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Abstract
Since 2007, an ongoing African swine fever (ASF) pandemic has significantly impacted Eurasia. Extensive field evidence 
and modeling confirm the central role of wild boar in ASF epidemiology. To effectively control and eradicate the infection, 
rapid detection of the ASF virus (ASFV) is crucial for prompt intervention in areas of recent viral introduction or ongoing 
outbreaks. Environmental DNA (eDNA) is a cost-effective and non-invasive technique that has shown promising results 
in monitoring animal species and their pathogens and has the potential to be used for wildlife disease surveillance. In this 
study, we designed and evaluated an eDNA sampling method for highly turbid water and soil samples to detect ASFV and 
wild boar (Sus scrofa) DNA as a control using qPCR while ensuring biosafety measures and evaluating ASF epidemiology. 
To validate our method, we obtained samples from La Mandria Regional Park (LMRP) in northwestern Italy, an area free of 
ASFV, and spiked them in a laboratory setting with an ASFV’s synthetic DNA template. Our findings highlight the potential 
of eDNA monitoring as a reliable, rapid, and safe method for early detection of ASFV from soil and turbid water samples.
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Introduction

Since 2007, an ongoing African swine fever (ASF) pandemic 
has been affecting vast parts of Eurasia (Morelle et al. 2020; 
Sánchez-Cordón et al. 2018; Sauter-Louis et al. 2021), and 
the Eurasian wild boar (Sus scrofa) has been shown to be a 
relevant wildlife host for ASF virus (ASFV), contributing to 
infection maintenance and spread and representing a chal-
lenge for disease control (Iacolina et al. 2021).

Links between ASF in domestic pigs and in wild boar 
are strongly supported by both field evidence and modeling 
(EFSA (European Food Safety Authority) et al. 2023; EFSA 
(European Food Safety Authority) et al. 2022) even if the 
importance of wild boar in ASF maintenance and spread 
can vary among epidemiological situations and geographical 
settings (Dixon et al. 2020). In order to control and eradicate 
the infection, rapid detection of ASFV in an area is crucial 
for prompt intervention in both long-distance introduction 

points such as the outbreaks reported in Czech Republic 
and Belgium (Cukor et al. 2020); Linden et al. 2019) or 
in front-like situations as those of several other European 
countries or South Korea (Jo and Gortázar 2021; Lim et al. 
2023; Sauter-Louis et al. 2021). Moreover, the evaluation of 
the persistence of ASFV in an area is crucial in evaluating 
ASF epidemiology and developing an eradication campaign 
for its control.

Environmental DNA (eDNA) is a cost-effective non-
invasive technique that has been widely employed to 
monitor biodiversity in wild flora and fauna populations 
using water, soil, and air samples (Thomsen and Willerslev 
2015). Although most eDNA studies are focused on aquatic 
populations, recent eDNA surveys have shown remarkably 
promising results in terrestrial mammals monitoring as 
well as their pathogens (Alfano et al. 2021; ENETWILD-
consortium et al. 2022; Leempoel et al. 2020; Williams 
et al. 2017). Previously, this method has been applied to the 
detect feral pig in captivity from filtered water (Williams 
et al. 2017) and also ASFV in pig breeding facilities from 
eDNA isolated from dry sponges (3M) pre-hydrated with 
a specific surfactant liquid applied to animals’ skin and 
contaminated surfaces (Kosowska et al. 2021). While these 
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studies demonstrate promising results in detecting both 
wild boar and ASFV, further adaptation of eDNA sampling 
and extraction methods is necessary for its application in 
the context of wildlife surveillance.

In order to evaluate the possibility of using eDNA-
based methods for the detection of ASFV in the natural 
environment, we developed a simple eDNA method com-
patible with highly turbid water and soil samples that is in 
compliance with all the necessary biosafety issues.

Methods

Study area and sample collection

The study was conducted in La Mandria Regional Park 
(LMRP) near Turin in northwestern Italy, which encom-
passes a fenced area of approximately 2700 ha housing 
four ungulate species, including wild boar, red deer, roe 
deer, and fallow deer. The wild boar population density 
in this area was estimated at 15.26 individuals per square 
kilometer (Enetwild Consortium et al. 2023,). LMRP is 
ASF-free, and it is located in an area exempt from any 
restrictions for pathogen management and control.

