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Abstract
Spatial capture–recapture (SCR) using search–encounter methods estimate population abundance from encounters of indi-
vidually recognisable animals along an a priori-designated search path. We applied search–encounter SCR methods and 
photographic sampling to estimate the abundance of plains zebras (Equus quagga) at Telperion and Ezemvelo nature 
reserves, South Africa. We analysed encounter data by comparing four hazard-function models for the detection process. 
The abundance estimate under three models was just above 1000 animals (95% credible intervals c. 960, 1220) versus 811 
(719, 917) for the remaining model. The former estimates were broadly similar to aerial counts conducted around the same 
time. Standard deviation in locations around individual activity centres ( �

move
 ) was c. 0.8 km, with little difference between 

models. In situations where structured surveys are not possible, the approach presented here has the potential to estimate 
abundance from opportunistic animal encounters (e.g. generated via citizen science schemes) within an SCR framework.
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Introduction

Accurate estimation of animal abundance is fundamental 
to a number of ecological problems and a necessary part 
of assessing population status for wildlife management 
or conservation (Williams et  al.  2002; Conroy and 
Carroll 2009). One challenge, however, is that detection 
probability is usually <1 and must also be estimated to 
produce unbiased estimates of population parameters 
(Lebreton et al. 1992; MacKenzie et al. 2002; MacKenzie 
et al. 2003). A number of population estimation methods can 
accommodate imperfect detection; for example, N-mixture 
modelling (Royle  2004), distance sampling (Buckland 
et al. 2001), time-to-detection (Garrard et al. 2008), and 
capture–recapture (CR) (Otis et al. 1978; Seber 1982). In 
the case of CR, detection probability can be estimated via 

captures and recaptures of recognised individuals in traps 
or other encounter detectors (e.g. camera traps, hair snares), 
where the location of encounter occurs at fixed sites where 
the detectors have been positioned by researchers (i.e. spatial 
CR) (Efford 2004; Borchers and Efford 2008).

Increasingly, however, capture–recapture data have 
been collected via structured searches of a study area (i.e. 
search–encounter) (Royle et al. 2011; Royle et al. 2014) 
where researchers travel a search path and record encoun-
ters with individuals (e.g. photographically) and use unique 
pelage patterns or body markings to identify individuals and 
construct capture histories (e.g. Auger-Méthé et al. 2010; 
Morrison and Bolger 2014; Grange et al. 2015; Marshal 
2017). In a sense, the animal remains relatively stationary 
while the detector (e.g. a human with a hand-held camera) 
moves past, instead of the detector remaining stationary 
while the animal moves past.

Search–encounter sampling has been described as fol-
lowing an area search of uniform intensity (i.e. uniform 
search) or a fixed search path (Royle et al. 2014). With uni-
form search, the study area is divided into polygons with 
well-defined boundaries. Within each polygon, the area is 
searched at a uniform intensity such that, given an individual 
is present inside the polygon, it has a constant probability of 
detection. Sampling produces a location within each poly-
gon for each detected individual on each survey occasion. 
This approach and spatial CR (SCR) estimation methods 
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were used by Royle and Young (2008) to estimate abun-
dance of flat-tailed horned lizards (Phrynosoma mcallii). 
An alternative uses a fixed search path identified ahead of 
a survey and independently of the locations of the animals 
in the population. For example, search paths might follow 
roads or trails within a nature reserve or protected area. Data 
collected from such sampling might consist of (1) locations 
of encountered individuals, (2) locations of individuals and 
of observers while on the search path, or (3) the closest dis-
tance from the search path to the individual location, similar 
to distance sampling. Royle et al. (2011) demonstrated use of 
approach (1) for the willow tit (Parus montanus), and Gowan 
et al. (2021) applied approach (3) to estimate abundance, 
recruitment and persistence of North Atlantic right whales 
(Eublaena glacialis).

