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Abstract
Canine distemper virus (CDV) is a lethal viral disease of carnivores which is considered to be a serious threat to domestic 
and wild species. Despite the widespread use of vaccines, CDV still occurs in vaccinated animals and current vaccines does 
not guarantee complete protection. In this study, a total of 286 hemagglutinin (H) gene sequences of the virus isolated in 25 
countries during 90 years (1930–2020) were analyzed by Bayesian maximum likelihood analysis to estimate the population 
dynamics. We identified the most recent common ancestor (TMRCA) of the virus in 1868 in the USA which arrived in con-
tinental Europe in 1948, and from there, the virus spread rapidly to other continents. The Canidae family was identified as 
the original host as well as a source of the subsequent spread. We identified 11 lineages of geographic co-circulating strains 
globally. The effective population size experienced a two-phase-exponential growth between 2000–2005 and 2010–2012. 
Our findings provide a novel insight into the epidemic history of canine distemper virus which may facilitate more effective 
disease management. This study uses a large set of sequencing data on the H gene of CDV to identify distinct lineages of 
the virus, track its geographic spread over time, analyze its likelihood of transmission within and between animal families, 
and provide suggestions for improved strategies to combat the virus.
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Introduction

Canine distemper virus (CDV) is a highly infectious patho-
gen in carnivores and represents a serious threat for both 
wild and domestic species, as it has a broad host range 
(Kličková et al. 2022 Feb 15). CDV is considered to be a 
model pathogen in cross-species transmission research. 
Recent CDV infections have been reported in wild species 
including snow leopard (Panthera uncia) and Amur tiger 
(Panthera tigris altaica), which emphasizes the ecologi-
cal role of CDV in common veterinary service and con-
servation strategies (Sulikhan et al. 2018 Jan). CDV is a 
single-stranded, negative RNA virus of the Mobillivirus 
genus of the Paramyxoviridae virus family. Although wild 
primates can be a host, transmission into human hosts has 
not been recorded. The infection generates a wide array of 
clinical symptoms including fever, vomiting, coughing, diar-
rhea, sneezing, anorexia, and respiratory infection. In the 
later stages of CDV pathogenesis, the animal can be eas-
ily infected by other pathogenic microorganisms, leading 
to neurologic complications and death (Jiang et al. 2019). 
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The mortality rate of CDV may reach up to 100%, which is 
second only to rabies in dogs (Deem et al. 2000).

Due to the continued evolution of CDV, episodes of CD 
still occur in vaccinated animals (Zhao et al. 2010; Lee et al. 
2010; Riley and Wilkes 2015) and administration of the 
current vaccines does not guarantee complete protection. 
Therefore, to develop more effectiveness vaccine, successful 
vaccination campaigns and real-time genetic monitoring of 
the CDV are essential for accurate prevention. Phylogenic 
and selection analysis has emerged as a powerful and fast 
tool for extracting molecular epidemiological information 
and enriching our understanding of virus origin, evolution, 
transmission dynamics, and adaptation to host populations 
(Ke et al. 2015; Panzera et al. 2015). The natural selection 
that determines genetic variation is a key aspect in assessing 
the probability of virus adaptation to host populations. This 
will allow for more targeted approaches in developing vac-
cines and therapies for various CDV genotypes.

Historically, CDV has shown a wide host range, includ-
ing members of the families Canidae, Mustelidae, Pro-
cyonidae, Urdidae, Hyanidae, and Felidae (Beineke et al. 
2015). The range of susceptible hosts has expand to Maca-
cae, Lacepedae, Phocidae, and other families of the Car-
nivora order and now sustain to expand (Liu et al. 2016; 
Carpenter et al. 1998). In 1925, CDV was found in a silver 
fox ranches in the USA (Green 1925). Since then, CDV 
infection has mostly been diagnosed in domestic dogs and 
on fur animal farms worldwide (Alexander and Appel 1994; 
Hua and Wang 2004). In 1994, CDV was discovered in wild 
lions in Serengeti National Park (Tanzania), resulting in 
a serious population decline (Roelke-parker et al. 1996). 
Additionally, CDV was reported to have threatened the wild 
Siberian tiger population in 2000 in the Russian Federation 
(Quigley et al. 2010 Oct; Seimon et al. 2013). CDV has 
been reported in giant pandas at Chongqing Zoo, China in 
1997 (Li et al. 1999).

