 82.63 56.26 62.67 0.277 88 51.24 60.64 0.275 67.85 73.91 72.20 0.378 43.63 83.8 71.39 0.291

31 7x7 71.65 63.74 65.58 0.269 76.06 61.35 64.82 0.277 82.37 56.79 63.01 0.280 88.83 49.84 59.81 0.268 70.84 69.85 70.12 0.355 49.56 79.27 70.09 0.292
32 9x9 71.73 64.06 65.84 0.272 76.43 61.34 64.90 0.279 82.37 56.83 63.04 0.281 89.7 48.45 59.00 0.262 73.17 66.45 68.34 0.336 52.28 75.69 68.45 0.275

33 11x11 72.12 64.06 65.93 0.275 76.5 61.54 65.06 0.282 82.81 56.38 62.80 0.279 90.38 47.47 58.44 0.258 75.16 63.27 66.61 0.318 54.3 72.73 67.04 0.259

34 13x13 72.47 64.01 65.98 0.277 76.4 61.8 65.24 0.284 83.41 55.72 62.46 0.277 90.64 47.11 58.24 0.256 77.10 60.12 64.89 0.300 55.52 70.52 65.88 0.246

35 15x15 72.71 64.01 66.03 0.281 76.3 62.08 65.43 0.286 83.9 54.94 61.98 0.273 91.09 46.65 58.01 0.255 77.74 57.89 63.47 0.283 57.48 67.82 64.62 0.234

OAmin=66.0;  OAmax=63.7 OAmin=63.8;  OAmax=65.9 OAmin=62.0;  OAmax=63.0 OAmin=58.0;  OAmax=60.6 OAmin=63.5;  OAmax=74.6 OAmin=64.6;  OAmax=71.9

Kappamin=0.257.Kappamax=0.281 Kappamin=0.265
Kappamax=0.286

Kappamin=0.271
Kappamax=0.281

Kappamin=0.255
Kappamax=0.275

Kappamin=0.283
Kappamax=0.378

Kappamin=0.234
Kappamax=0.292

36

Mean 
Curvature 
(Evans’79)

3x3 58.41 58.41 62.76 0.254 78.16 58.19 62.89 0.261 84.49 53.51 61.04 0.264 89.46 47.8 58.45 0.255 81.00 56.25 63.21 0.291 42.46 82.66 70.23 0.265
37 5x5 60.96 60.96 64.12 0.261 77.05 59.79 63.86 0.269 85.17 53.00 60.82 0.264 90.99 43.2 55.42 0.226 78.41 49.06 57.31 0.207 57.02 67.92 64.55 0.231

38 7x7 73.63 62.01 64.72 0.265 77.57 59.66 63.88 0.271 85.76 52.07 60.26 0.260 91.78 42.28 54.94 0.223 78.10 51.75 59.16 0.228 61.42 63.81 63.07 0.226

39 9x9 73.50  62.38  60.26 0.268 78.22 59.34 63.79 0.272 86.34 50.97 59.57 0.254 91.26 43.47 55.69 0.230 79.10 51.63 59.35 0.234 62.62 62.42 62.48 0.222

40 11x11

73.75  
62.40 65.04 0.270

78.72 58.96 63.62 0.272 86.95 49.95 58.94 0.249 88.8 46.37 57.22 0.238 79.63 51.13
59.14 0.233

62.97 61.38 61.87 0.214

41 13x13 74.09 62.30  65.05 0.271 79.13 58.59 63.43 0.271 87.21 49.21 58.45 0.244 88.8 46.2 57.09 0.237 79.57 50.38 58.59 0.226 62.97 60.35 61.16 0.204

42 15x15 74.43 62.18 65.03 0.272 79.49 58.23 63.24 0.270 87.01 47.26 56.92 0.227 88.95 45.81 56.85 0.235 79.66 49.70 58.12 0.221 62.59 59.27 60.30 0.190

OAmin=62.8;  OAmax=65.0 OAmin=62.9;  OAmax=63.8 OAmin=58.5;  OAmax=60.8 OAmin=54.9;  OAmax=58.45 OAmin=57.3;  OAmax=63.2 OAmin=60.3;  OAmax=70.2

Kappamin=0.254.Kappamax=0.272 Kappamin=0.261
Kappamax=0.272

Kappamin=0.244
Kappamax=0.264

Kappamin=0.223
Kappamax=0.255

Kappamin=0.221.
Kappamax=0.291

Kappamin=0.190
Kappamax=0.265

43

Mean slope 
(Evans’79)