For data coming from approaches (1) or (2), modelling 
encounters with individuals along a search path is typi-
cally via estimation of the total hazard to encounter (Royle 
et al. 2011; Royle et al. 2014). Instead of using encounter 
relative to the fixed points of a detector array, encounter is 
modelled relative to the search path, which is represented by 
a series of line segments, each delineated by two point loca-
tions. The sum of the hazard for each point location along 
the path yields the total hazard to encounter for the search 
path. Whether using fixed detector locations or points along 
a search path, distance from the animal to observer or detec-
tor is treated as a covariate affecting detection. For detec-
tors, distance is that between the detector and an unobserved 
activity centre for the individual, whereas the distance covar-
iate for search path sampling is between the observer and the 
present animal location (Royle et al. 2011). Because of this 
difference, analysis of search path data explicitly incorpo-
rate the movement of animals around their activity centres 
(Royle et al. 2014).

Search–encounter sampling along nature reserve roads 
and trails, combined with photographic data collection, have 
the potential to generate useful encounter data for abundance 
or demographic parameter estimation in SCR analysis. In 
this study, our goal was to apply this approach to estimate 
abundance of the plains zebra (Equus quagga), a species 
well-suited to non-invasive CR because of its individually 
unique pelage patterns (e.g. Grange et al. 2015). We apply a 
hazard-function analysis to model encounters with individu-
als by fitting Bayesian hierarchical models, and we compare 
a number of models to represent the hazard function. We 
demonstrate that data from search–encounter sampling pro-
duce abundance estimates similar to counts from independ-
ent methods. Their application to analysing photographically 
collected encounter data, particularly opportunistically col-
lected data, likely depends on the availability of auxiliary 
information to assess spatial extent and sampling intensity 
within a study area.

Methods

Study area

The study occurred at Telperion and Ezemvelo nature 
reserves, Gauteng and Mpumalanga provinces, South Africa 
(Fig. 1). Together, the reserves constituted c. 13,000 ha of 
protected predominantly grassland biome. The Wilge River 
separated an east section, containing Telperion, and a west 
section, containing Ezemvelo. Based on data from nearby 
Bronkhorstspruit weather station, the region experiences dis-
tinct wet and dry seasons, with c. 90% of rain falling during 
the months October to March (austral spring and summer). 
Average annual rainfall was 650 mm (range: 412 [1998]–949 
[1989]), and range in average daily temperatures was 4 ◦

C in 
July to 26 ◦

C in January (Helm 2006).
The vegetation within Telperion and Ezemvelo is clas-

sified as Rand Highveld Grassland (Mucina et al. 2006) 
and Loskop Mountain Bushveld (Rutherford et al. 2006). 
Common grass species were Elionurus muticus, Eriagrostis 
curvula and Setaria sphacelata, and common woody spe-
cies included Englerophytum magalismontanum, Vangueria 
infausta, Faurea saligna, Burkea africana, Combretum api-
culatum, Cussonia paniculata, Strychnos pungens, Protea 
caffra, Acacia caffra and Gymnosporia spp. (Helm 2006). In 
addition to plains zebras, common large herbivores include 
blesbok (Damaliscus pygargis phillipsi), greater kudu 
(Tragelaphus strepsiceros), blue wildebeest (Connochaetes 
taurinus taurinus), black wildebeest (Connochaetes gnou), 
red hartebeest (Alcelaphus buselaphus caama), common 
eland (Taurotragus oryx), giraffe (Giraffa camelopardalis) 
and springbok (Antidorcas marsupialis). Leopards (Pan-
thera pardus) occur in the reserve but are not common. 
Smaller carnivores include African civet (Civettictis civetta), 
black-backed jackal (Canis mesomelas) and caracal (Caracal 
caracal) (Helm 2006).

Data collection

We collected photographic data of plains zebras by driving 
a set route through both sections of the study area. We drove 
the entire route over 10 daily occasions in July–August 2017, 
recording our route with a global positioning system (GPS). 
We defined an encounter as a clear photograph of a zebra’s 
right flank (Fig. 2). We also recorded perpendicular distance 
between the vehicle and the animal with a range finder and 
the GPS coordinate of the observers.