The CDV genome encodes six proteins (fusion (F), matrix 
(M), nucleocapsid (N), hemagglutinin (H), phosphoprotein 
(P), and polymerase (L)), and each serves a specific role in 
virus replication and infectivity. For example, the helical N 
surrounded by an envelope structure and H and F proteins 
are the major targets of the host immune system and are 
involved in the process of cell attachment and fusion between 
virion and host cell (Lamb and Parks 2007). The H protein 
is a component of the virion envelope glycoprotein spikes 
that attaches onto cellular receptors such as the signaling 
lymphocyte activation molecule (SLAM/CD150) or Nectin 
4 (PVRL4) (Noyce et al. 2013). H is the most variable pro-
tein among all members of the genus Morbillivirus (Nikolin 
et al. 2012), which may explain why CDV has a wider host 
range than the other Morbillivirus members (Pomeroy et al. 
2008). Based on the high genetic variability of the H gene, 
it is commonly used for molecular classification of CDV 

strains and it is a suitable target to investigate the genetic 
relationships between different strains (Demeter et al. 2007). 
CDV also has geographically distinct lineages, as full-length 
sequencing of the H gene has led to the identification of 18 
CDV lineages (Table 1). In addition, some CDV lineages in 
Africa and Asia appear to have diverged substantially (Zhao 
et al. 2010; Woma et al. 2010), which suggests genetic drift 
of the H gene (Martella et al. 2006).

In this study, a set of Bayesian maximum likelihood 
methods was used to study the genetic divergence, selec-
tion, and viral population dynamics in the evolution of CDV 
among different outbreaks.

Materials and methods

Sequencing data set

All 526 complete genome H gene sequences of CDV 
with known sampling date, geographic location, and host 
between 1930 and 2020 were retrieved from the GenBank 
database of the National Center for Biotechnology Informa-
tion (http:// www. ncbi. nlm. nih. gov). This study was limited 
by under-sampling of some ancestral strains that were not 
found in GenBank, especially the ancestral strains isolated 
before the 1980s.

All sequences were aligned with Multiple Alignment 
Fast Fourier Transform program [MAFFT, v7.222] (Katoh 
et al. 2002). Recombination events among sequences were 
screened using the Recombination Detection Program [RDP, 

Table 1  Lineages of the canine distemper virus during 1997–2020

Lineage References

America 1 (vaccine strain) Woma et al. (2010)
America 2 Woma et al. (2010)
Europe 1/South America 1 Woma et al. (2010)
Arctic Woma et al. (2010)
Europe 2/European wildlife Bhatt et al. (2019); Piewbang et al. (2020)
South America 2 Bhatt et al. (2019); Piewbang et al. (2020)
Rockborn-like Bhatt et al. (2019); Piewbang et al. (2020)
Europe 3/Arctic-like Bhatt et al. (2019); Piewbang et al. (2020)                                                                     
Africa 1 Bhatt et al. (2019); Piewbang et al. (2020)                                                                       
Africa 2 Bhatt et al. (2019); Piewbang et al. (2020)
South America 3 Bhatt et al. (2019); Piewbang et al. (2020)
South Africa Bhatt et al. (2019); Piewbang et al. (2020)
Asia 1 Bhatt et al. (2019); Piewbang et al. (2020)
Asia 2 Bhatt et al. (2019); Piewbang et al. (2020)
Asia 3 Bhatt et al. (2019); Piewbang et al. (2020)
Asia 4 Bhatt et al. (2019); Piewbang et al. (2020)
North American 1 Bhatt et al. (2019); Piewbang et al. (2020)
North American 2 Bhatt et al. (2019); Piewbang et al. (2020)

http://www.ncbi.nlm.nih.gov


European Journal of Wildlife Research (2023) 69:56 

1 3

Page 3 of 12 56

v4.95] (Martin et al. 2015) and SplitsTree [v4.14.6] (Huson 
and Bryant 2006). Values of p < 0.05 were considered to 
be statistically significant evidence of recombination. The 
sequences were stratified by the host family, then were man-
ually adjusted using BioEdit [v7.2.5] (Hall 1999). Finally, 
286 H gene sequences were obtained by moving vaccine 
strains (CDV3, Onderstepoor, SnyderHill, Convac) and 
potential recombinant sequences were removed from the 
previous dataset of 526 sequences (Supplementary Table 1) 
spread over 25 countries (Table 2).