3x3 77.25 61.32 65.04 0.283 72.64 66.79 68.17 0.309 72.81 67.13 68.51 0.318 76.54 65.53 68.35 0.336 80.91 63.51 68.40 0.362 90.59 55.06 66.04 0.365
44 5x5 77.14 61.71 65.31 0.286 74.44 66.10 68.07 0.314 74.5 66.47 68.42 0.323 78.46 64.46 68.04 0.338 82.81 62.51 68.22 0.366 90.85 53.35 64.94 0.350

45 7x7 77.10 62.06 65.57 0.289 75.72 65.48 67.89 0.316 75.77 65.81 68.23 0.325 79.79 63.55 67.70 0.338 83.42 61.86 67.93 0.363 90.68 51.17 63.38 0.328

46 9x9 77.11 62.34 65.78 0.292 76.68 64.94 67.70 0.317 76.73 65.23 68.03 0.326 80.80 62.85 67.44 0.338 83.49 61.40 67.61 0.359 90.17 48.89 61.65 0.303

47 11x11 77.18 62.54 65.96 0.295 77.49 64.48 67.54 0.318 77.54 64.72 67.84 0.326 81.27 62.39 67.22 0.336 83.48 60.63 67.06 0.351 90.1 46.82 60.20 0.284

48 13x13 77.25 62.72 66.11 0.297 78.13 64.04 67.36 0.318 78.21 64.26 67.65 0.326 81.48 62.13 67.08 0.335 83.21 59.67 66.29 0.340 90.24 45.2 59.12 0.270

49 15x15 77.36 62.87 66.25 0.299 78.70 63.68 67.22 0.318 78.77 63.85 67.48 0.325 81.47 61.88 66.89 0.333 82.60 58.37 65.18 0.322 90.47 43.89 58.29 0.260

OAmin=65.0;  OAmax=66.3 OAmin=67.2;  OAmax=68.2 OAmin=67.5;  OAmax=68.5 OAmin=69.9;  OAmax=68.4 OAmin=65.2;  OAmax=68.4 OAmin=58.3;  OAmax=66.0

Kappamin=0.283.Kappamax=0.299 Kappamin=0.309.
Kappamax=0.318

Kappamin=0.318.
Kappamax=0.326

Kappamin=0.333.
Kappamax=0.338

Kappamin=0.322.
Kappamax=0.366

Kappamin=0.260.
Kappamax=0.365

50

Stdev of 
mean slope 

3x3 82.05 54.68 61.07 0.252 78.08 63.58 67.00 0.313 74.92 67.14 68.45 0.329 77.56 65.06 68.26 0.338 85.37 48.52 58.89 0.250 92.83 35.34 53.11 0.204
51 5x5 82.19 55.03 61.36 0.256 81.73 59.60 64.82 0.297 81.26 60.41 65.48 0.308 79.60 63.79 67.83 0.339 83.83 46.62 57.09 0.223 91.75 34.08 51.90 0.187

52 7x7 82.19 55.03 61.36 0.256 83.39 56.40 62.76 0.278 83.54 56.14 62.80 0.282 84.25 49.32 58.25 0.234 82.59 46.77 56.85 0.216 92.08 33 51.26 0.180

53 9x9 82.27 55.34 61.62 0.260 83.81 54.06 61.07 0.259 84.36 53.62 61.09 0.264 83.64 48.18 57.25 0.221 82.00 47.44 57.16 0.218 91.97 32.55 50.92 0.176

54 11x11 82.49 55.82 62.04 0.265 83.54 52.34 59.70 0.243 84.2 51.86 59.72 0.248 83.09 47.65 56.71 0.213 82.25 47.24 57.08 0.217 91.76 32.13 50.56 0.171

55 13x13 82.49 55.82 62.04 0.265 83.25 51.24 58.78 0.232 83.94 50.64 58.74 0.236 82.49 47.72 56.61 0.210 82.54 47.87 57.62 0.225 91.25 31.85 50.21 0.165

56 15x15 82.69 55.57 61.90 0.264 82.83 50.44 58.08 0.222 83.45 49.77 57.95 0.225 81.98 47.87 56.59 0.208 82.62 48.33 57.98 0.230 91.15 31.28 49.79 0.160

OAmin=61.1;  OAmax=62.0 OAmin=58.1;  OAmax=67.0 OAmin=58.0;  OAmax=68.5 OAmin=56.6;  OAmax=68.3 OAmin=56.9;  OAmax=58.9 OAmin=49.8;  OAmax=53.1

