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Abstract
More than half of the European population of the Barbary Partridge is in Sardinia; nonetheless, the researches concerning 
this species are very scarce, and its conservation status is not defined because of a deficiency of data. This research aimed 
to analyse the habitat selection and the factors affecting the abundance and the density of the Barbary Partridge in Sardinia. 
We used the data collected over 8 years (between 2004 and 2013) by spring call counts in 67 study sites spread on the whole 
island. We used GLMM to define the relationships between the environment (topography, land use, climate) both the occur-
rence and the abundance of the species. Moreover, we estimated population densities by distance sampling. The Barbary 
Partridge occurred in areas at low altitude with garrigue and pastures, avoiding woodlands and sparsely vegetated areas. We 
found a strong relationship between the occurrence probability and the climate, in particular, a positive relation with tempera-
ture and a negative effect of precipitation, especially in April–May, during brood rearing. Furthermore, dry crops positively 
affected the abundance of the species. We estimated a density of 14.1 partridges per  km2, similar to other known estimates. 
Our findings are important both because they increase the knowledge concerning this species, which is considered data 
deficient in Italy, and because they are useful to plan management actions aimed to maintain viable populations if necessary.
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Introduction

The Barbary Partridge (Alectoris barbara Reichenow 1896) 
is one of the four species of the genus Alectoris found in the 
Mediterranean Basin. It is distributed in northwestern Africa, 
from Western Sahara east to Libya, as well as at Gibraltar, 
in the Canary Islands and in Sardinia, where it was probably 
introduced historically (Cramp 1980; Scandura et al. 2010). 
Generally, the species inhabits dry and open lands with 
scrubs, rocky areas, coastal dunes, shrubs and maquis, but 
it is also present in open woodlands, pine forests and crop-
lands (Cramp 1980; del Hoyo et al. 1994; Keller et al. 2020). 
The European population is estimated at 7500–20,000 pairs, 
more than half present in Sardinia (Italy) with 5000–10,000 
breeding pairs and a decreasing population trend (BirdLife 

International 2017). For this reason, the species was clas-
sified as SPEC 3 (BirdLife International 2017). The main 
threats for its conservation are the over-hunting and habitat 
loss caused by agricultural intensification, habitat encroach-
ment caused in turn by the decrease of grazing pressure and 
urbanization (Brichetti and Fracasso 2004; del Hoyo et al. 
2013). However, in Italy, the conservation status of the spe-
cies is not evaluated by IUCN (International Union for Con-
servation of the Nature) because it is ‘data deficient’ (DD) 
(Rondinini et al. 2013); therefore, any new study concerning 
this species is worthy.

For this reason, we aimed to investigate the environmental 
factors affecting the distribution and the density of the spe-
cies during the breeding season in Sardinia. In particular, 
by using data collected between 2004 and 2013 in 67 study 
sites, we (i) analyzed the habitat selection of the species, 
(ii) investigated the relationships between abundances and 
the environment and (iii) estimated the breeding densities. 
This research is relevant for many reasons. First, despite Sar-
dinia holds more than half of the European population (58%; 
BirdLife International 2017), there are few studies about the 
ecology of this species in Sardinia, most of local interest 
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(Castaldi and Guerrieri 1997; Guerrieri 1997; Murgia and 
Murgia 2003; Luchetti et al. 2005; Chiatante et al. 2020). 
Moreover, little is known about this species even in other 
contexts (Akil and Boudedja 2001; Hanane 2020). Second, 
as well as exploring the importance of land use on the species 
distribution, we also tested the effect of climate variables, 
which are very important because climate strongly affect Gal-
liform populations (Potts 2012) and the research concerning 
this topic, and the related climate change is only in an early 
stage (Tian et al. 2018). Third, this study presents the largest 
survey ever carried out on the species in Europe, including 
almost all the environments and climatic contexts of Sardinia. 
Finally, being the Barbary Partridge a gamebird species, it 
is essential to know the environmental factors affecting its 
distribution and density in order to define sustainable hunting 
pressure and to plan management actions aimed to maintain 
viable populations (Sinclair et al. 2006; Sands et al. 2012).

