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Abstract
Species introductions outside their native ranges, often driven by trade and other anthropogenic activities, present significant 
ecological challenges. Reptiles, frequently traded as pets for their attractiveness, are particularly susceptible to such intro-
ductions, leading to shifts in distribution patterns and potential ecological impacts. The common chameleon (Chamaeleo 
chamaeleon), which has been historically introduced in several European countries, is such an example, yet no overall assess-
ments are available to date for this species. In this study, we used ecological niche models to assess habitat suitability for the 
common chameleon in the Mediterranean basin for current and future scenarios. Concurrently, circuit theory techniques were 
employed to evaluate habitat connectivity in two historically introduced areas. We identified areas of high habitat suitability 
and dispersal corridors in introduced regions. Our results reveal a latitudinal gradient in habitat suitability changes, with the 
species facing both expansion and decline in different parts of its range, depending on the ecozone considered. Severe declines 
are noted in southeastern Spain, Tunisia, and Israel, while habitat suitability increases westwards in Portugal, Morocco, 
and Southern Italy. These insights contribute to a better understanding of the common chameleon’s ecological dynamics, 
providing a foundation for targeted management and conservation efforts. Our study highlights the importance of integrating 
ecological niche modelling and circuit theory techniques to predict habitat suitability and identify critical dispersal corridors 
for effective conservation strategies. Considering the ongoing challenges posed by human-mediated dispersals for the com-
mon chameleon, our research establishes a foundation for future studies to enhance our understanding of this elusive species.
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Introduction

The introduction of species outside their native range as a 
direct or indirect consequence of human action (defined as 
non-native species) may cause changes in the ecosystems to 
which they are introduced. These effects may be observed 
when a non-native species becomes invasive (Blackburn 
et al. 2011) but still occur even if species are not firmly 
established (Jeschke et al. 2013; Ricciardi et al. 2013). In 

some cases, these changes could be dramatic, resulting in 
the replacement of native species or radical changes in eco-
system functioning (Dorcas et al. 2012; Jeschke et al. 2014).

Reptiles constitute a significant portion of voluntarily 
introduced species, often for their aesthetic appeal (Reed 
2005; Luiselli et al. 2012). Global trade in living reptiles 
exceeds half a million individuals annually (Karesh et al. 
2005). The presence of reptiles outside their natural distri-
bution can pose threats to ecosystems, either through their 
interactions with native species (Kraus 2015) or by introduc-
ing alien pathogens (Burridge et al. 2000; Nowak 2010).

The common chameleon (Chamaeleo chamaeleon) is one 
of the species that has been at the center of the pet trade 
process in recent decades (Carpenter et al. 2004). Native 
to the Mediterranean basin and Middle Asia, this species 
has been historically traded as a pet for its attractiveness. 
Consequently, it has been repeatedly released outside of its 
native range, so that, currently, it occurs outside of its native 
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range in Spain, Portugal, Malta, and Italy (Paulo et al. 2002; 
Sindaco et al. 2008; Andreone et al. 2016; Basso et al. 2019).

In the Iberian Peninsula, the common chameleon has 
been introduced historically with two main events from 
North Africa (Paulo et  al. 2002). Of these two events, 
one resulted in the establishment of Mediterranean popu-
lations in Iberia, while the other led to the formation of  
Atlantic populations (Paulo et al. 2002). Four subspecies 
of Chamaeleo chameleon are recognized, the nominotypi-
cal subspecies, C. c. chamaeleon, C. c. musae, C. c. ori-
entalis, and C. c. rectricrista; the Iberian chameleons are 
attributed to the nominate subspecies. The presence of the  
common chameleon in Spain was even reported by Linnaeus  
in his System Naturae of 1766, and then several subsequent 
authors reported the species as present in southern Spain. It 
seems that the Malaga region was the first where the spe-
cies was introduced in historical times (Pleguezuelos 1997).  
This event was carried out using individuals from North 
Africa, probably from a population of Erfoud, south of 
the Atlas Mountains (Paulo et al. 2002). The second intro-
duction was reported in the nineteenth century, first in 
the Cadiz region and then in the Algarve and the Huelva 
regions. These populations originated from individuals of 
the southwestern Atlantic coast of Morocco, probably from 
the Essaouira province (Paulo et al. 2002).