Kappamin=0.252.Kappamax=0.265 Kappamin=0.222.
Kappamax=0.313

Kappamin=0.225.
Kappamax=0.329

Kappamin=0.208.
Kappamax=0.338

Kappamin=0.216.
Kappamax=0.250

Kappamin=0.16.
Kappamax=0.20

59

TPI (Jenness 
at al. 2010) 

3x3 82.14 53.35 60.06 0.241 68.48 66.40 66.89 0.275 64.98 69.28 68.23 0.284 64.36 71.34 69.55 0.309 65.81 70.26 69.01 0.320 84.97 50.92 61.44 0.284

60 5x5 80.62 55.00 60.98 0.246 69.92 65.90 66.85 0.280 66.56 68.8 68.26 0.291 68.38 68.34 68.35 0.306 71.53 65.43 67.15 0.313 85.88 48.03 59.73 0.265

61 7x7 79.75 55.92 61.48 0.249 71.14 65.17 66.58 0.281 68.33 67.71 67.86 0.292 70.98 66.09 67.34 0.302 72.98 64.85 67.14 0.318 83.66 50.78 60.94 0.274

62 9x9 79.20 56.54 61.83 0.251 72.14 64.44 66.26 0.281 69.8 66.6 67.38 0.291 72.64 64.80 66.81 0.300 72.18 67.43 68.77 0.339 84.97 50.92 61.44 0.284

63 11x11 78.80 57.02 62.10 0.253 73.03 63.82 65.99 0.281 71.07 65.62 66.95 0.290 63.98 73.57 66.40 0.296 74.36 66.37 68.62 0.344 85.81 50.44 61.37 0.286
64 13x13 78.52 57.40 62.33 0.254 73.79 63.35 65.81 0.281 72.16 64.76 66.56 0.289 71.71 67.12 68.30 0.318 75.99 64.81 67.96 0.340 86.18 49.74 61.00 0.282

65 15x15 78.29 57.70 62.50 0.256 74.41 63.03 65.71 0.282 73.09 64.14 66.32 0.289 72.35 67.61 68.82 0.328 77.27 63.18 67.14 0.332 86.33 48.82 60.41 0.275

OAmin=60.1;  OAmax=62.5 OAmin=65.7;  OAmax=66.9 OAmin=66.3;  OAmax=68.3 OAmin=66.4;  OAmax=69.6 OAmin=67.1;  OAmax=69.01 OAmin=59.7;  OAmax=61.4

Kappamin=0.241.Kappamax=0.256 Kappamin=0.275.
Kappamax=0.282

Kappamin=0.284.
Kappamax=0.292

Kappamin=0.296.
Kappamax=0.328

Kappamin=0.313.
Kappamax=0.344

Kappamin=0.274.
Kappamax=0.286

66

Openness)

25x25 77.93 58.35 62.92 0.259 73.48 66.18 67.90 0.308 73.00 66.22 67.87 0.310 77.32 64.49 67.77 0.331 79.29 59.11 64.78 0.306 87.07 44.81 57.87 0.244
67 50x50 78.81 57.91 62.79 0.261 78.44 62.49 66.25 0.304 78.11 62.43 66.24 0.307 79.76 58.33 63.81 0.286 80.43 54.07 61.49 0.266 86.83 35.82 51.59 0.167

68 75x75 79.44 57.60 62.70 0.262 80.53 61.07 65.66 0.304 80.57 60.58 65.44 0.305 79.29 57.48 63.06 0.275 82.12 52.88 61.10 0.267 88.08 31.85 49.23 0.144

69 100x100 80.18 56.77 62.23 0.259 80.31 59.17 64.15 0.284 80.56 58.53 63.89 0.285 79.69 55.38 61.59 0.258 82.89 49.77 59.09 0.244 90.59 30.03 48.75 0.147

70 125x125 84.36 58.54 64.56 0.302 79.59 58.80 63.70 0.276 80.01 58.14 63.46 0.278 55.02 80.19 61.46 0.258 83.57 47.49 57.64 0.229 92.46 27.29 47.43 0.138

71 150x150 81.10 55.91 61.79 0.257 79.24 57.72 62.79 0.264 79.63 57.07 62.56 0.265 80.83 54.02 60.88 0.253 84.57 46.11 56.93 0.224 93.16 24.5 45.72 0.122

OAmin=61.8;  OAmax=64.6 OAmin=62.8;  OAmax=67.9 OAmin=62.6;  OAmax=67.9 OAmin=60.9;  OAmax=67.8 OAmin=56.9;  OAmax=64.8 OAmin=45.7;  OAmax=57.9