Materials and methods

Study area

This study was carried out in Sardinia (Mediterranean 
Sea, Italy) (39° 58′ N, 9° 01′ E) (Fig. 1), which extends for 
24,100  km2. The altitude ranges from sea level to 1834 m 
a.s.l. (Punta La Marmora, in the Gennargentu massif), and 
the climate is Mediterranean, with a mean yearly temperature 
of 18 °C (min. 11 °C in December, max. 26 °C in August) 
and mean yearly precipitation ranging from 20 mm in July 
to 210 mm in December (Chessa and Delitala 1997). Vegeta-
tion is typically Mediterranean: the landscape is dominated 
by woodlands (20.9%), mainly of holm oak (Quercus ilex) 
and cork oak (Quercus suber), garrigue and Mediterranean 
maquis (23.3%) (composed of Arbustus unedo, Phillyrea sp., 
Pistacia lentiscus, Cistus spp., Erica arborea, Myrtus com-
munis) and natural grasslands (6.0%). Agricultural areas are 
composed mainly of arable lands (dry crops, horticulture) 
and meadows, representing 19.2% and 7.3% respectively, 
followed by heterogeneous agricultural areas (8.3%) and 
permanent crops (3.5%); urban areas covered only 3.0% of 
the island.

Data collection was carried out in 67 study sites (aver-
age size ± SD 12.0  km2 ± 9.15; min. = 2.3, max. = 50.1 
 km2), placed in the whole Sardinia at an average dis-
tance of 7.6  km each other (SD = 7.7, min. = 1.2  km, 
max. = 44.5 km), and covering a total surface of 802  km2. 
Their landscape is representative of the island; indeed, 
they are mainly composed of Mediterranean maquis 
(16.9%), garrigue (13.2%), woodlands (15.6%) and not 
irrigated arable lands (14.3%) (Fig. 1, Table 1). Most of 
them (N = 44) were protected areas in which hunting was 

forbidden while the other ones (N = 23) were hunting dis-
tricts in which partridge shooting was permitted during 
a very limited hunting season (2 days per year). In hunt-
ing districts, the cover of heterogeneous agricultural areas 
and woodlands was higher than protected areas (Electronic 
Supplementary Materials, ESM Table S1).

Fieldwork

Data concerning the distribution and the breeding density of 
the species were collected in springs 2004–2013, excluding 
2008 and 2011, by call counts from listening points (Bibby 
et al. 2000; Sutherland et al. 2004), conducted once between 
late March and early May. During these 8 years, we car-
ried out 1248 listening points, which were placed following 
a simple random sampling design, in proportional number 
with respect to the study site surface (Krebs 1999; Barabesi 
and Fattorini 2013) (ESM Table S1). The number of points 
in the same site but in different years changed due to the 
number of available observers; for the same reason, each 
site was sampled mainly for 2 years (range 1–4 years/site). 
Particularly, 59 expert observers were employed during the 
8-year fieldwork, with a minimum of 11 (in 2011) and a 
maximum of 33 (in 2004) per year, with 22 of them (37.3%) 
employed more than 1 year; they carried out the listening 
points without a planned scheduling, having in this way mul-
tiple observers per site in the same year (Alldredge et al. 
2006). We placed the listening points at a minimum distance 
of at least 300 m (average distance within any given years, 
min = 512 m, max = 841 m) to avoid spatial correlation 
and double counts (Blondel et al. 1981; Ralph et al. 1995; 
Sutherland et al. 2004). Call counts were carried out during 
the first three hours after dawn (6:00 a.m.–9:00 a.m.) and the 
last two hours before dusk (6:30 p.m.–8:30 p.m.). We used 
the playback to increase the detectability of males (Bibby 
et al. 2000; Jacob et al. 2010; Chiatante et al. 2013) ampli-
fied with a portable game caller (Multisound D8 Pocket; 
Multisound S.n.C., Italy). Listening and playback times 
were subdivided as follows: 3-min listening, 1-min playback, 
1-min listening, 1-min playback, 1-min listening, 1-min 
playback and 2-min listening (Chiatante et al. 2020). We 
recorded all calling partridges, their exact or approximate 
location and the exact time of each call. When we observed 
single partridges or pairs, we measured the exact distance 
from the observer to the birds with a laser rangefinder (Leica 
Rangemaster 900; Leica, Germany). When we did not see a 
calling bird, we mapped the approximate position of the call-
ing bird on aerial photographs (1:5000 scale) based on the 
likely attenuation and direction of its vocalization. We then 
measured the distance from the observer to the position of 
each calling bird using the software QGIS v.3.8.3 ‘Zanzibar’.
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Environmental variables

