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Abstract
This study explores whether Natterer’s bats exhibit fidelity to their foraging sites and individual specialisation in their use of 
habitat types. The research tracked 34 individual bats in two different landscapes, with some bats tracked twice over vary-
ing time intervals. The study found that Natterer’s bats show consistency in their fidelity to foraging sites across different 
landscapes and intervals between observations. The bats repeatedly exploited specific foraging areas, and some showed 
individual specialisation in their habitat use. The study also found considerable variation in individual behaviour. The 
research suggests that a single full night of radio-tracking data can serve as a useful proxy for longer periods and contribute 
to more robust descriptions of resource requirements by Natterer’s bats in their breeding seasons. This study emphasises 
the importance of maximising the number of individuals from which movement data is obtained to inform conservation 
and management of temperate bats, whilst ensuring that the data represent a meaningful measure of behaviour. The results 
also suggest that protecting a mosaic of habitats rather than a single habitat may be important for Natterer’s bats, given their 
individual specialisation in habitat use.
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Introduction

Bats in the UK face many anthropogenic threats including 
habitat loss and mortality caused by wind turbines (Arnett 
et al. 2016; Baerwald et al. 2008; Cryan and Barclay 2009; 
Horn et al. 2008; Rydell et al. 2010; Zimmerling and Francis 
2016) or roads (Altringham and Kerth 2016; Berthinussen 
and Altringham 2012; Kitzes and Merenlender 2014; 
Lesiński 2008). Threats can also affect their roosts, reduce 
or degrade available foraging habitat or interfere with the 
connectivity between habitats (Mickleburgh et al. 2002). 
The long history of bat population decline coupled with 
the wide diversity of threats to bats has led to their current 
protection under national legislation in the UK, primarily the 
conservation of habitats and species regulations 2019 (UK 
Government 2019).

Favourable Conservation Status (FCS), an underpin-
ning principle of the Conservation of Habitats and Species 
Regulations 2019, requires information on the natural range 
and use of space of a species in order to protect them (UK 
Government 2019). Only then can an assessment of the size 
and viability of a population be made, as well as an assess-
ment of the requirements of the resources the species needs 
to remain viable (Hillen et al. 2009). However, determin-
ing habitat types required for effective conservation of bats 
can be difficult due to their ability to fly long distances. 
For example, in summer, bat roosts and foraging sites can 
be kilometres apart allowing individuals to access a wide 
range of habitats across extensive landscapes (Rainho and  
Palmeirim 2011). This can make it difficult for field workers to  
maintain observations of their habitat use.

Since the conservation of roost sites is important for the 
maintenance of bat populations, e.g. (Kapfer et al. 2008), 
roost provision or the mitigation of roost loss is already com-
mon in the management of bat populations. In addition to 
this, many species use a network of roosts which increases 
the resilience to the loss of a few roosts (August et al. 2014; 
Johnson et al. 2012; Rhodes et al. 2006; Silvis et al. 2015). 
Conversely, bats appear loyal to their foraging sites despite 
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roost loss (Dawo et al. 2013; Silvis et al. 2015). Hence, the 
conservation of foraging sites may be even more important 
than that of roost sites in the conservation of bats, although 
this is rarely considered. This is of some concern, especially 
as determining priorities for FCS requires a robust under-
standing of bats use of space.

It is not clear why some bats appear loyal to their forag-
ing sites/exhibit foraging site fidelity (Hillen et al. 2010;  
Kapfer et al. 2008), nor if this behaviour is specific to tem-
perate forest bats or if it is a more general behaviour found 
in other bat species. Egert-Berg et al. (2018), showed that 
bats exploiting spatially predictable food sources repeat-
edly returned to specific productive sites. Male Noctule bats 
Nyctalus noctula have also shown repeated use of the same 
foraging strategy (foraging trajectories and areas) (Roeleke 
et al. 2016). In addition, Kerth et al. (2001) suggest that for-
aging site knowledge could be a crucial resource which has 
been suggested to increase hunting efficiency (Kapfer et al.  
2008). Other possible reasons why bats exhibit foraging site 
fidelity include saving energy; foraging animals are expected 
to make choices in order to minimise energy expenditure 
whilst maximising energy intake (Arthur et al. 2015). For 
example, a previously used beneficial habitat may have a 
higher probability of providing sufficient resources than an  
unexplored new habitat (Call et al. 2008). An additional sug-
gestion is that site fidelity may be an evolutionary safety  
strategy to avoid resource depletion and to lead to reliable 
available food sources for every colony member throughout 
the season or years (Dawo et al. 2013).

Recently, the idea of bats exhibiting foraging site fidelity 
has been extended, to suggest that it may be a result of the ter-
ritorial defence of feeding areas through the use of social calls 
(Gadziola et al. 2012; Götze et al. 2020; Guo et al. 2019; Luo 
et al. 2017). Territorial defence of feeding areas is thought to 
minimise feeding competition (Wrangham 1979), maximise 
feeding efficiency through familiarity with the distribution 
of food resources (Hillen et al. 2009; Pusey et al. 1997), or 
directly impact reproductive success (Thompson et al. 2007). 
Foraging site fidelity or territoriality could therefore have sig-
nificant impacts on conservation and management objectives 
when used in combination with tools and measures to describe 
bats use of space. Studies to support bat conservation may 
therefore need to shift from general descriptions of species 
habitat preferences and the assumptions that as long as these 
habitats are accessible FCS can be maintained, to considering 
other aspects of behaviour, such as foraging site fidelity or 
individual specialisation (Araújo et al. 2011).