Kappamin=0.257.Kappamax=0.302 Kappamin=0.264.
Kappamax=0.308

Kappamin=0.265.
Kappamax=0.310

Kappamin=0.253.
Kappamax=0.331

Kappamin=0.224.
Kappamax=0.306

Kappamin=0.122.
Kappamax=0.244

72

Stdev_aspect

3x3 90.57 38.95 51.00 0.177 88.37 39.83 51.27 0.173 88.52 38.6 50.74 0.169 88.17 36.26 49.54 0.156 87.55 37.52 51.60 0.173 67.8 49.56 55.19 0.142

73 5x5 87.61 44.16 54.30 0.199 84.62 46.42 55.42 0.201 84.77 45.57 55.10 0.199 83.96 45.51 55.35 0.201 83.31 46.23 56.66 0.216 84.34 41.9 55.02 0.200

74 7x7 86.12 46.71 55.90 0.210 82.43 50.22 57.81 0.218 82.57 49.59 57.60 0.218 81.52 50.10 58.14 0.223 80.82 50.90 59.31 0.240 84.34 41.9 55.02 0.200

75 9x9 85.03 48.43 56.97 0.218 81.08 52.65 59.35 0.230 81.24 52.06 59.15 0.231 80.02 52.76 59.73 0.237 78.79 53.75 60.79 0.251 80.4 48.1 58.08 0.225

76 11x11 84.31 49.63 57.72 0.223 80.13 54.20 60.31 0.238 80.27 53.62 60.10 0.238 78.92 54.50 60.75 0.245 82.25 47.24 57.08 0.217 79.45 48.73 58.22 0.224

77 13x13 83.79 50.49 58.26 0.227 79.34 55.32 60.98 0.242 79.47 54.74 60.75 0.243 78.10 55.86 61.55 0.252 82.54 47.87 57.62 0.225 79.4 49.07 58.45 0.226

78 15x15 83.41 51.15 58.68 0.230 78.75 56.20 61.51 0.247 78.93 55.59 61.26 0.247 77.41 56.93 62.17 0.257 82.62 48.33 57.98 0.230 80.3 48.49 58.32 0.228
OAmin=51.0;  OAmax=58.7 OAmin=51.3;  OAmax=61.5 OAmin=50.7;  OAmax=61.3 OAmin=49.5;  OAmax=62.2 OAmin=51.6;  OAmax=60.8 OAmin=55.0;  OAmax=58.3

Kappamin=0.177. appamax=0.230 Kappamin=0.173.
Kappamax=0.247

Kappamin=0.169.
Kappamax=0.247

Kappamin=0.156.
Kappamax=0.257

Kappamin=0.173 
Kappamax=0.251

Kappamin=0.142 
Kappamax=0.228
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Appendix 2

Appendix 3

Table 3 Classification methods sensitivity for classification using composition of the most relevant features

1m-DEM resolution 2m-DEM resolution 5m-DEM resolution 10m-DEM resolution 20m-DEM resolution 30m-DEM resolution

PA_L

[%]

PA_

NL[%]

OA 

[%]
K

PA_L

[%]

PA_

NL[%]

OA 

[%]
K

PA_L

[%]

PA_

NL%]

OA 

[%]
K

PA_L

[%]

PA_

NL[%]

OA 

[%]
K

PA_L

[%]

PA_

NL[%]

OA 

[%]
K

PA_L

[%]

PA_

NL[%]

OA 

[%]
K

Maximum Likelihood Classification

MLC 67.3 71.9 70.9 0.326 45.2 82.4 73.6 0.274 53.7 81.7 74.9 0.342 82.7 65.0 69.5 0.374 71.1 77.8 75.9 0.452 73.4 75.5 74.9 0.455

Feed Forward Artificial Neural Network Classification

ANN 100 

iterations

0.0 100.0 76.6 0.00 18.9 97.3 78.8 0.217 65.9 82.3 78.3 0.451 38.0 94.4 80.0 0.383 44.5 92.6 79.1 0.419 51.0 89.6 77.7 0.438

ANN 200 

iterations

46.3 85.1 76.0 0.319 69.2 79.5 77.1 0.434 20.0 96.4 77.8 0.215 63.4 86.6 80.6 0.496 51.2 91.0 79.8 0.458 70.6 80.4 77.3 0.490

ANN 300 

iterations

0.00 100.0 76.6 0.00 11.5 98.5 78.0 0.142 34.7 94.6 80.1 0.352 13.2 99.3 77.3 0.174 68.1 83.4 79.1 0.500 47.8 91.1 77.7 0.427