We analysed the spatial distribution of the Barbary Par-
tridge using variables related to topography, land use 
cover and climate (Table 1). In particular, we measured 
the environmental variables in a 300-m circular plot 
around each sampling points, as this size was used in 
previous researches concerning this species (Guerrieri 
1997; Chiatante et al. 2020). The digital elevation model 
(DEM) of Sardinia, with a spatial resolution of 10 m 
(available at http:// www. sarde gnage oport ale. it/), was 

used to measure the topographic variables. Specifically, 
we calculated the mean altitude, the mean slope and the 
dominant exposition (i.e. the exposition occurring in the 
majority of 10-m pixels contained in each 300-m plot). 
Thirteen land use variables were measured as percent-
age cover by the land use cover map of Sardinia Region 
(scale 1:25,000, year 2008), which was built with ortho-
photos collected between 2003 and 2006. Considering 
that the data of partridges were collected until 2013, the 
validation of the land cover map was based on the vis-
ual interpretation of high-resolution images on Google 

Fig. 1  The study sites (N = 67) located in Sardinia (Mediterranean Sea) and chosen to detect the Barbary Partridge during the breeding seasons 
2004–2013. The white dots are sites with species presence, whereas black dots are sites with species absence
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Earth (© Google LLC; available at https:// www. google. 
com/ earth/ index. html) (Dorais and Cardille 2011; Zhao 
et al. 2014), highlighting no evident changes over the 
years. Besides, the habitat heterogeneity was calculated 
by Shannon index of diversity (Magurran 2004) using 
a spreadsheet of Microsoft Excel 2016 (Microsoft Cor-
poration 2016). We did not explore the effect of other 
landscape metrics because previous research found no 
significant effects of this group of variables (Chiatante 
et al. 2020). Climate variables were derived by World-
Clim 2.1 (Fick and Hijmans 2017), a dataset of spatially 
interpolated monthly climate data representative of the 
current climate for global land areas at a very high spa-
tial resolution (approximately 1  km2). In particular, we 
used four bioclimatic variables: the annual mean temper-
ature (BIO01), the temperature seasonality (i.e. standard 
deviation of mean temperature × 100; BIO04), the annual 
precipitation (BIO12) and the precipitation seasonality 
(i.e. coefficient of variation of precipitation; BIO15). 
Moreover, from the same dataset, we used the solar radia-
tion and both the temperatures and precipitation of April 

and May, which were averaged obtaining the temperature 
of April–May and precipitation of April–May. In fact, 
likewise other Galliforms, partridges are affected nega-
tively by weather conditions during the breeding season 
(Pleasant et al. 2006; Potts 2012; Guttery et al. 2013) 
and April–May is the main period of incubation and 
hatching for this species in Italy (Brichetti and Fracasso 
2004). We tested also the importance of the protection 
level of the site, i.e. protected areas vs hunting districts. 
All the environmental variables were measured by QGIS 
v.3.8.3 Zanzibar and R v.3.6.1 (R Core Team 2019), and 
the related packages sp (Pebesma and Bivand 2011) and 
raster (Hijmans et al. 2014).

Data analyses

Barbary Partridge occurrence

We used generalized linear mixed models (GLMMs) 
(Zuur et al. 2009; Harrison et al. 2018) with a binary 
distribution (link function = logit) to relate the presence 

Table 1  Summary statistics of the environmental variables measured 
both in each 300-m circular plot around the listening points and in 
each study sites used to investigate occurrence and abundance of Bar-

bary Partridge in Sardinia (Mediterranean Sea). The results of the 
Moran I test showing the absence of spatial autocorrelation are shown

1 For the aspect, only the most frequent exposition is shown

Environmental variable Unit Mean ± SE
(300-m plot)

Mean ± SE
(study sites)

Range
(study sites)