Bats, like many other mammals, may have individual 
habitat preferences (Araújo et al. 2011; Cryan et al. 2012) 
and this may be influenced by their social status. For 
example, dominant females may have preferential access 
to the best resources (Honer et al. 2010), inheritance of 

foraging sites (Mackie and Racey 2007) or resources 
(Dawo et al. 2013) may occur, or individuals might exhibit  
territoriality or personality traits (Patrick and Weimerskirch  
2014) which affects their access to foraging areas. Sexual 
segregation may also occur where females exclude 
males from the more profitable habitats (Angell et  al. 
2013). Alternatively, foraging variation may occur due 
to individual specialisation, such that individuals differ 
significantly in their prey or habitat utilisation, independent 
of class effects (Bolnick et al. 2002).

Individual specialisation has important evolutionary 
(Bolnick et al. 2002), ecological and management impli-
cations as it implies that interactions between individuals 
and their environment are not uniform across a landscape 
(Thiemann et al. 2011). If bats do exhibit individual spe-
cialisation in their habitat choice, then there might not be a 
preferred habitat per species as often asserted by the litera-
ture, e.g. (Arlettaz 1999; Catto et al. 1996; Robinson and 
Stebbings 1997; Russo et al. 2002), but instead a mosaic 
of habitats may be critical to their conservation. There-
fore, the influence individual expressions of behaviour 
may have on our understanding of species requirements 
should be accounted for in measures of resource use and 
be considered in conservation planning and management.

Here the aims were to produce robust descriptions of 
individual bats’ foraging sites and descriptions of the habi-
tats they use, to explore the fidelity individual bats show 
in their foraging behaviours (repeated use of foraging site, 
distance travelled) and to determine whether Natterer’s 
bats in this study show individual specialisation in their 
use of foraging habitats.

Materials and methods

Study sites

Natterer’s bats (Myotis nattereri) were caught from two 
different summer communities, a roost in a church at Low 
Catton, East Yorkshire, UK (53.98° N, 0.93° W: altitude 
15 m) in 2003 (May–August), and from woodlands on 
the Wallington Estate, Northumberland, UK (55.15° N, 
1.96° W: altitude 160–200 m) between 2013 and 2015 
(May–September). Low Catton is a very small rural vil-
lage in a mixed agricultural landscape typical of lowland 
England, consisting of mainly arable land with some pas-
ture and small scattered parcels of woodland. Wallington 
Estate is a patchwork of parkland, lakes, and woodland, 
within a mixed pastoral landscape, including arable and 
woodland parcels as well as open moorland, typical of an 
upland agricultural landscape in England.
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Bat capture and radio tracking

Bats were caught on an approximately weekly schedule at 
roosts using a static hand net or harp trap (on an extendable 
pole). The frequent roost switching behaviour of the bats 
at Wallington also required their capture from free flight, 
using mist nets or harp traps and an acoustic lure. As most 
of the bats were caught from roosts, predominantly female 
bats were caught and tracked due to temperate bat maternity 
roosting behaviours during the summer.

The capture, handling and marking of bats were car-
ried out under annual licence from Natural England (e.g. 
2014–6454-SCI-SCI) and all work was approved follow-
ing ethical review. Captured bats were described noting 
sex, age (adult/juvenile), reproductive condition (pregnant, 
lactating, post lactating and non-reproductive; by palpa-
tion of the abdomen and identification of hairless nipples 
on females), forearm length (0.1 mm), weight (to 0.1 g), 
and any existing mark. Unmarked bats were marked with 
a unique ring (2.9 mm alloy; BCT, England). Bats were 
selected for tracking based on their age; when adults were 
caught, they were selected over juveniles. Selected bats were 
fitted with radio transmitters (Pip AG317; Biotrack, Dorset, 
England) attached to the skin between the scapulae using a 
hypoallergenic dermal adhesive. A small patch of fur was 
trimmed at the point of attachment to ensure reliable adhe-
sion. A maximum of two bats were marked with transmitters 
in one tracking session to ensure that a complete and con-
tinuous night of data could be collected from all deployed 
tags within their short battery life (7–10 days).

Individual bats were usually radio-tracked by single 
workers using the close approach method (White and Garrott  
1990) and a Telonics TR-4 receiver (Telonics, Arizona, 
USA) attached to three-element flexible Yagi antenna or 
vehicle mounted omni-directional antennae (Kenward 2001). 
Bats were tracked to and from roosts (i.e. emergence until 
return), with their locations recorded at 10-min intervals. 
An ‘observation’ throughout his manuscript will refer to 
an individual bats’ recorded location. Ten-minute intervals 
were selected for observations to prevent temporal correla-
tion between consecutive fixes whilst still observing regular 
movement patterns (Kenward 2001).