Phylogenetic tree construction

The most suitable nucleotide substitution model was 
selected using jModelTest 2 programs (Darriba et  al. 
2012). Likelihood-mapping analysis was performed 
using TREE-PUZZLE [v5.3] to analyze the evolutionary 
information in the dataset (Schmidt et al. 2002) by analyzing 
10,000 randomly chosen quartets for the entire tree. The 
phylogenetic relationship was deduced from the full-length 
H gene sequences by the maximum likelihood (ML) method, 
which was constructed using RAxML [v8.2.10] (Stamatakis 
2014) with the GTR + G nucleotide substitution model. 

Bootstrap analysis with 1000 replicates was performed 
to estimate the reliability of the ML tree. Finally, the ML 
tree was visualized using FigTree [v1.4.3] (http:// tree. bio. 
ed. ac. uk/ softw are) and Evolview v2 software (http:// www. 
evolg enius. info/ evolv iew) (He et  al. 2016) to annotate 
phylogenetic tree with the location and phylogenetic lineage. 
Therefore, a lineage was accepted when two assumed 
conditions were met; the bootstrap cut-off reached 100% of 
each potential lineage and more than two sequences were 
classified into a potential lineage. In addition, inter-lineage 
and intra-lineage evolutionary divergence estimations were 
calculated for each different lineage using the maximum 
composite likelihood model (Tamura et  al. 2004) with 
gamma distribution in MEGA [v7.0.14] (Kumar et al. 2016).

Molecular clock and phylodynamic analyses

To investigate the temporal signal of the dataset, TempEst 
[v1.5] (Rambaut et al. 2016) was used to analyze the correla-
tion between root-to-tip genetic distance and sampling year 
on the maximum-likelihood tree. Next, the Bayesian Markov 
chain Monte Carlo (BMCMC) approach was adopted to esti-
mate the evolutionary rate and the mean time period to the 
most recent common ancestor (TMRCA). The geographic 
origin was calculated by BEAST [v1.8.2] (Drummond et al. 
2012), in which the nodal support was estimated by calculat-
ing the posterior probability (PP). In addition, the BEAGLE 
parallel computation library was used to improve the speed 
of the likelihood calculations (Ayres et al. 2012).

The nucleotide substitution process was modeled with 
GTR + G. Next, an uncorrelated lognormal relaxed-clock 
mode (Drummond et al. 2006) and a Bayesian skyline 
coalescent model (Drummond et al. 2005) were selected. 
Then, BMCMC chains were run for 1 ×  1010 generations, 
10% of which was removed as burn-in, and sampled every 
100,000 steps.

Convergence and adequate sampling were assessed by 
calculating the effective sample size (ESS) of the param-
eters using Tracer [v1.5] (http:// beast. bio. ed. ac. uk/ softw are/ 
tracer). Finally, maximum clade credibility (MCC) trees 
from all MCMC samples were summarized using TreeAn-
notator [v1.8.2], then visualized using Evolview v2 (He 
et al. 2016).

Lineages were identified by the Bayesian MCC tree based 
on a posterior probability cut-off of 95%, and the historical 
population dynamics of the H gene sequences of CDV are 
depicted in a skyline plot (Drummond et al. 2005). In addi-
tion, the major global dispersal routes of major CDV line-
ages were analyzed using SPREAD (Bielejec et al. 2011) 
and visualized by Google Earth (Ke et al. 2015). The reli-
able spreading routes were shown using SPREAD software 
with support values of the Bayesian factor (BF) > 3 (Bielejec 
et al. 2011).