Moran I test

Altitude M 316.5 ± 7.98 310 ± 31.54 0–1045 I = 0.237, P = 0.406
Slope ° 5.49 ± 0.12 6.4 ± 0.48 0.6–17.2 I = 0.217, P = 0.414
Aspect1 N (23.1%) SE (25.4%)
Built-up areas % 0.96 ± 0.11 2.5 ± 0.63 0–31.7 I = 0.256, P = 0.400
Not-irrigated arable lands % 12.1 ± 0.65 14.3 ± 2.64 0–81.7 I = 0.218, P = 0.414
Meadows % 9.2 ± 0.49 9.8 ± 1.56 0–43.8 I = 0.242, P = 0.404
Horticulture % 8.4 ± 0.66 5.1 ± 2.05 0–93.8 I = 0.424, P = 0.336
Vineyards % 1.1 ± 0.13 0.8 ± 0.29 0–17.6 I = 0.448, P = 0.327
Olive groves % 1.2 ± 0.16 1.3 ± 0.48 0–29.2 I = 0.263, P = 0.396
Heterogeneous agricultural areas % 6.9 ± 0.41 5.6 ± 0.87 0–31.2 I = 0.286, P = 0.387
Woodlands % 13.3 ± 0.64 15.6 ± 1.96 0–56.9 I = 0.226, P = 0.411
Pastures % 4.7 ± 0.31 4.5 ± 0.70 0–29.5 I = 0.836, P = 0.202
Mediterranean maquis % 14.8 ± 0.65 16.9 ± 2.17 0–74.3 I = 0.161, P = 0.436
Garrigue % 15.5 ± 0.64 13.2 ± 1.65 0–78.4 I = 0.173, P = 0.431
Shrublands % 6.4 ± 0.45 3.8 ± 0.82 0–40.3 I = 0.330, P = 0.371
Sparsely vegetated areas % 4.7 ± 0.37 5.9 ± 1.27 0–64.2 I = 0.226, P = 0.411
Land use diversity (Shannon index) 0.41 ± 0.005 0.67 ± 0.02 0.13–0.94 I = 0.328, P = 0.372
Annual mean temperature (BIO01) °C 15.3 ± 0.04 15.4 ± 0.17 11.4–17.2 I = 0.493, P = 0.311
Temperature seasonality (BIO04) 598.4 ± 0.89 598.4 ± 3.82 488–632 I = 0.477, P = 0.317
Annual precipitation (BIO12) Mm 608.2 ± 3.41 608.1 ± 14.92 291–849 I = 0.314, P = 0.377
Precipitation seasonality (BIO15) 52.7 ± 0.07 53.1 ± 0.31 47–58 I = 0.195, P = 0.423
Solar radiation kJ  m−2  day−1 15,547 ± 3.74 15,538 ± 15.4 15,369–15,900 I = 0.202, P = 0.420
Temperature in April May °C 14.6 ± 0.04 14.6 ± 0.16 10.5–16.3 I = 0.241, P = 0.405
Precipitation in April–May mm 44.6 ± 0.27 44 ± 1.13 19–66 I = 0.249, P = 0.402
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of the Barbary Partridge with the environmental vari-
ables. The presence of the species was 1 when at least 
one individual was detected in the 300-m plot around the 
listening points, or 0 otherwise. We built random inter-
cept models using as random effects the sites (within 
which listening points were nested) crossed per years 
to control for the non-independence of data, through 
a partially crossed design (Schielzeth and Nakagawa 
2013). Barr et al. (2013) suggest fitting the maximal 
random effect structure possible (the ‘keep it maximal’ 
rule), even if Harrison et al. (2018) suggest fitting the 
most complex structure allowed by your data. For this 
reason, we did not build random slope models because 
they require large numbers of data and are unstable 
when, as in our case, sample sizes across groups are 
unbalanced (Harrison et al. 2018). However, to build the 
most complex and parsimonious model, we proceeded in 
two steps to choose the fixed effect structure. First, we 
selected only the variables with a remarkable effect on 
the partridge occurrence (therefore with some evidence 
of importance), with a pairwise comparison of the sec-
ond-order Akaike information criterion  (AICc; Akaike 
1973) of two simple GLMMs: one with the intercept 
only and the other with each variable (Burnham et al. 
2011). When the  AICc value of the GLMM with the vari-
able was lesser than the one with the intercept only, with 
a difference of at least two (Δ  AICc ≤ 2), that variable 
was retained (Burnham and Anderson 2002). Once the 
number of variables was reduced, we ran a priori sets of 
GLMM built with all combinations of the retained envi-
ronmental variables; these models were built using not 
correlated variables (|r|< 0.70). Then, for each model, 
the  AICc was calculated and the models with the lowest 
 AICc were selected as the best (Burnham and Anderson 
2002; Grueber et al. 2011). Specifically, we considered 
as the best, models included within the ‘95% confidence 
set’ based on cumulative Akaike weights (Burnham and 
Anderson 2002; Harrison et al. 2018). These models 
were averaged, and the importance of each variable in 
the set was calculated (Burnham and Anderson 2002; 
Harrison et  al. 2018). For this analysis, all the vari-
ables considered were standardized by normalization; 
that is, each variable had a mean of zero and a standard 
deviation of one (Quinn and Keough 2002; Zuur et al. 
2007). We used the variance inflation factor (VIF) with 
a threshold of three to exclude the collinearity among 
variables (Fox and Monette 1992). We calculated the 
average of the Pearson’s residuals (Harrison et al. 2018) 
of each model in the best subset and tested them for spa-
tial autocorrelation by the Moran I test (Zuur et al. 2007; 
Bivand et al. 2008). The coefficient of determination R2 
was used as a measure of the variance explained: in par-
ticular, we calculated the marginal R2, for the variance 