Due to the difficulty in obtaining triangulations from 
fast flying animals (Mackie and Racey 2007) especially 
across undulating terrain (e.g. Wallington), approximate 
locations of bats were inferred using the null points, signal 
strength, and variation in signal amplitude with workers 
trained to estimate transmitter distance into broad distance 
categories using practice tags at a range of distances. An 
estimate of the space within which the bat was known to 
be moving (a polygon) was marked on a detailed map. 
Rather than estimate a point considered to be the loca-
tion of a bat in time with some measure of spatial error, 

our approach described a wider area within which the bat 
was known to be. The shape and size of each observation 
also capture the unique context of the observer’s location 
relative to the bat as well as elements of the landscape 
which might add information by modifying the signal (e.g. 
attenuators such as dense woodland). By constantly mov-
ing, analysis can combine unique observations of a bat 
exploiting even a small patch to identify precisely where 
the bat is spending time.

The more traditional approach of description using trian-
gulated points, which uses only a bearing (prone to consider-
able error), was impractical and costly, requiring at least two 
workers to co-ordinate effort (constant communication to 
ensure agreement on approximate location of bat, as well as 
ensuring a sufficient separation of bearings) for little appar-
ent gain in precision.

Tracking was undertaken in two phases. In phase one, 
priority was given to simply maintaining contact with the bat 
and capturing its general foraging strategy (i.e. commuting 
routes, approximate location of its favoured foraging patches 
and a loose schedule of behaviour). Trackers commonly 
stayed closer to access routes and vehicles to ensure a rapid 
response to unexpected bat movement, though this often 
resulted in more uncertain estimates of location. In the sec-
ond phase, trackers planned to optimise the quality of data 
by anticipating bat behaviour and committing themselves to 
closer approaches on foot where this was possible. However, 
the intention was always to ensure continual contact with the 
bat throughout its period of activity (at 10-min intervals). 
Data was only collected from tracking in the second phase 
of work for every bat, and bats were followed repeatedly 
until a single complete night of data was acquired. Phase 
one tracking often took 2–3 nights (e.g. to establish tracking 
strategies for bats travelling long distances quickly or those 
traversing difficult to cross barriers in the landscape such as 
rivers) and at least one additional night of effort to secure 
a complete, continuous, and uninterrupted night of forag-
ing data. Different workers were used to establish general 
foraging strategies (phase one tracking), especially where a 
number of bats were tagged simultaneously. However, the 
same worker (SM at Wallington, JA at Low Catton) under-
took all data collection during phase two to ensure a consist-
ency in the inference and the confidence of its observation. 
Nights of tracking data with continuous gaps of more than 
20 min were excluded from the analysis. All roost positions 
were recorded using a handheld GPS device. Observations 
were digitised using ArcGIS (v.10.2; ESRI) with subsequent 
analysis carried out in R (v. 2.1) (Team 2013). Some bats 
were retracked at varying intervals, with data presented here 
including the deliberate retracking of bats over subsequent 
days (using the same radio transmitter), or at greater inter-
vals where they were incidentally recaught, either within a 
summer season or between years.
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Foraging cores representing areas of high use were 
described for each complete bat-night. Observations were 
transformed into point clouds by placing a single spatially 
randomised point into each polygonal observation. For each 
single night of data, areas of high use were then identified 
using a non-parametric clustering approach, clusthr function 
in adehabitatHR (Calenge 2006): 95% inclusion. The ran-
domisation method was repeated five times and the resulting 
polygonal clusters were then intersected to find the areas 
common to all iterations (gIntersection function in rgeos) 
(Supplementary Fig. 1). These clusters, hereafter foraging 
cores, are the statistical unit in all subsequent analyses and 
represent the product of a complete night of foraging by a 
single bat and are discrete patches (often > 1 per night) that 
include the centres of high-density use presumed to be the 
area most exploited by that bat on that night.

Data analysis

Exploring habitat use

The habitats most used by bats were identified by pairwise 
quantitative comparisons of proportions of habitat types 
within foraging cores, undertaken using compositional anal-
ysis using the compana function in the adehabitatHR pack-
age (Calenge 2006). The area of habitat types in each bat’s 
foraging core was compared to that in the ‘available forag-
ing area’, defined here by combining all observations for 
each community (Low Catton or Wallington) and creating 
a community minimum convex polygon (MCP). Categori-
cal descriptions of habitat types were taken from LCM2007 
(Morton 2011) land cover map (Table 1). The proportional 
use of different habitat categories within each community 
MCP was then compared.