Four separate mudholes (designated 1–4, respectively) 
were identified randomly and monitored using camera 
traps to confirm the local presence of wild boars and their 
use of the identified mudholes (Fig. 1). Field sampling 
activities were carried out in a single day in accordance 
with the park authority for both water and soil collection 
at each site. Specifically, seven L of turbid water were 
collected from each mudhole site using a diaphragm pump 
(connected to a 12V battery) and separately stored in water 
tanks. To prevent cross-contamination between sampling 
events, a closed circuit of one L bleach solution (20%) 
was run between each collection using the same tubes. 
Additionally, 5 mL volume of soil was collected from each 
site, using 50 mL falcon tubes. Buffer AVL™ (Qiagen 
GmbH, Hilden, Germany) (25 mL) was added to each 
tube. Buffer AVL is a viral lysis buffer that effectively 
deactivates ASFV even at high titer stock when mixed at 
a 1:5 v/v ratio for 10 min (McCleary et al. 2021). It has 
also been shown to preserve viral RNA for up to 35 days 
at 4 °C (Blow et al. 2008).

Laboratory procedures and sample preparation

To validate the eDNA extraction method for detecting ASFV, a 
synthetic DNA fragment was designed (Supplementary mate-
rials A). The synthetic DNA fragment was constructed based 
on the sequence of the 2802/AL/2022 Italy isolate (Piedmont 
region) available on NCBI (ON108571.3) and was obtained 
from Macrogen Europe Milan Genome Center, Milan, Italy. 
Four different dilutions of the ASFV synthetic DNA were pre-
pared, containing 6 ×104 , 6 ×103 , 6 ×102 , and 60 genome cop-
ies in a final volume of 10 µL of RNAase- and DNAase-free 
water and were designated as A–D, respectively. Each dilution 
was added to a separate water tank, generating samples subse-
quently labeled as WA1, WB2, WC3, and WD4, respectively, 
in correspondence to their sample type (W for water and S for 
soil), and synthetic DNA dilution concentration (A–D), and 
collection site in the LMRP (mudholes 1–). Soil samples were 
also labeled as SD1, SD2, SD3, and SD4 in the same manner 
mentioned before. The samples were kept at room temperature 
for 12 h before further processing.

Water samples were prepared filtering approximately 3 L 
of water using 0.1 µm Waterra filters (Argaly, Sainte-Helene 
Du Lac, France). Then, a minimum of 25 mL of AVL buffer 
was added to the filters’ capsule, which were closed and 
vortexed thoroughly. Waterra filters provide a long-surface 
(600 cm2) polyethersulfone membrane with a capacity of 
storing approximately 50 mL of liquid inside the filter cap-
sule (Douchet et al. 2022). Therefore, a minimum of 25 mL 
buffer AVL was used to cover the entire membrane surface 
and ensure an adequate sample recovery. The liquid inside 
the filters was recovered and poured into a 50-mL falcon 
tube. RNA/DNAase-free water was added to all falcon tubes 
containing samples from filtered water or soil to reach a final 
volume of 50 mL.

eDNA extraction

The falcon tubes containing soil samples were vigorously 
shaken for 10 s, followed by a 10-s static phase to allow the 
sedimentation of heavy particles of soil. Subsequently, the 
supernatant was transferred into new 50 mL falcon tubes. All 
the tubes containing water or soil samples were centrifuged 
for 80 min at 4000 g and 18 °C. The supernatant was dis-
carded, and 250 mg of sediment content was transferred into 
PowerBead Pro tubes. eDNA was purified using the DNeasy 
PowerSoil Pro Kit (Qiagen GmbH, Hilden, Germany). Nega-
tive controls were included in the extraction procedure.

qPCR assays for ASFV diagnosis and wild boar 
detection

The environmental diagnosis of ASFV from eDNA sam-
ples was performed using iTaq Universal SYBR Green 