In Italy, the common chameleon is reported historically in 
Sicily, even if its naturalization was never confirmed (Razzetti 
and Sindaco 2006; Sindaco et al. 2008). However, the spe-
cies is present in Southern Italy, also in Apulia (since 1940s) 
and Calabria regions (since 2010) (Basso and Calasso 1991; 
Fattizzo and Marzano 2002; Basso et al. 2019; Sperone et al. 
2010; Pellegrino et al. 2016), with other occurrences reported 
for other Italy’s regions (e.g., Bologna et al. 2000). Indeed, 
preserved specimens were found in central and northern terri-
tories (Corti et al. 2011). Moreover, the species is still traded, 
as a single individual has been found in Sicily about 10 years 
ago (Di Giuseppe 2013). Previous genetic analysis suggested 
the Italian populations’ independent origin with the Calabrian 
population probably originated by individuals from Tunisia, 
while individuals from North Israel founded the Apulian 
population (Andreone et al. 2016). However, a more recent 
genetic study indicated that the Apulian population had a mul-
tiple origin, with samples belonging to C. c. chamaeleon, C. 
c. recticrista, and C. c. musae subspecies (Basso et al. 2019), 
supporting a multiple-release hypothesis in Apulia.

Common chameleons have also been introduced in Malta, 
where individuals belong to two subspecies (Dimaki et al. 
2008), while the individuals currently present in Cyprus and 
Greek islands, originated both from natural expansion and 
human-derived introductions, share mitochondrial haplo-
types with the Turkish population (Andreone et al. 2016).

To address this knowledge gap, a crucial initial 
step involves the assessment of the general ecological 

requirements and then a possible trend of its expansion. 
This evaluation should encompass regions where the com-
mon chameleon is documented as introduced, such as Italy 
(Blackburn et al. 2014), and areas where it is considered 
native, particularly in the Iberian Peninsula. It is noteworthy 
to highlight that the species is under strict protection, being 
listed in Appendix II of the Bern Convention and included 
in Annex IV of the Habitat Directive (92/43/EEC).

Predictive models, such as ecological niche models 
(ENMs), have become a crucial tool to assess the distribution 
of non-native species by quantifying species-environment 
relationships and to predict suitable areas outside the 
known distribution range of the target species (Guisan and 
Thuiller 2005; Elith and Leathwick 2009; Barbet‐Massin 
et al. 2012; Mainali et al. 2015; Iannella et al. 2020; Farashi 
and Alizadeh-Noughani 2021; Serva et al. 2023). Moreover, 
the ENMs can be further refined in a GIS environment, 
converting them into more precise species distribution 
models (SDMs), which increases the predictive performance 
and allows the creation of more realistic models (Iannella 
et al. 2021). This approach, widely employed in current 
research, has demonstrated its effectiveness in providing 
accurate insights into the potential distribution of target 
species (Broennimann et al. 2007; Farashi and Alizadeh-
Noughani 2021; Biber et al. 2023).

In this study, we used ENMs to model habitat suitability 
for the common chameleon within its current range, explor-
ing both current and future scenarios, to predict possible 
expansion, especially in the areas where the species has been 
introduced. Additionally, we focused on habitat connectivity 
in Southern Italy and the southern part of the Iberian Penin-
sula, where the species is referred as native, using a robust 
connectivity-assessment algorithm at the landscape scale.

Material and methods

Study area and spatial data

We selected the Mediterranean basin as the main study area, 
considering the range of the target species as assessed within 
the IUCN Red List of Threatened Species. Specifically, we 
focused on three of the four subspecies, C. c. chamaeleon, 
C. c musae, and C. c recticrista to which the populations of 
the Iberian Peninsula and Southern Italy belong (Paulo et al. 
2002; Andreone et al. 2016; Basso et al. 2019).

The nominative subspecies has a range across Algeria, 
Egypt, Libya, Malta, Morocco, Tunisia, the Western Sahara, 
and Yemen. At the same time, it has been historically intro-
duced in Spain, Portugal, and Italy. The other subspecies 
show smaller ranges, with C. c musae distributed in Jor-
dan, Israel, and Egypt and C. c recticrista spanning between 
Greece, Turkey, Cyprus, Israel, Lebanon, and Syria. While 
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the species is native to North Africa and the Middle East, 
the populations in the Iberian Peninsula and Italy result from 
historical introduction. Nowadays, the species is considered 
native to the Iberian Peninsula (Paulo et al. 2002).