Each photographed zebra was compared to a database of 
known individuals. If a photograph matched a recognised 
animal, we updated the encounter history with the new 
photograph; otherwise, we created an encounter history for 
a new individual. To ensure accuracy and consistency of 
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identifications, all matching was conducted by one expe-
rienced observer (JPM). We also performed two additional 
checks after matching was complete: (1) within encounter 
histories for each individual to ensure that photographs were 
of the same individual, and (2) between encounter histories 
to ensure that an individual was not represented in more than 
one encounter history (Marshal 2017).

Model formulation

Following Royle et al. (2011), we formulated a Bayesian hier-
archical model that represented the observation process and 
the ecological process. The observation level consisted of a 
hazard function to represent encounters with individual ani-
mals as a function of distance between the animal location 
( uik ) and a search path ( X ) consisting of segments delineated 
by two-dimensional coordinates ( x ). Our choice of hazard 
model was to accommodate heterogeneity in detection caused 

by a non-linear search path, and the consequential variable 
exposure of animals along the path to sampling (Kéry and 
Royle 2021). We used the Gompertz formulation for the haz-
ard model:

where h(uik, x) is the hazard of encounter at location x for 
individual i occasion k, ||uik − x|| is the distance between 
individual i and the search path, and �0 and �1 are parameters 
to be estimated. We modelled probability of detection ( pik ) 
from the cumulative hazard ( Hik ) and the data augmentation 
inclusion variable ( zi ; described below):

Observed encounters ( yik ) given the animal location were 
distributed as a Bernoulli random variable:

log(h(uik, x)) = �0 + �1 × ||uik − x||,

pik = zi × (1 − exp(−Hik)).

yik|uik ∼ ���������(pik).

Fig. 1  Telperion and Ezemvelo 
nature reserves, South Africa, 
showing search path

Fig. 2  Two encounters with the 
same plains zebra individual 
showing the matching stripe 
pattern, 1 (A) and 3 (B) August 
2017, Telperion and Ezemvelo 
nature reserves, South Africa
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We defined the ecological process model assuming the 
individual activity centres ( si ) are distributed over a two-
dimensional state space (S) and followed a uniform distribution:

where S was defined by the perimeter of the study area 
(Royle and Young 2008). Because some of the individual 
locations ( uik ) were unobserved, we used a bivariate normal 
distribution for uik:

where �2
move

 represented variability in movement around the 
activity centre and I was a 2 × 2 identity matrix.

We used data augmentation to estimate population size 
(N) within S (Royle and Young 2008; Royle et al. 2009; 
Gardner et al. 2009). We defined M as the number of indi-
viduals encountered during the study (n) plus the augmented 
individuals with all-zero capture histories ( M − n ), some 
of which represented animals in the population available 
to be encountered but were not. We defined a binary latent 
variable ( zi ) to identify which individuals in M were in the 
population N. The zi were assumed to follow a Bernoulli 
distribution with probability � . We estimated N as the sum 
of the latent variables: N =

∑M

i
zi.

Sensitivity analysis

We assessed the effects of different models for the hazard 
function in the detection process, with the goal of choos-
ing a model that adequately fit the observation data. Spe-
cifically, we considered the normal kernel and Weibull 
functions, and a function based on the squared distance 
(model details in Royle et al. (2011)). We divided the 
search path into segments with length 1.5 km, based on 
preliminary analysis that �2

move
≈ 0.8 km; 1.5-km spac-

ing kept segment length < 2�2
move

 (Sun et al. 2014). We 
evaluated the sensitivity of the abundance estimate to 
segment length by running the analysis with 1.25- and 
1-km segments.