To quantify individual specialisation of habitat use, 
Roughgarden’s index (1972) was used which compares 
within-individual components of niche width (WIC) to the 
total niche width exhibited by a population (TNW). Cal-
culations of WIC and TNW were carried out using the R 
package RinSp using the ‘PSicalc’ function (Zaccarelli 
et al. 2013). For each individual, the proportional similarity 

index  (PSi) was calculated following Fodrie et al. (2015).  PSi 
was based on habitat deviations of an individual’s habitat 
use, in its foraging core, relative to the mean habitat use of 
all other tracked bats in the available foraging area. A  PSi 
value approaching 1 represents a more generalist habitat use, 
whereas approaching 0 would indicate a more specialised 
use of habitat. The mean  PSi among individuals was used to 
determine the average amount of specialisation in habitat use 
across all bats in this study and individuals were deemed to 
be specialists if their  PSi value was below the mean commu-
nities’  PSi value. Monte Carlo permutations were run with 
999 replicates to assess whether observed WIC/TNW and 
 PSi values differed significantly from a random distribution 
of values subsampled from the population.

Foraging fidelity

The potential of a single complete night of radio-tracking 
data to act as a proxy for a more prolonged description of 
an individual’s foraging space use was explored. Pairwise 
comparisons were carried out for each bat either within the 
calendar year or between years by comparing the foraging 
cores used between nights and calculating the proportion 
of overlap, using the gIntersection function in the rgeos 
package (Bivand et al. 2018). This was then compared to 
the proportion of overlap the foraging cores had with every 
other bat foraging core from that community to describe 
the similarity of foraging space use across differing inter-
vals. Multiple-response permutation procedure analyses 
were conducted, function MRPP, in the vegan package 
(Oksanen et al. 2013), using the Euclidian distance metric 
and 1000 iterations with individual proportion overlap as 
the response variable.

To explore whether the foraging strategy used to pro-
duce individual foraging space use measured at varying 
intervals was repeatable, foraging distance (hereafter 
Distance, from roost to the most heavily used core) was 
compared to foraging schedule (hereafter Speed, period 
from emergence to arrival at the most heavily used forag-
ing core) across all the data. Observations of the same 
bat were compared to observations of different bats with 

Table 1  Habitat types and 
relevant LCM2007 land class 
types

Habitat name LCM2007 BHSUB class

Arable Arable
Deciduous woodland Broadleaf, mixed and yew woodland
Coniferous woodland Coniferous woodland
Unmanaged grassland Semi-natural grassland; calcareous grassland; rough low productivity grassland
Managed grassland Improved grassland; neutral grassland; acid grassland
Other habitats Bog; built-up areas; dwarf shrub heath; fen marsh and swamp; freshwater; 

inland rock; littoral sediment; montane habitats; salt water; supra-littoral 
rock; supra-littoral sediment
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1000 permutations, using the rpt function in package rptR 
(Stoffel et al. 2017), with individual distance and foraging 
schedules as the response variables. Similarities between 
bats in their patterns of foraging space use were explored 
using a linear model (lm), with Distance as the response 
variable and Speed and Site (Wallington/Low Catton) as 
the predictors.

Results

Thirty-four individual bats, 17 from Wallington and 17 
from Low Catton, were tracked for at least one full night 
(Table 2). Six bats were tracked over multiple years and 
24 bats were tracked twice during the same year (Table 3). 
This produced 29 foraging cores (nights of data) avail-
able for pairwise comparisons of foraging site fidelity at 
Wallington and 32 nights at Low Catton. This resulted in 
a mean foraging period of 319.8 min (per bat per night; 
range 159.6–409.8). Tracking usually represented most, if 
not all, of the period of dark at 55° N in summer (Table 4).

In terms of movement dynamics, the relationship 
between the distance of the roost of departure and the 
most used foraging core, and the speed travelled between 
them, was of interest as it represented independent choices 
(Fig. 1). Some bats choose to travel long distances and 
some bats choose to travel quickly, but there was not a con-
sistent relationship between the two (R2 = 0.217, F (3,30)= 
4.062, p = 0.95).

Foraging site fidelity

At both Wallington (Figs. 2 and 4) and Low Catton (Fig. 3), 
a greater degree of foraging core overlap was observed 
for the same bats tracked repeatedly within the same year 
(0.92 ± 0.06, range 0.57–0.9) than between different bats 
(0.62 ± 0.02, range 0.25–0.99) and this difference was signif-
icant, post hoc Tukey tests p < 0.01. Similarly, at Low Catton 
the means for the comparison of foraging cores for same bat 
was 0.92 ± 0.02, range 0.66–1 whilst the mean between dif-
ferent bats was 0.29 ± 0.01, range 0–1 (Figs. 3 and 5).

There was also a higher degree of spatial overlap for the 
same bats tracked repeatedly between years than for different 
bats at Wallington (Figs. 4 and 5). This too was significant 
(post hoc Tukey tests p = 0.02); same bat mean 0.80 ± 0.03, 
range 0.63–0.96; different bats’ mean 0.61 ± 0.01, range 
0.24–0.97. Individual bats tracked repeatedly also showed 
significantly more consistency in their foraging behaviour 
(distance to most used foraging core and time taken to travel 
to most used foraging core) at both sites than pairwise com-
parisons with other individuals (Table 5).