Data for Chamaeleo chamaeleon were gathered from this 
paper authors’ sampling campaigns, published literature, and 
the Global Biodiversity Information Facility (GBIF 2023). 
From GBIF, we selected only recent records (from 2000) and 
removed duplicate records, as well as those with uncertain 
geographic information about the occurrence locality, by 
using a 1-km spatial filter. From the literature occurrences, 
we selected only those with precise geographic information 
(Miraldo et al. 2005; Qninba et al. 2013), removing those 
reporting presence within Provinces/Regions.

The final dataset was then processed through the “Spa-
tially Rarefy Occurrence Data for SDMs” tool (set at = 1 km) 
of the SDMtoolbox 0.9.1 (Brown et al. 2017) for ArcGIS Pro 
2.9.3 (Esri Inc. 2023) to make the spatial resolution of both 
predictors and occurrences comparable, according to Sillero 
and Barbosa (2021).

Environmental predictors

We used climatic, topographic, and habitat predictors to inves-
tigate the ecological needs of the target species. The climatic 
aspect was assessed by downloading the 19-bioclimatic vari-
ables from WorldClim 2.1 (Fick and Hijmans 2017) archive 
(https:// www. world clim. org/ data/) at 30 arc-seconds reso-
lution (~ 1 km) for the “current” scenario (i.e., 1970–2000 
average climatic conditions) as well as for three future time 
projections (i.e., 2030, 2050, and 2070). For each future pro-
jection, we downloaded raster data representing predicted cli-
matic conditions under three Shared Socioeconomic Pathways 
(SSPs). Specifically, we selected the SSPs 2.45, 3.70, and 5.85 
to involve all but one (the 1.26, the most optimistic) of the 
different possible trajectories (Riahi et al. 2017).

As for topography, we downloaded a Digital Elevation 
Model (DEM, at ~ 90-m resolution) from the European Space 
Agency and Sinergise (2021) (https:// space data. coper nicus. 
 eu/ colle ctions/ coper nicus- digit al- eleva tion- model). We then 
used the “Surface Parameters” tool in ArcGIS Pro to calcu-
late the Aspect, starting from the DEM.

About the habitat predictors, we took advantage of the 
100-m resolution Global Corine Land Cover map of the 
Copernicus repository (https:// land. coper nicus. eu/ global/ 
produ cts/ lc), which contains a discrete classification with 
23 classes according to the UN-FAO Land Cover Classifica-
tion System (Buchhorn et al. 2020).

Ecological niche modelling

The ecological niche modelling step was performed in R 
(R Core Team 2013). We built the ENMs with the “gbm” R 

package (Greenwell et al. 2019). This package implements 
the gradient boosting model (GBM) algorithm, also known 
as boosted regression trees (Elith and Leathwick 2009). 
This algorithm is one of the best-performing ENM algo-
rithms with presence-pseudo-absence data, once properly 
tuned (Elith and Leathwick 2009; Hao et al. 2020), and 
the tuning parameters are easy to set in the R environment.

The 19-bioclimatic variables from WorldClim were 
checked for multicollinearity through the Variance Infla-
tion Factor (using the “vifstep” algorithm of the “usdm” R 
package (Naimi 2015), with a threshold ≥ 10, as it is deemed 
a suitable threshold to deal with multicollinearity in ENM 
(Guisan et al. 2017). To reduce the variability caused by 
using individual General Circulation Models (GCMs) in 
future projections (Stralberg et al. 2015), we selected and 
managed three different GCMs, namely the BCC-CSM2-
MR (Wu et al. 2019), the IPSL-CM6A-LR (Boucher et al. 
2020), and the MIROC6 (Tatebe et al. 2019).

Then, we generated 10,000 pseudo-absences through the 
“disk” strategy of the “BIOMOD_FormatingData” function 
of the “biomod2” R package (Thuiller et al. 2016), setting 
1 and 50 km as the minimum and maximum radius, respec-
tively. Then, we weighed presences and pseudo-absences so 
that the sum of the weights of the previous equals the one 
of the latter. In fact, it has been demonstrated that assigning 
the same overall weight to presences and pseudo-absences 
usually increases ENMs’ predictive performance when the 
generated pseudo-absences are far more numerous than the 
available presences (Cerasoli et al. 2017; Gouvêa et al. 2020; 
Thiault et al. 2020).