Model implementation

We conducted analyses in JAGS (Plummer 2003), run-
ning through R (R Core Team 2023) by using the library 
jagsUI (Kellner 2021). We used noninformative uniform 
priors for parameters �0, �1, log(�) and � , and augmented 
encounter histories to a total of M = 1500 . We ran three 
independent chains of sufficient length to allow for con-
vergence (10,000–20,000 iterations) following a burn-in 
period (5000 iterations). We thinned one value for every 
10 iterations to reduce the effects of autocorrelation on 

si ∼ �������(S),

uik|si ∼ ������(si,�
2
move

I),

posterior estimates. We assessed convergence with the 
Brooks-Gelman-Rubin diagnostic ( ̂R < 1.1 ) (Gelman and 
Shirley 2011).

We used Bayesian P-values to assess goodness of fit of 
the detection models (Gelman and Shirley 2011), based on 
a variation suggested by Royle et al. (2014) that assessed 
discrepancies between expected and observed number of 
encounters across individuals. An adequate-fitting model 
was indicated by Bayesian P-values within the range 0.1−
0.9 (Royle et al. 2014). To the assess spatial randomness 
assumption for the ecological process model, we calculated 
an index-of-dispersion test based on the ratio of the vari-
ance to mean (Illian et al. 2008) in the number of activity 
centres across a defined number of grid cells covering the 
study area. We also calculated a Bayesian P-value, based 
on a Freeman-Tukey statistic, for the discrepancy between 
counts from the posterior sample of activity centres in grid 
cells and simulated counts under spatial randomness (Royle 
et al. 2014). We calculated both statistics with function 
SCRgof in library scrbook (Royle et al. 2014). We report 
estimated posterior means and 95% credible intervals for 
model parameters. R and JAGS scripts to fit the models are 
in the Supplementary Material.

Results

We analysed a total of 821 encounters from 383 recognised 
individuals. Number of occasions on which individuals were 
encountered ranged from 11 for 1 individual to 2 for 99 indi-
viduals. One-hundred eighty-one zebras were encountered 
on 1 occasion. Our assessment of survey line point coverage 
revealed little difference between estimates using 1-, 1.25-, 
and 1.5-km segment lengths (Table S1). Presented here are 
estimates for the 1.5-km analysis (Table 1).

Based on three detection models, the posterior mean of 
zebra abundance was just over 1000 individuals (c. 960, 
1220), and did not vary much between the models. Interest-
ingly, the Weibull detection model produced a substantially 
lower estimate than the other three models: 811 (719, 917).

For all detection models, �move was c. 0.8 km, and again 
it did not vary much among detection models (Table 1). 
The Weibull model produced a slightly higher estimate of 
0.88. Bayesian P-values for all models indicated adequate 
fit to observed detection frequencies (Table 1), with val-
ues ranging between 0.21 (Weibull) and 0.49 (Gompertz). 
However, the ecological process model appeared to devi-
ate from the spatial randomness assumption (index-of-
dispersion and Freeman–Tukey: P < 0.001 for all mod-
els), with local density appearing to be relatively high 
in the south-central and north-east portions of the study 
area (Fig. 3).
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Discussion

Our application of photographic and search–encounter sam-
pling for plains zebras at Telperion and Ezemvelo showed 
that three of the four detection models estimated abundance 
in the range of 1080–1088 animals, numbers that were similar 
to counts generated from aerial surveys conducted earlier the 
same year (1374, February 2017) and early the following year 
(1106, January 2018; Oppenheimer Generations Research and 
Conservation, unpublished data). Because the aerial counts 
occurred around the annual peak in zebra births, the lower 
SCR estimates could reflect in part higher mortality and 
reduction in first-year animal numbers by the food-scarce dry 
season. The Weibull model produced a somewhat lower SCR 
estimate, an outcome similar to that of Royle et al. (2011). All 
four detection models showed evidence of adequate fit to our 
encounter data; however, the assumption of spatial random-
ness was not supported for the ecological process model.