 Individual specialisation and habitat use

Bats did not select the habitats exploited in their foraging 
cores at random. At both Wallington and Low Catton, the 
selection of preferred habitats was evident (respectively, 
Wilks ʎ = 0.058, p < 0.01 and ʎ = 0.34, p = 0.01). Wilk’s 
lambda tests if there are differences between group means 
for a particular combination of dependent variables (habitat 
proportions). It measures the percent variance in dependant 
variables not explained by differences in levels of the inde-
pendent variable (between individual bats). Ranging from 0 
to 1, a value of zero means that all variance is explained by 
the independent variable and here that individuals are not 
selecting habitat at random.

Overall managed grassland was the dominant habitat 
found within Natterer’s bat foraging cores at Wallington 
(11/17 bats had a foraging core covered by at least 50% man-
aged grassland, Fig. 6). In the upland landscape this land 
use comprised two agricultural activities: the direct use of 
pasture by livestock and horses and substantial areas of grass 
grown for silage and hay. It was notable how Natterer’s bats 
responded to grass cutting operations by increasing their 
use of open field settings (JA pers. comm.). However, ‘other 
habitats’ was the most preferred habitat for the whole com-
munity (which was mainly the use of ‘dwarf shrub heath’ on 
the elevated hill and moorland areas of their foraging range, 
Supplementary Fig. 2).

At Low Catton ‘arable’ was the dominant habitat used by 
bats (13/17 bats had more than 50% arable in their foraging 
core) and it was also the preferred habitat by the community 
(Table 6).

There was variability in foraging habitat selection by indi-
viduals at both sites, for example the proportion of managed 
grassland within an individual’s foraging core(s) at Walling-
ton ranged from 10 to 98% (Fig. 6a). Also, on average, indi-
vidual bats used a moderate fraction of the total population 
niche space (population level measure of individual speciali-
sation = 0.63 Wallington, 0.69 Low Catton) and were more 
specialised than would be expected by chance at both sites 
(Monte Carlo analyses of individual versus population niche 
variation; p < 0.001 Wallington, p < 0.001 Low Catton). 
Some individual bats showed vastly different use of habi-
tat types to others. At Wallington six bats (H1607, H1608, 
H1609, H1679, H1680, Y2889) used unusual habitats or 
exploited habitats differently to most of the group (Fig. 6a) 
and consequently their  PSi values were below the popula-
tion mean. At Low Catton the majority of individuals had 
large proportions of arable in their foraging core(s), which 
was the most dominant habitat type in the area, except for 
four individuals who showed unique habitat use specialisa-
tion (Y2049, Y2106, U8558, U3941) and had large areas of 
unmanaged grassland, managed grassland, coniferous wood-
land and a mixture of habitat types, respectively (Fig. 6b).
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Table 2  Natterer’s bat biometric data, tracking dates and recording information of individuals caught at Wallington (W) and Low Catton (LC)

Site ID Sex Adult/juvenile Body mass (g) Forearm 
length (mm)

Reproductive 
condition

Tracking date No. of  
observations

No. of 
locations

LC U3935 F A 7.5 37.81 Lactating 22/07/2003 33 20
7.5 Lactating 24/07/2003 38 32

U3938 F A 7.9 40.7 Pregnant 11/06/2003 30 18
7.9 Pregnant 12/06/2003 30 26

U3941 F A 8.1 40.6 Pregnant 03/06/2003 29 17
8.1 Pregnant 04/06/2003 40 16

U3947 F A 8.2 39.07 Lactating 25/06/2003 25 20
8.2 Lactating 26/06/2003 31 24

U7471 F A 7.9 39.69 Non-repro 24/06/2003 16 15
7.9 Non-repro 25/06/2003 23 21

U8584 F A 7.4 41.72 Unknown 20/05/2003 34 20
U8588 F A 7.4 38.58 Unknown 15/05/2003 38 34
U8590 F A 6.3 37.52 Non-repro 29/05/2003 37 22

6.3 Non-repro 05/06/2003 20 12
U8592 F A 8 39.4 Non-repro 05/08/2003 46 44

8 Non-repro 06/08/2003 41 39
U8890 F A 7.5 39.0 Lactating 09/07/2003 35 31

7.5 Lactating 10/07/2003 34 27
Y1972 F A 8.6 39.6 Pregnant 11/06/2003 31 27
Y1974 M A 6.6 38.61 Unknown 12/06/2003 29 20

6.6 Unknown 16/06/2003 33 28
Y1998 F A 10.5 41.41 Pregnant 25/06/2003 29 15

10.5 Pregnant 26/06/2003 23 14
Y2003 F A 7.5 40.14 Lactating 08/07/2003 36 25

7.5 Lactating 09/07/2003 34 29
Y2045 F A 7.2 37.94 Non-repro 23/07/2003 36 31

7.2 Non-repro 24/07/2003 34 34
Y2106 F A 7 41.63 Non-repro 05/08/2003 36 34
Y2106 F A 7 Non-repro 07/08/2003 34 34

W H1607 F A 8.8 39.90 Lactating 26/07/2013 39 17
8.8 Lactating 28/07/2013 27 12

H1608 F A 7.4 37.10 Post lactating 30/07/2013 40 15
7.4 Post lactating 31/07/2013 38 13
7.3 Post lactating 30/07/2014 38 13