The best GBM algorithm parametrization was obtained 
by creating three different matrices containing several com-
binations of “gbm” parameters and the respective set of val-
ues (for brevity; here, we show the ones for the first matrix 
only: shrinkage = 0.01, 0.1, 0.3; interaction.depth = 1, 3, 
5; n.minobsinnode = 5, 10, 15; bag.fraction = 0.65, 0.8, 1). 
Then, we ran as many GBM models as the combinations, 
increasing the n.trees value from 1000 to 15,000 but keeping 
the train.fraction = 0.8 and the cv.folds = 10 as fixed. Finally, 
we chose the set of parameters resulting in the lowest root 
mean square error (RMSE) (Friedman 2001; Greenwell et al. 
2019; Cervellini et al. 2021).

Successively, we checked the discrimination power of 
the optimized GBM model through the Boyce index (Boyce 
et al. 2002), which is particularly suited for ENMs built on 
presence and pseudo-absence data (Hirzel et al. 2006; Leroy 
et al. 2018). Moreover, we measured the relative contribu-
tion of the selected variables through the randomization 
algorithm implemented in the “summary.gbm” function of 
the “gbm” R package.

Then, we projected the optimized GBM model across the 
entire study area for both current climatic conditions and 
various future scenarios represented by the combinations 

https://www.worldclim.org/data/
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model
https://land.copernicus.eu/global/products/lc
https://land.copernicus.eu/global/products/lc
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of year (2030, 2050, and 2070) and SSP (SSP3.70 and 
SSP5.85) by using the GCMs listed above. To assess the 
uncertainties deriving from future projections calibrated on 
each GCM and concurrently merge them into 1 year/SSP sin-
gle model, we first checked for model extrapolation (i.e., the 
dissimilarity from the calibration conditions) by assessing 
the Multivariate Environmental Surface Similarity (MESS) 
(Elith et al. 2010), computed through the function “mess” 
of the “dismo” package (Hijmans et al. 2023). Then, we 
used the resulting MESS maps to implement the Multivari-
ate Environmental Dissimilarity Index (MEDI). This index 
weighs ENMs’ projections under different GCMs based 
on the corresponding MESS, finally returning a combined 
weighted projection (Iannella et al. 2017). We repeated this 
process of ENMs’ fine-tuning for each year × SSP combi-
nation. We averaged each future projection between year’s 
scenarios to obtain a consensus map for 2030, 2050, and 
2070. ENMs’ predicted suitability, ranging from 0 to 1 (low-
to-high suitability), was then reclassified on a 1-to-10 scale 
for post-modelling purposes (see below) using the “Reclas-
sify” tool in ArcGIS Pro.

Post‑modelling analysis

Predictions from the climate-based ENMs were then refined 
in a post-modelling phase by including topographic and 
habitat-related predictors. We thus applied the “couple-
and-weigh” framework following Iannella et al. (2021). 
This process permits to refine models based on a single pre-
dictors’ family (in this case, climatic-related variables) by 
incorporating others. Thus, we selected the topographic and 
habitat-related variables mentioned above, which are known 
to influence the common chameleon, as reported by Hódar 
et al. (2000).

Specifically, we extracted elevation values at occurrence 
localities from the DEM to obtain an elevation preference 
curve, converting the “raw” occurrence frequencies of the 
elevation gradient (from 0 to 500 m, bin size = 50 m) to a 
1-to-10 scale. We repeated the same process for the Coperni-
cus habitat predictor. Similarly, we assigned to each habitat 
category a value from 1 (low suitability) to 10 (high suit-
ability), matching information extracted by occurrence data 
to the ones of Hódar et al. (2000). Taking advantage of these 
authors’ findings, we similarly reclassified the Aspect data, 
to match the common chameleon ecological preferences.

Finally, the “Weighted overlay” tool in ArcGIS Pro was 
used. This tool merges a given set of rasters, sharing a com-
mon evaluation scale, through a weighted averaging pro-
cess in which each input raster is also assigned a specific 
percentage set by the operator. Thus, we entered the 1-to-10 
information obtained as reported above to let the tool reclas-
sify the supplied rasters for current and future conditions. 
The predictive performances of the so-obtained weighted 

models were further reassessed through the Boyce index, 
considering the presence-only nature of the dataset (Hirzel 
et al. 2006; Leroy et al. 2018).