Table 2  Sample number per continent and country

Continent Sub-continental Country Sample (n)

South America Continental Argentina 2
Europe Continental Austria 4
South America Continental Brazil 4
Asia East China 139
South America Continental Colombia 12
Europe Continental Denmark 5
Africa Sub-Saharan Ethiopia 1
Africa Sub-Saharan Gabon 1
Europe Continental Germany 8
North America Island Greenland 1
Europe Continental Hungary 4
Asia South India 5
Europe Continental Italy 22
Asia Island Japan 17
Asia Central Kazakhstan 2
Africa Sub-Saharan South Africa 5
Asia East South Korea 5
Europe Continental Spain 2
Europe Continental Sweden 1
Europe Continental Switzerland 6
Asia Island Taiwan 6
Africa Sub-Saharan Tanzania 6
North America Continental US 19
South America Continental Uruguay 4
Asia Southeast Vietnam 5

http://tree.bio.ed.ac.uk/software
http://tree.bio.ed.ac.uk/software
http://www.evolgenius.info/evolview
http://www.evolgenius.info/evolview
http://beast.bio.ed.ac.uk/software/tracer
http://beast.bio.ed.ac.uk/software/tracer
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The symmetric continuous-time Markov chain (CTMC) 
method in BEAST [v1.8.2] (Drummond et al. 2012) was 
implemented to analyze the CDV transmission probability 
among hosts and in specific geographic locations (i.e., 
the most infected animal families (Canidae, Felidae,  
Cercopithecidae, Mustelidae, Procyonidae, Hyaenidae, 
Ursidae, Paguma, Suidae, and Sciuridae) and the five 
continents (South America, continental Europe, East Asia, 
sub-Saharan Africa, and North America)) for which the 
data were obtained (Table 2). Transmission probability 
was calculated as the interval between 95% of the highest 
posterior density and 95% of the lowest posterior density.

Selection analysis

Evolutionary analysis of positive selection was performed 
by the sequences of the operation, as shown in Table 3. The 
selection codon sites on the H gene was evaluated via the 
Datamonkey website (http:// www. datam onkey. org), and a 
p-value threshold of 0.05 was considered statistically sig-
nificant. The Bayesian graphical model (BGM) (http:// www. 
datam onkey. org) was used to reconstruct the evolutionary 
history of each individual codon site to find evidence of 
co-evolution between sites. A posterior probability (pp) sup-
port ≥ 0.95 was considered statistically significant.

The resulting ratio of synonymous (dS) and non-synon-
ymous (dN) mutations was classified into three categories, 
positive (1), neutral (2), and negative (3), and was deter-
mined as follows (Ke et al. 2015):

Comparing the ratio of synonymous (dS) and non- 
synonymous (dN) mutations is an important indicator of 
selective pressure at the codon level.

(1)dN − dS > 0 or dN∕dS > 1

(2)dN − dS = 0 or dN − dS < 0

(3)dN − dS < 0 or dN∕dS < 1

Results

Likelihood‑mapping and phylogenetic analyses

The likelihood-mapping showed that the quartets were 
distributed in the center (69.3%) rather than at the sides 
(1.9%) or corners (28.7%) of the triangle from the H gene 
dataset, which indicates a strong star-like phylogenetic 
signal, which indicates that this dataset is suitable for a 
phylogenetic reconstruction based on the method of the 
maximum likelihood analysis (Supplementary Fig. 1). This 
strong star-like phylogenetic signal also reveals that the 
spread of CDV population does not follow a slow pro-
gress, but a suddenly and sharply increased process in a 
short time.

Furthermore, the phylogenetic analysis based on the 
ML method resulted in 11 lineages. To distinguish these 
lineages, we grouped them according to the maximum-like 
phylogenic tree analysis with strong bootstrap support and 
named these lineages lineage 1–lineage 11 (Fig. 1 and Sup-
plementary Fig. 2). Notably, geographically co-circulating 
lineages are very common (Fig. 2). Nearly half of our line-
ages are found in more than one continent (lineage 1, lineage 
5, lineage 7, lineage 10, and lineage 11), while the others are 
limited to a single continent (lineage 2, lineage 3, lineage 
4, lineage 6, lineage 8, and lineage 9). The remaining eight 
strains (not grouped) were scattered in the major lineages 
and had been collected from Argentina (n = 1), China (n = 2), 
Denmark (n = 1), Hungary (n = 1), South Africa (n = 1), 
Greenland (n = 1), and the USA (n = 1). Lineage 10 was the 
most widely distributed which is across the five continents. 
In addition, the genetic diversity within and between each of 
11 CDV lineages is provided in Supplementary Fig. 3. The 
largest genetic distance identified was between lineages 1 
and 11 (10.04%) and the smallest genetic distance within a 
lineage was in lineage 8 (0.82%). Our analysis found that the 
smallest and largest genetic distances to other lineages were 
lineage 7 and lineage 11, respectively.