H1609 F A 8.0 39.7 Pregnant 23/06/2015 35 10
H1611 F A 7.8 39.7 Post lactating 13/08/2014 39 12
H1659 F A 8.7 40.3 Lactating 08/08/2013 36 17

8.7 Lactating 09/08/2013 36 15
9.1 Post lactating 21/08/2014 44 23

H1670 F A 8.2 38.4 Post lactating 21/08/2013 44 17
9.4 Pregnant 20/06/2014 33 16

H1672 F A 9.2 38.9 Post lactating 19/08/2014 39 18
H1679 F A 9.1 39.7 Pregnant 05/06/2014 27 11
H1673 F A 8.0 40.1 Pregnant 15/06/2015 38 12
H1680 F A 8.5 40.2 Pregnant 17/06/2014 27 12

7.8 Post lactating 06/08/2014 36 16
9.0 Pregnant 02/07/2015 36 14

H1682 F A 8.9 40.59 Pregnant 16/06/2014 27 13
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Discussion

Foraging site fidelity in Natterer’s bats was consistent 
across a range of intervals (days, weeks, and even years) 
despite contrasting landscapes and seasonal contexts. In 
addition, individuals exploited specific foraging locations 
and showed individual specialisation in their habitat use 
which is consistent with the behaviour of a territorial spe-
cies. Bats also exhibited differences between the distance 
to foraging cores and the speed travelled to them which 
suggests individual foraging choices are being made.

Foraging site fidelity

Individual foraging site fidelity has previously been 
reported or suggested for a number of bat species (Hillen 
et al. 2009; Rydell 1986; Encarnação et al. 2010; Hillen 
et al. 2009; Kapfer et al. 2008; Kerth et al. 2001; Siemers 
et  al. 1999) albeit with variable strength of evidence. 
Consequently, it should not be surprising that we found 

individual Natterer’s bats consistently returning to unique 
and specific locations in the landscape and occasionally 
even returning to the same small foraging patches in their 
foraging core. More recently, novel methods have extended 
the suite of bat species that appear to show this behaviour 
as well as the quality of observations (Egert-Berg et al. 
2018). Here, in common with Kerth et  al. (2001) and 
Egert-berg et al. (2018), statistically robust quantitative 
evidence is provided of the reuse of the same locations by 
individuals, and we demonstrate this foraging site fidelity 
to be consistent across a range of intervals (days, months 
and years) within the spring and summer season. It should 
be noted here that along with many other studies regarding 
temperate bat radiotelemetry, e.g. (Bontadina et al. 2002; 
Dietz and Pir 2009; Divoll et al. 2022; Kerth et al. 2001; 
Nicholls and Racey 2006; Rossiter et al. 2002), the majority 
of the bats tracked were female. This is part due to the nature 
of summer roosting behaviour of temperate bats which 
typically follows that of sexual segregation, e.g. (Angell 
et al. 2013). We expect our results to be applicable to both 
sexes; however, further work would be recommended to 
ensure males follow similar patterns.

Table 2  (continued)

Site ID Sex Adult/juvenile Body mass (g) Forearm 
length (mm)

Reproductive 
condition

Tracking date No. of  
observations

No. of 
locations

8.5 Pregnant 09/06/2015 38 14
H1688 F A 8.8 39.22 Post lactating 22/08/2014 39 17
H1696 M A 6.9 39.4 Unknown 22/06/2014 26 11
H1700 F A 7.6 40.9 Non-repro 13/07/2014 37 15
H1704 F A 8.2 39.2 Lactating 27/07/2014 34 16
H1705 M J 6.8 39.1 Unknown 05/08/2014 34 22
H1713 F A 8.9 39.0 Pregnant 02/07/2015 36 17
Y2850 F A 8.1 39.1 Lactating 08/07/2013 25 13

8.1 Lactating 20/07/2014 34 15
Y2889 F A 9.7 39.4 Pregnant 19/07/2013 26 8

9.7 Pregnant 22/07/2013 25 9
8.1 Post lactating 18/08/2014 35 14

Table 3  Number of individual bats tracked by site and year used to 
estimate foraging core overlap at two temporal scales, within-year 
(multiple foraging trips by one bat in one year) and between-year 
(one bat over multiple years)

Site Year Bats tracked

Within-year Between-
year

Low Catton 2003 13 0
Wallington 2013 4 4

2014 2 4
2015 1 4

Table 4  Mean number of radio-tracking observations, locations and 
foraging time of Natterer’s bats tracked at Low Catton and Wallington

Site Mean Range

Observations Low Catton 30 16–46
Wallington 34 25–41

Locations Low Catton 25 12–44
Wallington 14 8–23

Foraging time (minutes) Low Catton 300 159.6–459.6
Wallington 339.6 249.6–409.8
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Fig. 1  Distance from roost to 
foraging core and speed for bats 
tracked at Wallington and Low 
Catton

Fig. 2  Foraging cores of bats (n = 5) tracked repeatedly at Wallington within the same year