To highlight the range shifts in future projections, we 
used the “BIOMOD_RangeSize” function of the R pack-
age “biomod2” (Thuiller et al. 2016). This function uses 
binarized suitability map of current and future projections, 
returning maps with areas predicted to be lost, remaining 
stable, and gained in each future projection. We used the 
10th percentile value as a threshold to binaries the current 
weighted suitability. To detect the direction of the climate-
triggered shifts, we used the “Centroid changes” function 
of the SDMtoolbox 0.9.1 (Brown et al. 2017). Starting from 
binarized suitability maps for each scenario, this tool pro-
vides both the direction and the intensity of the changes in 
suitability, using the centroids of the study areas. To better 
understand the possible different population dynamics, we 
divided the Mediterranean basin in three sections (Western, 
Central, and Eastern) to focus on the Iberian and North Afri-
can populations (Western), Italian populations (Central), and 
Greek and Middle Eastern populations (Eastern).

Landscape connectivity assessment

We assessed landscape connectivity in the areas where the 
common chameleon was introduced historically, i.e., in the 
Southern side of the Iberian Peninsula and Southern Italy. 
We obtained the corresponding resistance surfaces from 
the current and future weighted suitability maps. First, we 
downloaded the road and railway layers from Open Street 
Map (https:// www. opens treet map. org/), selecting the major 
roads (i.e., motorway, trunk, primary, and secondary) for 
both study areas. Then, we used the “Mosaic to new raster” 
function in ArcGIS to merge these layers into the weighted 
suitability maps. We converted these weighted suitability 
layers into resistance surfaces using a negative exponential 
function following Keeley et al. (2016):

In this function, R represents the final resistance value of 
a pixel, h is the habitat suitability value for the same pixel, 
and c represents a constant factor determining the curvature 
of the negative exponential function. Previous studies have 
demonstrated that moderate values of the constant factor, c, 
provide the best performance (Keeley et al. 2016). Thus, we 
set the c factor to 4. We thus obtained high resistance val-
ues to the lowest habitat suitability ones, since it is a more 
accurate representation of landscape resistance, considering 
that habitat suitability may not be correlated with movement 
probability and landscape permeability (Keeley et al. 2016; 
Zeller et al. 2018).

R = 1000 − 999 ×
1 − exp(−c × h)

1 − exp(−c)

https://www.openstreetmap.org/
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We used Omniscape v.0.5.8 in Julia to compute landscape 
connectivity (Landau et al. 2021). This algorithm calculates 
omnidirectional connectivity using circuit theory (McRae et al. 
2008, 2016). Omniscape is implemented with a moving win-
dow framework, where the center pixel is used as the destina-
tion and is set to “ground,” while pixels within the moving 
window are the sources, and the user could decide whether to 
use all the pixels as sources or only those with certain resist-
ance values (Landau et al. 2021). As with other circuit the-
ory software, the obtained current map is comparable to the 
probability of movement of the target species. In particular, 
Omniscape generates three different outputs: cumulative cur-
rent flow, potential current flow, and normalized current flow. 
Considering the poor knowledge of the common chameleon 
movements, we set the search radius of the moving window to 
a conservative distance of 1 km.

Results

Occurrence records and ecological niche models

After the filtering procedure, we retained 552 occurrence 
localities for the common chameleon (Fig. 1).

Also, considering the VIF results (Figure S1 Online 
Resource 1), we selected the following eight of the 19 biocli-
matic variables: Bio_6 (minimum temperature of the coldest 
month), Bio_7 (temperature annual range), Bio_11 (average 
temperature of the coldest quarter), Bio_12 (annual precipi-
tation), Bio_14 (precipitation of the driest month), Bio_16 
(precipitation of the wettest quarter), Bio_18 (precipitation 
of the warmest quarter), and Bio_19 (precipitation of the 
coldest quarter).

The lowest RMSE was recorded for the GBM model fitted 
with: “n.trees” = 4868, “int.depth” = 7, “shrinkage” = 0.001, 
“bag.fraction” = 0.65, and “minobsinode” = 15. This GBM 
model obtained a Boyce Index of 0.91. The two most impor-
tant variables for this model were Bio_12 (Annual Precip-
itation) (23.6%), peaking between 200 and 500 mm, and 
Bio_16 (precipitation of wettest quarter) (23.4%), showing 
a major peak from 250 to 400 mm (Figure S2a and S2b 
Online Resource 1).