Ideally, search paths are located randomly with respect to 
animal locations (Conroy and Carroll 2009), something that 
often is not possible in protected areas where vehicles are 
required to remain on designated routes. We argue, however, 
that potential for bias in our study was minimal. A histogram 
of perpendicular distances indicated no evidence that zebras 
avoided roads (Fig. S1), and the open grassland landscape 
and relatively flat terrain of the study area suggested little 
benefit to using roads as travel routes to the extent that it 
would distort encounter rates.

Spatial randomness

Because animals are selective about where they occur on 
the landscape, higher densities of individuals in favourable 
parts of the environment should be expected. This selectivity 
could generate the appearance of clustering even with inde-
pendent activity centres (Royle et al. 2014). Alternatively, 
animals expressing territoriality or avoidance of conspecifics 
could exhibit activity centres that are more evenly distrib-
uted on the landscape than expected from spatial random-
ness, in which case locations of activity centres are not likely 
independent between individuals (Reich and Gardner 2014).

However, the uniform statistical distributions describing 
the locations of activity centres are able to accommodate 
a variety of spatial patterns, including a range of cluster-
ing and spacing patterns (Royle et al. 2014). Moreover, the 
uniform priors have minimal effects on locations of activity 
centres if models are fitted to a large enough data set (Royle 
et al. 2014). Moreover, data simulation by Kéry and Royle 
(2021) suggests a minimal influence on estimation if spatial 
variation in density is ignored. Estimates based on uniform 
distribution of activity centres, habitat categories and den-
sity surface modelling produce estimates with considerable 
overlap of posterior distributions, differing mainly in the 
variation explained in the data. They did not do an exhaus-
tive simulation study, but the analysis is supportive of mini-
mal bias. Thus we expect the consequence of varying density 
in the study area to have a minimal influence on estimation 

Table 1  Posterior summary 
statistics of movement and 
abundance parameter estimates 
for plains zebra, based on 
four hazard function detection 
models and 1.5-km search 
path segments; Telperion and 
Ezemvelo nature reserves, 
South Africa, July–August 2017

a Detection model goodness-of-fit
b Index-of-dispersion test of spatial randomness
c Freeman–Tukey test of spatial randomness

% credible intervals Bayesian P-values

Model Parameter Estimate 2.5 97.5 Detectiona Dispersionb F-Tc

Gompertz N 1080 956 1229 0.49 <0.001 <0.001
�
move

0.802 0.729 0.889
�
0

−0.235 −0.509 0.034
�
1

5.525 5.112 5.956
Normal kernel N 1088 961 1222 0.37 <0.001 <0.001

�
move

0.809 0.744 0.879
�
0

−0.205 −0.511 0.127
�
1

−6.333 −6.951 −5.742
Squared distance N 1084 955 1219 0.45 <0.001 <0.001

�
move

0.792 0.726 0.874
�
0

0.767 0.562 0.963
�
1

5.932 5.355 6.553
Weibull N 811 719 917 0.21 <0.001 <0.001

�
move

0.883 0.809 0.955
�
0

−4.963 −5.153 −4.786
�
1

−3.167 −3.426 −2.941
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of overall abundance, affecting the locations of the activity 
centres rather than their number.

Although not our objective to investigate drivers of local 
variation in zebra density across the study area, relation-
ships between landscape attributes and density might be a 
question of ecological interest and could be accommodated 
in SCR modelling (Royle et al. 2014). Including such rela-
tionships in the ecological process model might produce an 
intensity surface for the point process model that accounts 
for the inhomogeneity in the underlying intensity or density 
function. An alternative to modelling intensity as a function 
of environmental covariates might be to use cluster process 
models having an intensity function with multiple clusters, 
each cluster representing a high-intensity region of state 
space (Illian et al. 2008).