Demographic analysis

The plot of root-to-tip genetic divergence with sampling 
year revealed a strong temporal signal without obvi-
ous outlier sequences, reflecting molecular evolution in 
relatively clock-like pattern (Fig. 3). The evolution rate 
was calculated to be 4.433e−4 substitutions per site per 
year. We also estimated a substitution rate of 4.613e−4 
substitutions per site per year (95% credibility interval: 
3.9548e−4–5.4104e−4) by Bayesian phylogenetic analy-
sis. It is noteworthy that the substitution rate estimates 
obtained by these two methods were in close agreement.

Table 3  The six methods for positive selection and their abbrevia-
tions

Method Abbreviation

Single likelihood ancestor counting SLAC
Fixed effects likelihood FEL
Fast Unconstrained Bayesian AppRoximation FUBAR
Mixed effects model of evolution MEME
Branch-site unrestricted statistical test for episodic 

diversification
BUSTED

Bayesian graphical model BGM

http://www.datamonkey.org
http://www.datamonkey.org
http://www.datamonkey.org
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According to posterior probabilities for geographic 
location in the MCC tree root, TMRCA of the CDV strains 
originated from the USA. The estimated TMRCA was 
1868.055 (95% highest posterior density (HPD) interval: 
1829.968–1908.917) (Fig. 4). In addition, the skyline plot 
suggests that the effective population size has undergone 
complex dynamics characterized by three exponential 
growth phases (1930–1950, 2000–2005, and 2010–2013) 
separated by periods of either declining and constant pop-
ulation size (Fig. 5).

We estimated that there were seven major dispersal 
routes between continents. CDV originated in the USA 

and began to spread to the other continents in 1923, first 
arrived in Europe in 1948, and then rapidly spread to the 
other continents (Fig. 2). The highest transmission prob-
abilities within the five continents were found in Europe 
(Supplementary Fig. 4). The transmission probabilities 
from Europe to East Asia, North America, and South 
America were very similar.

The transmission probability between species rank-
ing among the 10 animal families (Supplementary Fig. 5) 
showed that the highest probability was in Canidae, followed 
by Mustelidae. Furthermore, the transmission probability of 
Canidae to Mustelidae was higher than Canidae to others.

Fig. 1  Maximum-likelihood phylogenic tree for the H gene of the CDV strains. The inner circle represented the tree branches. The ring in the 
middle is colored by country. The outer ring is colored according to the lineages of the CDV strains
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Selection analysis

The selection analysis showed strong evidence of evolution-
ary positive selection (Table 3). Two sites with a positive 
selection were detected, which were in codons 103 and 549 
(Supplementary Table 2). The selection analysis indicated 
that the positive selection drove amino acid substitutions at 
position 549 (H to Y) and 103 (I to V) within the signaling 
lymphocytic activation molecule (SLAM) binding region. 
The results of the BGM analysis revealed eight pairs of co-
evolution sites (Supplementary Fig. 6).

Discussion

The concept of phylodynamics assumes that viral phylog-
enies are formed by both epidemiological and evolutionary 
processes (Gog and Grenfell 2002). Therefore, we can iden-
tify the migration routes of CDV. We reconstructed the time-
scale phylogeographic maximum clade credibility (MCC) 
trees, indicating that the USA is the original source of CDV 

through the root state posterior probability (Fig. 4), which 
is consistent with a previous report (Panzera et al. 2015). 
A previous study estimated TMRCA for CDV to be 1886 
with a HPD range from 1858 to 1913 (Ke et al. 2015). This 
estimate was based on the analysis of 208 CDV sequences 
collected between 1975 and 2011 from 16 countries. One 
reason for the disagreement between our findings and the 
previous report is that Ke and colleagues had a data from a 
smaller geographic area and was more temporally restricted 
than the dataset that we used. Our dataset contains all of the 
sequences that Ke et al. (Ke et al. 2015) used in addition to 
286 sequences from 25 countries between 1930 and 2020, 
which likely explains the differences in TMRCA. French 
veterinarian Henri Carré (Carré 1905) described the CDV in 
1905 and successfully transmitted CDV to healthy dogs by 
inoculation with tissue samples from infected animals. The 
year 1923 is an important historical milestone in the study 
of the canine distemper vaccine, as researchers Edward C. 
Holmes (Holmes and Shope 1923) and Richard E. Shope 
(Shope 1923) successfully isolated the CDV from infected 
dogs in the USA during their research and began developing 