Fig. 1   a Collection sites for water and soil samples at LMRP’s fenced-
off area. b Sample collection and preparation workflow. c qPCR results 
for samples collected at LMRP and spiked in laboratory — results (dots 
represent every qPCR replicate value and horizontal red line depicts 
the replicate values’ mean) are reported as genome copy number/µL of 
eDNA for ASF virus (ASFV) and wild boar (WB). Line types demon-
strate limit of quantification (LOQ) thresholds for both assays
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Supermix (Bio-Rad Laboratories, CA, USA) and a primer 
set as described by Fernández-Pinero et al. 2013. For the 
environmental detection of wild boar DNA, TaqMan™ Uni-
versal PCR Master Mix (Life Technologies, CA, USA) and 
a primer set described by Williams et al. 2017 were used. All 
assays were performed in triplicate with a final volume of 25 
µL, including 12.5 µL of TaqMan/iTaq SYBR Green master 
mix, 0.9 µM (2.25 µL) µM of each primer, 0.27 µM (0.675 
µL) of TaqMan probe, and two µL of eDNA. The real-time 
thermocycling program involved a 10-min hold at 95 °C, 
followed by 45 cycles of 95 °C for 15 s and 60 °C for 1 min 
for both assays. A dissociation curve analysis was conducted 
at the end of the 45th cycle of the ASFV qPCR program. 
The absolute quantification method was used with six tenfold 
serial dilutions standard curves for both assays. The limit of 
quantification (LOQ) was 0.6 genome copies/µL for ASFV 
and 12 genome copies/µL for wild boar assays, correspond-
ing to the cycle threshold at which the most diluted standard 
was quantified ( R2

= 0.99 for ASFV and R2
= 0.98 for wild 

boar).
To determine a sample as positive, we established the 

minimum requirement of two replicates above the limit of 
quantification (LOQ) yielding positive results. In the case 
of ASFV analysis, we additionally considered the melting 
temperature analogy between the samples and standards.

Results and discussion

Following the above mentioned criteria, all synthetic DNA 
spiked water and soil samples tested positive for ASFV 
(Fig. 1). However, the difference in results from the water 
tank samples is not proportional to the initial spiked syn-
thetic DNA inputs. This inconsistency might be attributed 
to the degradation of synthetic DNA in the muddy water 
between the time of synthetic DNA addition and the filtra-
tion process (12 h). On the other hand, soil samples exhib-
ited more consistent results, possibly due to the synthetic 
DNA being added directly to the soil buffer AVL mixture. 
Extracted soil samples demonstrated higher eDNA concen-
trations; however, a lower wild boar eDNA copy number 
was detected compared to the water samples. This latter 
could suggest that filtration of water could better capture 
eDNA rather than soil samples that are representative of 
a small spot on soil surface. Interestingly, all water and 
soil samples resulted positive for the presence of wild boar 
eDNA except for soil sample SD4 which failed to meet 
LOQ in two out of three replicates (Fig. 1). It is worth to 
mention that based on camera trap photos, the presence of at 
least one wild boar was confirmed on the day before water/
soil collection in all mudhole sites, except for mudhole 1 
which last recorded the presence of one wild boar 5 days 
before sampling. This did not influence eDNA detection of 

wild boar confirming the good persistence of eDNA in the 
environment (Williams et al. 2018).

Considering our strict inclusion criteria, results from this 
study serve as a proof of concept for the effective application 
of eDNA techniques for the rapid and safe detection of AFSV 
when adapted for sampling from turbid water or soil and com-
bined with viral DNA/RNA lysis and preservation buffer (such 
as buffer AVL). In this study, due to experimental procedures, 
water samples were transferred to laboratory, while, in a real-
world sampling setting, water samples would be filtered and 
both sample type would be treated with AVL buffer in situ. To 
our knowledge, it is the first effort to co-detect ASFV and wild 
boar’s DNA directly from soil or water samples. The absence 
of domestic pigs in the study area is known and confirmed; 
however, further research is necessary to develop molecular 
tests capable of discerning wild boar’s DNA from domestic 
pigs. Additionally, following our workflow, eDNA extraction 
was performed using a common extraction kit and some shared 
sample preparation steps for two initial different sample matri-
ces (water and soil). This has further accelerated laboratory 
procedure in a cost-effective manner.

The aim of the present work was to present technical pro-
tocols and measures to exploit eDNA detection from highly 
turbid water and soil samples for environmental surveillance 
of ASFV. A full-range field application of the presented 
methods is still required to fully evaluate its applicability 
both as early-detection method in disease-free areas and as 
a tool to monitor both the extent of the outbreak and the 
progression of the infection in ASF affected areas. Neverthe-
less, our findings represent a foundation for further explora-
tion of eDNA application in wildlife health management. In 
particular, ASF control poses severe challenges related to 
wild boar management and to rapid and effective pathogen 
detection. The collection of accurate and comparable data is 
a prerequisite for informed disease management decisions. 
eDNA has the potential for becoming an effective diagnostic 
tool in wildlife disease management (Bass et al. 2023).
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