A potential consequence of unmodelled spatial heteroge-
neity in activity centres is an effect of proximity to survey 
path on individual detection probability. If preferential space 
use produces heterogeneity in encounters because of dif-
fering probabilities of detection between individuals, such 
heterogeneity could bias estimates of abundance (Royle 
et al. 2013) and should be apparent though poor fit between 
a detection model and the observed numbers of encounters 
across individuals. Our detection models did not account for 
individual heterogeneity and yet there was no evidence of 
poor fit to the encounter data, suggesting a minimal influ-
ence on bias.

Zebra herding and cohesion

Plains zebras occur in herds, and so independent encounters 
of animals might be violated because of zebras occurring 
in social groups (aggregation) or having non-independent 
encounters (cohesion) (Bischof et al. 2020). Estimates of 
abundance from SCR are, however, robust to low–moderate 
spatial dependence: there is low bias with social groups, 
and low–moderate amounts of cohesion or dispersion have 
minimal effects on bias or precision; however, overdisper-
sion strongly affects coverage of confidence intervals around 
parameter estimates (Bischof et al. 2020).

Zebras generally occur in groups of approximately a 
half-dozen animals, and rarely more than a dozen (Estes 
1991). This degree of social grouping suggests a minimal 
effect on bias, but a probable effect on coverage. Model-
ling groups explicitly (e.g. Hickey and Sollmann 2018; 
Emmet et al. 2022) is probably not currently feasible for 
this population; additional data might assist in identifying 
zebra herds and assigning individuals to herds. However, we 
encountered many individuals once, and a single observa-
tion would not be sufficient to distinguish herd mates from 
animals in separate herds but encountered coincidentally. 
In the examples of both Hickey and Sollmann (2018) and 
Emmet et al. (2022), study animals had been the subject of 
long-term monitoring, and so social structure and group 
membership had been well established.

Fig. 3  Posterior distribution 
of activity centres (circles) 
for observed plains zebras, 
July–August 2017, Telperion 
and Ezemvelo nature reserves, 
South Africa. Darker map pixels 
indicate higher density, and the 
dark line is the search path



European Journal of Wildlife Research (2024) 70:40 Page 7 of 8 40

Search–encounter and opportunistic data

Citizen science schemes and online wildlife databases (e.g. 
iNaturalist, Macaulay Library) are a growing source of pho-
tographic data to which search–encounter SCR models might 
be applied, particularly with species that have individually 
unique identifying features. Because of photo-recorded ani-
mal encounters, geographic coordinates for each encounter via 
GPS-enabled devices, and machine learning to ease the effort 
of matching individual animals based on pelage patterns, there 
is the possibility of using opportunistically collected data to 
develop spatially explicit encounter histories of wildlife spe-
cies. With sufficiently photographed species in highly visited 
areas, such data could yield estimates of abundance or other 
demographic parameters in situations where resources to con-
duct structured surveys are inadequate. Data generation via 
such schemes, however, amounts to unstructured spatial sam-
pling, where locations, intensity and protocols of sampling 
occur opportunistically, rather than according to a pre-defined 
systematic approach (Royle et al. 2014), which could lead to 
spatially biased sampling.

The problem of spatial sampling bias is well-recognised 
in species distribution research (Kéry et  al.  2010; 
Botts et  al. 2011; Hugo and Altwegg 2017; Binley and 
Bennett 2023), and it has been addressed for some atlas 
databases by explicitly modelling separate observation 
and ecological processes (Kéry et  al.  2010; van Strien 
et al. 2013; Péron and Altwegg 2015). Others integrate 
multiple data sets, where systematic presence-absence 
data (PA) are combined with opportunistic presence-only 
(PO) data in a model representing an ecological process for 
abundance or density and conditional observation processes 
for each of the PA and PO datasets (Sun et al. 2019). Despite 
the problems, however, potential data for such analyses 
are widely available if they can be analysed appropriately. 
Recognising that photographic encounters are the product of 
an observation process and developing models that describe 
that process will contribute substantially to producing more 
reliable estimates of abundance or demographic parameters 
from photographic encounter data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10344- 024- 01790-7.
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