European Journal of Wildlife Research (2023) 69:121 

1 3

Page 9 of 15 121

The fidelity to foraging sites shown in this study 
extends beyond the immediate period of retracking 
defined by the life of currently available radio transmit-
ters (typically < 10 days for small and medium-sized spe-
cies). This is potentially good news for bat conservation. 
Firstly, foraging site fidelity enables practitioners to be 
more certain of the foraging requirements of bats over 
time. This could help when planning areas for conserva-
tion or mitigation of anthropogenic development. Indeed 
home ranges (here foraging cores) could also be consid-
ered a crucial resource for survival (Kerth et al. 2001). 
The long life of bats suggests that their foraging cores are 
likely to remain valuable for some time, validating any 
policy investment in protecting areas of the landscape and 
the habitats within. Secondly, there is considerable value 
to scientists in knowing that descriptions of individual 
foraging strategies in adults represent long-lived behav-
iours, as this helps the integration of foraging choices into 
spatially explicit studies of the population dynamics of 
bats in anthropogenic landscapes.

Territoriality

The behaviour of individuals repeatedly exploiting specific 
foraging locations whilst also showing individual specialisa-
tion in their habitat use is consistent with the behaviour of a 
territorial species. Here we found that not only do some indi-
viduals show foraging core fidelity but also appear to avoid 
overlap with other tracked bats (Figs. 2, 3, 4, and 5) which is 
generally considered to reflect territoriality (Chaverri et al. 
2007; Encarnação et al. 2010). It should be noted here how-
ever that multiple individuals were not tracked simultane-
ously but our presumption is based on the knowledge that 
foraging cores were consistent across multiple time frames.

This is not the first time that territoriality has been sug-
gested due to apparent foraging site fidelity in individual bats 
(Chaverri et al. 2007; Encarnação et al. 2010; Rossiter et al. 
2002; Rydell 1986), though the difficulties in studying indi-
vidual bats have previously limited authors’ confidence in 
describing this behaviour. Territoriality has most often been 
suggested for bat species who have a strong connection with 

Fig. 3  Foraging cores of bats tracked repeatedly at Low Catton (n = 14) within the same year
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the underlying landscape and therefore presumably keen to 
defend a static resource, i.e. gleaners or those predating weak 
flying prey (Gerell and Lundberg 1985; Reyes-García et al. 
2008). For example, the suggestion of territoriality has often 
been associated with studies of Daubenton’s bats foraging 
over water, e.g. (Encarnação et al. 2010; Kapfer et al. 2008). 
The suggestion arises due to Daubenton’s bats strong asso-
ciation with riverine habitats (Warren et al. 2000), which are 
specific and easy to map landscape features. The distinc-
tive features enable workers to be relatively confident in the 
interpretation of spatial locations from radio tracking and to 
directly observe the foraging behaviour of some individuals. 
Observed behaviour which may be considered to be territo-
rial includes the repetitive use of space and the occurrence 
of social interactions (social calls and chasing) (Encarnação 
et al. 2010).

Sociality of temperate bats is becoming widely recog-
nised (Altringham and Senior 2005; August 2012; August 
et al. 2014; Entwistle et al. 2000; Gerell and Lundberg 1985; 
Johnson et al. 2013; Kashima et al. 2013; Kerth et al. 2011; 
Park et al. 1998; Patriquin et al. 2010; Siemers and Kerth 

2006; Silvis et al. 2015, 2014) and the identification of 
social hierarchies within groups is anticipated (Fleischmann 
and Kerth 2014). Whilst social dominance might only be 
expressed in the choice of roost (Fleischmann and Kerth 
2014) or the position within the roosting group, it could 
also be expressed in other key activity bats undertake, e.g. 
foraging, with dominant individuals choosing and maintain-
ing their preferred locations whilst subdominant bats may be 
left with less productive foraging choices. Food defence via 
social calls has been described in Eptesicus fuscus (Wright 
et al. 2014), Vespertilio sinensis (Luo et al. 2017) and Myotis 
macrodactylus (Guo et al. 2019), supporting the idea of bat 
social hierarchies. In addition, male Hipposideros armiger 
have been found to emit varying social calls correlating to 
information about body mass, dominance rank and individ-
ual identity. It is hypothesised that individual H. armiger 
bats are capable of perceiving information about dominance 
rank and body mass to make appropriate decisions during 
agonistic interactions (Sun et al. 2021), further supporting 
the theory of social dominance in relation to food resources. 
If social dominance does occur, understanding its effects 

Fig. 4  Foraging cores of bats tracked repeatedly at Wallington (n = 6) between years 2013 and 2015
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will be important in the management or conservation of 
bats where pup reproduction and survival is affected by the 
quality of the foraging resource (Arlettaz et al. 2017). In the 
future workers may need to identify and protect the most 

productive areas of a landscape perhaps by considering land-
scape geology, e.g. (Threlfall et al. 2011), and potentially 
distinguish this from the location of preferred habitats. It 
should also be noted that only approximately half of each 
social group at Wallington and Low Catton were tracked and 
there is no evidence of the functional definition of territory 
defence, i.e. observations of antagonistic behaviour between 
individuals at potential territory sites.