Weighted models and future projections

Habitat preferences show that most occurrences fall within 
three land use categories: urban areas (22%), shrubland 
(21%), and cropland (18%), with other categories less 

Fig. 1   Occurrence localities for the common chameleon in the study 
area and IUCN range maps. Data for Greece has been updated based 
on the latest information from the official page of the Atlas of Rep-

tiles and Amphibians of Greece (Societas Hellenica Herpetolog-
ica  2024). All data are referred to the subspecies of interest (C. c. 
chamaeleon, C. c. recticrista, and C. c. musae)
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represented (Figure S2c Online Resource 1). The eleva-
tion preference reports the highest number of occurrences 
in class 0–50 m and 50–100 m a.s.l. (Figure S2d Online 
Resource 1).

The weighted model for the current condition, obtained 
from the “couple-and-weigh” approach, scores a Boyce 
Index of 0.993 (Figure S3 Online Resource 1), much higher 
than the one obtained from the ENMs alone (B = 0.796). The 
current weighted suitability map (Fig. 2a) shows a gener-
ally high suitability for areas where the species is currently 
reported, and even for some territories where the species is 
not reported (e.g., Sicily). High habitat suitability values 
are observed in Morocco, Tunisia, and Libya in northern 
Africa, and between Israel and Lebanon in the Middle East 
(Fig. 2a). Moreover, Cyprus and the coastal zones and the 
islands in the Aegean Sea are reported as generally suitable 
for the common chameleon (Fig. 2a). Considering the coun-
tries where the species was introduced, the Iberian Peninsula 
shows high, continuous habitat suitability values from Mur-
cia in Spain to the southern limit of the Algarve region in 
Portugal (Fig. 2a). On the other hand, in Italy, Sicily appears 
to be the most suitable region in the current environmental 
conditions (Fig. 2a).

In the future scenarios, a general and progressive increase 
in habitat suitability is expected in all the areas currently 
inhabited by the species, except for some areas in Tunisia 
and Turkey (Fig. 3a). Interestingly, in the Iberian Peninsula, 
the suitable areas would progressively shift westwards, 
resulting in a scenario where the Mediterranean side of the 
Iberian Peninsula would lose most of the suitability, in turn 

shifting towards the north-western Portugal (Fig. 3a). In 
Italy, habitat suitability is predicted to increase in Sicily, 
Calabria, Apulia, and Sardinia (Fig. 3a). Some losses are 
observed in Aegean coast of Turkey and Israel.

In detail, the range shifts calculated upon the different 
future inferred scenarios differ among the three Mediterra-
nean basin sectors considered (Fig. 3b). In fact, the western 
and eastern parts of the study area are predicted to change 
mainly westwards, while the central sector, involving Tuni-
sia and Italy, shows northeastern changes (Fig. 3b). The 
reduction in habitat suitability in the Mediterranean side 
of the Iberian Peninsula and the suitable areas “gained” in 
Portugal are evident (Fig. 3a).

Landscape connectivity assessment

The connectivity assessment as computed from Omniscape 
for the common chameleon in the current Iberian range 
shows high connectivity values from the Algarve region to 
the city of Cadiz (Fig. 4a). Furthermore, fair connectivity 
values occur from Gibraltar to Malaga (Fig. 4a). However, 
the eastern Iberian occurrences from Almeria to Murcia are 
less connected to the other populations, with few landscape 
corridors between them (Fig. 4a).

When considering the future scenarios, the standardized 
connectivity change index maps show an interesting pat-
tern, with connectivity values increasing in the western area, 
northward across Portugal, and in the Algeciras area, but 
with a severe progressive decline in the Mediterranean Ibe-
rian Peninsula from Almeria to Murcia (Fig. 4b). Moreover, 

Fig. 2  Current weighted suitability for the common chameleon obtained by merging bioclimatic, topographic, and habitat-related variables: 
higher suitability values are observed mainly across coastal areas
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some reductions of connectivity occur between Algarve 
and Gibraltar, thus disrupting the continuous connection 
between these areas found for current conditions (Fig. 4b).

In southern Italy, a more complex pattern of connectiv-
ity emerges, with local high connectivity in the areas where 
the species currently occurs, such as the “Costa Viola” area 
in Calabria and in the southern side of the Apulia region 
(Fig. 5a). Moreover, high connectivity values are observed in 
the southern end and the eastern area of Calabria overlook-
ing the Ionian Sea (Fig. 5a).