Fig. 2  Geographic distribution of the H gene of the CDV lineages as 
identified in the present study. Each lineage is color-coded as shown 
in Fig. 1. The black lines are the dispersal routes from the source in 
North America to the other continents while the red lines depict the 
rapid expansion from Europe to other continents. The gray circle 
represents the source of the rapid expansion from Europe. The eight 

countries in Europe area are as follows: Sweden, Denmark, Germany, 
Austria, Switzerland, Hungary, Spain, and Italy, but these countries 
are too close together to show in this figure, so we use “Europe” to 
represent these countries. The background map was obtained from 
http:// www. craft map. box-i. net

http://www.craftmap.box-i.net
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a corresponding vaccine. This early work laid the founda-
tion for future vaccine development, which would eventu-
ally lead to the creation of effective vaccines in the 1950s. 
In our study, the historical CDV sequences before 1930 are 
unavailable, which leaving a research gap before 1930 in 
our analysis.

Spatial and temporal dynamic analysis for the geographic 
spread of CDV revealed more details about the migration 
patterns. The early overall migration patterns of CDV are 
roughly estimated to have spread from the USA to the other 
continents. For European, the later spreading center, CDV 
left America in 1933 and landed on European continent in 
1948 (Fig. 2, the arrived date is not shown on the figure). 
From Europe, CDV began to spread rapidly to the other 
continents, as supported by the transmission probability 
analysis among continent indicating that Europe was higher 
than others (Supplementary Fig. 5). Figure 2 shows that 
CDV outbreaks have occur worldwide, which increases 
the possibility of cross-species transmission in the world. 
Based on transmission probability analysis among species, 
canids were the main source of infection among suscepti-
ble species, and the transmission probability of canids to 
mustelids is higher than the others, indicating that canids 
and mustelids are likely to have frequent contact (Akdesir 
et al. 2018; Oleaga et al. 2022). The fact that an increasing 
number of parasite diseases have been found in both canids 
and mustelids in the world is further evidence for frequent 
contact between canids and mustelids (Santoro et al. 2019). 

Furthermore, likelihood-mapping analysis showed that 
69.3% of the quartets were distributed in the center of the 
triangle, which resulted in a star-like topology phylogenetic 
signal. Therefore, the CDV outbreak is accompanied by 
an exponential expansion of its population size. A Bayes-
ian skyline plot is also consistent with this conclusion. We 
clearly found that the virus underwent exponential epidemic 
spread until 1950 (Fig. 5). One plausible explanation for 
the previous assumption about CDV is linked to its first 
documented arrival in Europe from the USA, after which 
it underwent a large-scale spread to the other continents so 
that the viral population increased.

Another interesting finding in our study was noted in the 
Bayesian skyline plot that the viral population decreased 
considerably in two periods (1995–2000 and 2005–2010), 
which is mostly due to the continuous improvement in inter-
national cooperation to combat the disease and effective vac-
cination programs. However, in 2000–2005 and 2010–2013, 
we found that the viral population increased dramatically, 
indicating that despite the vaccination procedures adopted 
around the world, CDV is still considered to be a serious 
threat (Fig. 5). However, vaccination coverage may vary 
greatly between different countries and regions although 
most countries provide CD vaccination. In places with insuf-
ficient veterinary service, vaccination rates may be low, and 
stray dogs in these areas may not receive adequate vaccina-
tion protection against CDV which are susceptible infected 
in CDV (Del et al. 2010). By the same reason, the prevalence 