Behavioural individuality

This study agrees with Nachev and Winter (2019) and 
identifies that individual bats can demonstrate distinct and 
divergent foraging choices compared to their peers, specifi-
cally in their choices of foraging strategy and habitats. In 

Fig. 5  Comparative overlap of 
foraging cores at Wallington 
and Low Catton. Scores close 
to 1 indicate 100% overlap of 
foraging cores whilst scores 
close to zero indicate no overlap 
of space

Table 5  Mean repeatability score (± s.e.) of foraging characteristics 
of bats tracked at Wallington and Low Catton calculated from ‘rptR’ 
R package. * indicate repeatability scores significantly higher than 
random permutations based on the likelihood ratio test

Wallington Low Catton

Distance to most used 
foraging core

0.979* ± 0.011 0.948* ± 0.027

Time to most used 
foraging core

0.698* ± 0.132 0.57* ± 0.149
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addition, this distinct behaviour seems to have extended into 
groups adopting site-specific responses (or traditions) to the 
contrasting compositions and configurations of the habitats 
at our two study sites, e.g. the preferred ‘other habitat’ at 
Wallington compared to the preferred habitat of ‘arable’ at 
Low Catton. However here it should be noted that arable 
habitat was also the most common habitat at Low Catton 
so this could be a local adaptation. Further, our demonstra-
tion of foraging site fidelity suggests that these individual 
differences are likely to be long-lived and may represent 
either differences in personality (Nachev and Winter 2019) 
or tradition in wildlife species, examples of which are now 
reported for bats (Cryan et al. 2012) as well as other wild-
life (Araújo et al. 2011; Knudsen et al. 2010; Patrick and 
Weimerskirch 2014; Robertson et al. 2014). Alternatively, 
individual habitat choice may just represent individual pref-
erence across the broad menu offered by these mixed land-
scapes. It should be also be noted that usually Natterer’s 

bats are thought to be proficient at both aerial hawking and 
gleaning (Siemers and Schnitzler 2000; Swift and Racey 
2002) and might therefore develop almost unconstrained 
preferences in prey and varied ways to exploit the foraging 
options available to them.

Conclusions

We found that individual bats forage at specific locations, 
to which they repeatedly return. Whilst it is relatively easy 
to simply collate the land cover or habitat types represented 
within each foraging core into simplistic descriptions of 
group behaviour, individuals in this study differed greatly 
and showed specialisation in their foraging choices. It is 
possible that for some common habitats, the choice of for-
aging core used was unique and important and may not be 
replaceable at another location, even if the habitat appeared 
the same. Thus, studies designed to inform conservation and 
management of temperate bats should attempt to maxim-
ise the number of individuals from which movement data 
is sought and ensure that data represent a coherent and 
meaningful measure of behaviour such as a complete night; 
however, this will be costly in terms of time and resources. 
Maximising the number of individuals tracked may also have 
ethical considerations and there may be an optimum number 
of individuals per community to track, which, when com-
bined with habitat use analyses, may represent the habitat 
specialisms of a community. This area requires further work. 
Further, it is not clear that any of the specific foraging space 
uses observed at one site (such as commuting style or habitat 
choices) could transfer to the second site, and our observed 
behaviours here could be sensitive to the characteristics of 

Fig. 6  Individual variation in habitat use between bats tracked at Wal-
lington (a) and Low Catton (b). Each individual is represented by a 
vertical bar (x-axis), subdivided by the proportion of observations in 

each habitat type in relation to the individual’s total foraging core(s) 
and the specialisation index  PSi (blue dots; 0 = more specialised; 
1 = more generalist) along with the mean colony  PSi (dashed line)

Table 6  Habitat ranks from compositional analysis, comparing pro-
portional use of habitat in each community. A habitat preceding a 
‘ > ’ symbol was preferred to that immediately following the symbol 
and ‘ >  >  > ’ indicates a significant selection between adjacent ranked 
habitats

Site Habitat ranking

Low Catton (n = 17) Arable > managed grassland > deciduous 
woodland > other habitats > unmanaged 
grassland > coniferous woodland

Wallington (n = 17) Other habitats > managed 
grassland > coniferous 
woodland > deciduous 
woodland >  > unmanaged 
grassland > arable
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the landscapes, dominant habitat types or the traditions of 
their communities (Hillen et al. 2009).

Our finding of the strong foraging site fidelity by Nat-
terer’s bats and our speculation that this may represent some 
type of territorial behaviour may offset some of the effort 
required to collect a single full night of radio-tracking data, 
as a single full night of data may produce a long-lived and 
robust description of that bat’s behaviour, justifying the 
additional effort in field-work hours. However it raises the 
concern that many of the popular analytical methods fre-
quently used by bat workers such as compositional analysis 
(Aebischer et al. 1993) and selection ratios (Manly et al. 
2007) may be inappropriate. Designing conservation strate-
gies might then advocate protecting a mosaic of habitats to 
preserve the habitat specialisms of many individuals rather 
than choosing a single preferred habitat for a given bat spe-
cies which may only suit a few dominant individuals.
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