Analyzing future changes in connectivity through the 
SCCI, losses are clustered in the northern part of the Apulia 
region and in the eastern area of Calabria, where the con-
nectivity predicted in the current scenario is lost (Fig. 5b). 
However, connectivity is forecasted to increase in the areas 
where the common chameleon is currently distributed (i.e., 
in the southern part of Apulia and of Calabria), where con-
nectivity increases towards the hinterland (Fig. 5b).

Discussion

Several factors may positively influence the establishment 
of a new species when introduced to a novel environment, 
such as a long time since introduction, a high frequency of 
introduction events, minimal latitudinal differences between 
native and introduced ranges, and specific species charac-
teristics, like phenotypic attractiveness, larger native range 
size, and high fecundity (Mahoney et al. 2015).

Some of these factors are pertinent to the case of the 
common chameleon Chamaeleo chamaeleon. The attrac-
tiveness of this species, attributed to its compact size and 
skilled camouflage abilities, has played a significant role in 
its introduction outside its natural habitat. Over time, it has 
been introduced to regions such as the Iberian Peninsula, 
Italy, Malta, and potentially to some Greek islands, where 
they have successfully established (Paulo et al. 2002; Dimaki 
et al. 2008; Sindaco et al. 2008; Andreone et al. 2016; Basso 

Fig. 3  a Predicted range shifts in each future scenario and b direction (in degrees) and intensity (length in km) of the range shifts as computed 
from the “Centroid changes” tool in each future scenario, considering three sectors of the Mediterranean basin
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et al. 2019). However, it has also been reported in other 
areas, such as several northern and central regions of Italy, 
where no viable populations established (Bologna et al. 
2000; Corti et al. 2011). This underscores the significance 
of smaller latitudinal differences and similar climatic condi-
tions, which could facilitate the establishment of a species 
outside its native range (Mahoney et al. 2015).

Despite being classified as a species of interest 
in Annex IV of the EU Habitat and Species Directive 
(92/43/CE), strictly protected in Annex II of the Bern 
Convention, and assigned the highest level (C1) in the 
CITES Convention (3626/82/CE), the common chame-
leon remains poorly studied and comprehensive infor-
mation guiding management actions is scarce. Existing 
literature offers limited insights into habitat preferences, 
only focusing on specific sub-regions within its range. 
Moreover, precise information on the species’ current 
distribution is lacking, with studies confined to Morocco 
and parts of the Iberian Peninsula (Miraldo et al. 2005; 
Qninba et al. 2013).

In this context, our results, which were obtained using 
ecological niche modelling to study the habitat suitability 
of the common chameleon in the Mediterranean basin, have 
allowed us to evaluate its possible future range expansions. 
Also, we assessed habitat connectivity in the areas where 
the species was introduced to explore how the expansion 
dynamics could proceed.

The climate-based ENMs identified two pivotal varia-
bles: annual mean precipitation (Bio_12) and precipitation 
of the wettest quarter (Bio_16). The first one reflects the 
total water input, offering insights about tree abundance or 
net primary production, concurrently indicating the wet-
ness (or aridity) of an area. Bio_16 gives crucial informa-
tion about the species’ seasonal distribution. Notably, the 
importance of the precipitation of the wettest quarter has 
been consistent across ecological niche modelling stud-
ies on reptiles, as observed by Gadsden et al. (2012) and  
Farashi and Alizadeh-Noughani (2021). The prominence of 
precipitation as a key variable aligns with the “hypothesis 
of water-energy dynamics,” which posits that precipitation 

Fig. 4  a Landscape connectivity in the Iberian Peninsula from 
Algarve (Portugal) to Murcia (Spain), and b standardized connectiv-
ity change index showing the change in connectivity (red-to-green 

color scale corresponding to loss and gain) between each future sce-
nario and the current conditions
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plays a critical role, particularly for species inhabiting low 
altitudes (Qian 2010).