Fig. 3  Root-to-tip regression 
of a maximum likelihood (ML) 
phylogenetic tree of the H gene 
sequences of the CDV. The 
colors are the same as shown 
in Fig. 1 to indicate sampling 
countries for each H gene 
sequence
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rate in non-vaccinated dogs is under report. Therefore, insuf-
ficient vaccination rates could also be a reason for the surge 
in viral population during this time. In addition, the off-
spring of non-vaccinated dogs continue to join the popula-
tion, and if not immunized, it will inevitably lead to a fur-
ther increase in population susceptibility to CDV. When an 
infected dog comes into contact with the susceptible popula-
tion, it can lead to an outbreak of CD. For example, the total 
number of CDV-positive samples submitted to the Clinical 
Virology Laboratory of the Veterinary College of Tennes-
see University increased from 5% in 2010 to 27% in 2013 
(Wilkes et al. 2014) and an outbreak was found in the USA 
from 2011 to 2013 (Riley and Wilkes 2015). Therefore, it 
is necessary to consider why the vaccination program is not 
effective. One possible reason is that most of the current 
epidemic strains are geographically different from the strains 
used for vaccine production. The America 1 lineage that was 
isolated in the USA was used for vaccine production in the 
1950s, and the vaccines have remained largely unchanged 
since that time (Demeter et al. 2010). In recent years, many 
people have questioned the effectiveness of these vaccines, 
as CDV occurrences have been reported in previously vac-
cinated dogs in Argentina (Calderon et al. 2007), Japan 
(Lan et al. 2006), Mexico (Simon-Martı´nez et al. 2008), 
and the USA (Kapil et al. 2008). Thus, selection analysis 
could be employed to guide the vaccination program. Five 

methods were used to investigate the selective pressures 
and co-evolution codon sites acting on H gene sequences 
of CDV in addition to the BGM approach. The results of 
this study are generally in agreement with a previous study 
(Liao et al. 2015) that reported a substitution at residue 549 
(H to Y) which has emerged in the population through posi-
tive selection. Sawatsky and von Messling (2010) reported 
that the amino acid residue at site 549 is directly related to 
host specificity and cross-species transmission. Nikolin et al. 
(2012) (Nikolin et al. 2012) also found that this substitution 
may be closely related to the transmission of CDV from 
dogs to the carnivores. We point out that the characteristics 
of mutations may be related not only to host tropism but also 
to different geographical lineages. The key residues in the H 
protein may be helpful to maintain the important function 
for host cell entry. Therefore, co-evolution of codon sites 
are increasingly important for CDV intervention strategies. 
Eight pairs of co-evolution codon sites have been found and 
will further guide research on vaccines and therapeutic tar-
gets in the future research work.

Improved understanding the spatial distribution of the line-
ages suggests that we should choose a vaccine strategy that 
takes the different geographical locations into account. Part 
of this strategy should include attempts to prevent and control 
new lineage transmission between different locations. Addi-
tionally, the risk level of genetic recombination in virus labo-
ratories must be reduced through strict biosafety management 
protocols. These efforts will help prevent the emergence of 
new lineages through genetic engineering and re-emergence 
of new virus epidemics. One source of long-distance trans-
mission is the breeding of canines, which can involve bring-
ing animals to different continents, where they may encounter 
strains of the virus that they are vulnerable to and generate new 

Fig. 4  Bayesian maximum clade credibility (MCC) in the phyloge-
netic tree of H gene sequences of the CDV. The geographic locations 
(COUNTRY) and lineages (LINEAGE) are shown by two bars on the 
right, and each color are shown in Fig.  1. The posterior probability 
for the major nodes is included at the black dot and the temporal scale 
bar is provided at the bottom

◂

Fig. 5  Bayesian skyline demo-
graphic reconstruction of H 
gene of the CDV. The vertical 
axis represents the effective 
number of infections (Ne) mul-
tiplied by the mean viral genera-
tion time (τ). The horizontal 
axis represents the sample 
collection year. The black line 
and shaded region represent the 
median and 95% a high poste-
rior density (HPD) interval of 
Neτ over time, respectively
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virus lineages. Therefore, actions should be taken to strengthen 
supervision by customs officials and the use specific primers 
should be implemented to identify lineages of CDV, which will 
improve the detection rate.

Many questions in evolutionary biology require immunol-
ogy and molecular epidemiology perspectives. As mentioned 
above, most of the CDV sequences were collected from the 
GenBank database, but not all existing strains are included 
in this repository. To minimize the sampling bias as much 
as possible, all lineages were evenly distributed worldwide to 
maintain sufficient phylogeographic information. We hope to 
improve the Bayesian framework of this analysis so that it can 
provide insights into the evolutionary molecular epidemiol-
ogy of CDV. However, a more comprehensive and reliable 
CDV database is needed. In addition to evolutionary biology 
approaches to predict the migration of CDV, more comprehen-
sive testing for the virus may be help us gaining new insight 
into viral migration and evolutionary dynamics in the future.
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