ANN 400 

iterations
58.7 82.1 76.6 0.385 46.7 90.1 79.9 0.398 34.4 95.1 80.3 0.356 77.8 77.4 77.5 0.484 31.6 95.8 77.8 0.334 76.0 77.6 77.1 0.501

ANN 500 

iterations

61.9 79.4 75.3 0.375 1.1 99.8 76.5 0.015 2.9 99.7 76.1 0.039 31.0 96.5 79.8 0.342 49.7 91.1 79.5 0.447 63.3 85.7 78.8 0.497

Support Vector Machine Classification

Radial basis 

function

Not executable Not executable 19.5 98.1 79.0 0.237 50.7 92.0 81.5 0.468 51.6 91.4 80.2 0.468 62.5 88.5 80.5 0.528

Polynomial 

second 

degree

14.1 98.5 78.00 0.175 47.8 92.2 80.8 0.444 49.0 91.8 79.8 0.450 61.2 88.8 80.2 0.519

Polynomial 

third degree

20.1 79.9 77.00 0.205 51.0 92.0 81.5 0.470 52.1 91.3 80.3 0.472 63.3 88.5 80.7 0.535

Polynomial 

4 degree

23.9 97.7 79.8 0.284 52.7 91.9 81.9 0.485 53.8 91.4 80.8 0.488 88.6 88.6 81.2 0.548

Polynomial 

6 degree
29.7 97.2 80.8 0.341 55.4 91.8 82.5 0.508 55.5 91.6 81.4 0.506 64.9 88.8 81.4 0.553

Table 4 Classification method sensitivity for classification using features composition calculated for minimum window size

1m-DEM resolution 2m-DEM resolution 5m-DEM resolution 10m-DEM resolution 20m-DEM resolution 30m- DEM resolution

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

PA_L

[%]

PA_NL 

[%]

OA 

[%]
K

Maximum Likelihood Classification

MLC 57.8 79.2 74.0 0.344 54.6 81.6 74.7 0.353 76.2 74.0 74.6 0.445

Feed Forward Artificial Neural Network Classification

ANN 100 
iterations

70.1 73.1 72.4 0.359 0.1 99.9 76.4 0.001 58.0 83. 77.1 0.400 29.5 96.0 79.0 0.317 60.8 85.4 78.5 0.466 48.7 89.0 76.5 0.407

ANN 200 

iterations

21.8 95.2 78.1 0.217 60.7 80.4 75.7 0.379 1.0 99.7 75.7 0.011 71.6 82.1 79.5 0.500 51.2 89.5 78.7 0.437 78.0 72.7 74.6 0.458

ANN 300 
iterations

0 100 76.7 0.00 27.7 94.3 78.6 0.271 54.5 85.9 78.3 0.408 24.7 97.2 78.7 0.282 64.6 84.9 79.1 0.490 44.2 90.9 76.4 0.391

ANN 400 

iterations
60.6   80.0  75.5 0.372 67.0 78.1 75.5 0.399 22.6 96.4 78.5 0.247 83.1 74.3 76.6 0.483 17.0 97.7 75.0 0.193 79.2 72.4 74.3 0.464

ANN 500 
iterations

24.7 90.4 71.6 0.245 0.0 99.9 76.4 0.000 0.0 100.0 75.6  0.000  30.1 96.3 79.4 0.329 33.4 93.8 76.8 0.323 77.3 63.4 83.4 0.469

Radial 

basis 

function

Not executable Not executable 10.1 98.8 77.2 0.127 49.8 91.4 80.8 0.450 54.6 89.9 80.0 0.474 59.8 88.0 79.1 0.497

Polynomial 

second 

degree

5.05 99.39 76.4 0.065 45.8 91.7 79.9 0.417 50.9 90.4 79.2 0.446 57.0 88.4 78.4 0.477

Polynomial 
third 

degree

23.9 97.7 79.8 0.084 50.1 91.4 80.8 0.452 54.8 89.9 80.1 0.477 60.1 88.1 79.6 0.500

Polynomial 
4 degree

13.7 98.4 77.1  0.168 51.6 91.4 81.2 0.466 57.0 89.7 80.5 0.492 61.0 87.9 79.5 0.507

Polynomial 

6 degree

5.0 99.3 76.4 0.065 53.3 91.5 81.7 0.484 58.6 89.8 81.0 0.510 62.3 87.8 79.6 0.517
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