The weighted suitability maps reveal areas with high suit-
ability values within the species’ range (see Figs. 1a and 2). 
Remarkably, some areas with high suitability values lack 
corresponding records in our ecological niche modelling 
dataset (and highlights that low overfit occurred during 
model calibration). This mismatch holds particular signifi-
cance for a species, like the common chameleon, where an 
ascertained knowledge of its historical and current distribu-
tion is limited, especially in certain countries. The insights 
derived from our species distribution models could serve as 
a tool to guide research efforts towards areas with a higher 
likelihood of species’ presence, mirroring what occurred in 
other cases (De Siqueira et al. 2009; Fois et al. 2018). Nota-
bly, the regions of high suitability are mainly clumped in 
coastal areas and their surroundings.

Our results indicate an impending expansion in certain 
parts of the common chameleon’s range, coupled with a 

decline in others, predominantly following a northward 
latitudinal gradient. Specifically, habitat suitability will 
likely follow a latitudinal shift, with a northwestern shift 
for the western and eastern Mediterranean populations, and 
a northeastern shift for central ones. This directional and 
long-range shift aligns with patterns reported in other eco-
logical modelling studies, where a prevailing northwestern 
displacement results for the Saharan-Arabic region, and a 
northeastern shift occurs in the Palearctic (Araújo et al. 
2006; Iannella et al. 2020; Biber et al. 2023). These pro-
jected changes are consistent with the ectothermic nature of 
reptiles, a physiological feature which makes them particu-
larly susceptible to the impacts of climate change (Diele-
Viegas and Rocha 2018).

Careful consideration is necessary for the eastern Iberian 
populations because, standing to our projections, a poten-
tial reduction in habitat connectivity could progressively 
occur. This trend could contribute to the isolation of these 
eastern populations from their south-central counterparts. 

Fig. 5  a Landscape connectivity in southern Italy where the common 
chameleon occurs with two separated populations in Calabria and 
Apulia regions and b standardized connectivity change index show-

ing the change in connectivity (red-to-green color scale correspond-
ing to loss and gain) between each future scenario and the current 
conditions
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Conversely, populations in southern Portugal should be 
monitored to evaluate the possibility of expansion.

In the Italian peninsula, the habitat connectivity maps 
reveal an increase in the Calabria and Apulia regions but a 
decrease in other areas. Notably, the coastal strip towards 
Campania exhibits high connectivity values, suggesting 
unhindered connectivity. However, considering the scarce 
dispersal capacity of the common chameleon and the small 
population size, this scenario may be unlikely to occur 
naturally. Indeed, the human-mediated illegal trade could 
act rather randomly, posing even more uncertainties to the 
already-tangled Italian scenario.

Coastal distributions exhibit a positive relationship with 
common chameleon predicted shifts, reinforcing the outcomes 
indicated by Weil et al. (2022). In fact, its body size, life-history  
traits, and preferred habitat type (coastal ones) make this 
species particularly suited for dispersal in these environments, 
even though human-mediated shifts may change the natural 
processes. Notably, natural dispersal movements identified in 
chameleons tend to be continental (Weil et al. 2022).

Our study’s findings on habitat preferences align with 
the established habitat selection patterns of the common 
chameleon, as documented by Hódar et al. (2000), indi-
cating a higher abundance in anthropized and cultivated 
areas. This unique habitat selection behavior implies that 
the common chameleon may be particularly susceptible to 
specific threats, such as exposure to pesticides, road kills, 
and illegal collections (Hódar et al. 2000; Albaba 2017). The 
identification of dispersal corridors holds potential signifi-
cance for species conservation efforts. For instance, it could 
aid in preventing road kills in areas where high connectiv-
ity is detected and contribute to understanding expansion 
dynamics, especially for management purposes in regions 
where the species has recently been reported, as seen for the 
Calabria region. By concurrently considering both habitat 
suitability and connectivity, conservationists can focus on 
areas predicted to be both suitable and connected. However, 
it is crucial to note that, for certain management actions, 
the identified dispersal corridors should be validated with 
empirical data. Previous studies utilizing circuit-theory tech-
niques and validated with empirical data have demonstrated 
the efficacy of theoretical predictions in identifying disper-
sal corridors (McClure et al. 2016) and enhancing manage-
ment measures. Indeed, specific investigations are necessary 
given that, even today, individuals are still being taken from 
the wild, possibly leading the species to expand into areas 
beyond its native range.

Considering the heterogeneous outcomes in terms of 
potential distribution, landscape connectivity and expansion 
dynamics, it is essential to deepen our understanding of the 
common chameleon’s putative impact in recently colonized 
areas and to ascertain its updated distribution, population 
size, and movements.
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