explained by only the fixed effects, and the conditional 
R2, which encompasses the variance explained by both 
fixed and random effects (Nakagawa and Schielzeth 
2013; Nakagawa et al. 2017). The discrimination abil-
ity of the average model was assessed through the area 
under the curve (AUC) of the ROC (receiver operating 
characteristic) plot (Pearce and Ferrier 2000; Fawcett 
2006). Finally, we predicted the probability of occur-
rence of the Barbary Partridge in Sardinia. Precisely, 
using a grid covering the whole island and with a spatial 
resolution of 532 m (i.e. comparable to the surface of the 
300 m plots), first we measured for each square of the 
grid the environmental variables included in the model. 
Then, after their standardization (as we did to build the 
models), we reclassified these values using the coeffi-
cients estimated by the average model, but without con-
sidering the effect of the random variables. In this way, 
we obtained the probability of occurrence of the species 
for each square of the grid, allowing us to calculate the 
average (± SD) probability of occurrence of the Barbary 
Partridge in the whole island. All analyses were per-
formed using the statistical software R v.3.6.1 (R Core 
Team 2019) and the packages lme4 (Bates et al. 2015), 
MuMIn (Bartoń 2018), car (Fox and Weisberg 2011), 
spdep (Bivand et al. 2015) and verification (NCAR - 
Research Applications Laboratory 2015).

Barbary Partridge abundance

We used GLMMs (Zuur et al. 2009; Harrison et al. 2018) 
with a negative binomial error distribution (link func-
tion = logarithmic) to relate the abundance of the Barbary 
Partridge with the environmental variables. The abun-
dance of the species was calculated as the number of par-
tridges observed in the 300-m plot around the sampling 
points in each count (i.e. one count for each point, for 
each year). We built the most complex and parsimoni-
ous model as we did for the occurrence model (see the 
previous paragraph “Barbary Partridge occurrence”). 
Therefore, first, we reduced the number of variables by 
a pairwise comparison; then, we ran a set of GLMMs 
built with all combinations of the retained and not cor-
related (|r|< 0.70) environmental variables, and averaged 
the best ones included in the ‘95% confidence set’ based 
on cumulative Akaike’s weights. We calculated the VIF 
to verify the absence of collinearity and tested the spatial 
correlation of Pearson’s residuals by Moran I test. The 
coefficient of determination R2 was used as a measure of 
the variance explained, and the goodness of fit was cal-
culated through Pearson’s correlation between observed 
and predicted values (Rodríguez-Caro et al. 2016; Ondei 
et al. 2020; Chiatante and Panuccio 2021). Finally, as 
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calculated for the probability of occurrence, using the 
coefficients of the average model, but without consid-
ering the effect of the random variables, we predicted 
the abundance of the Barbary Partridge in a grid cover-
ing the Sardinia with spatial resolution of 532 m; then, 
we calculated its average value for the whole island. All 
analyses were performed using the statistical software R 
v.3.6.1 (R Core Team 2019) and the packages listed in 
the previous paragraph.

Barbary Partridge density

The density of the species was estimated through the dis-
tance sampling method, particularly the conventional dis-
tance sampling (CDS) (Buckland et al. 1993). After a visual 
inspection of distances distribution, we truncated the 10% 
of the greatest distances as suggested by Buckland et al. 
(1993) and transformed the distance data into equal inter-
vals of 60 m. As suggested by Buckland et al. (1993) and 
Thomas et al. (2010), we tested the following combinations 
of key functions and series adjustments: (1) uniform key 
with cosine adjustments, (2) half-normal key with cosine 
adjustments, (3) half-normal key with Hermite polynomial 
adjustments and (4) hazard-rate key with simple polyno-
mial adjustments. Anyway, the probability of detecting a 
bird depends not only on distance but also on many other 
factors, such as habitat, weather, observer and bird behav-
iour (Buckland et al. 1993), a circumstance that could exist, 
at least in part, in this research due to the spatio-temporal 
variability of our data. Therefore, ignoring all these other 
factors, besides distances, could cause some bias in the esti-
mate (Beavers and Ramsey 1998; Bas et al. 2008; Anderson 
et al. 2015). For this reason, besides CDS, we used also 
multiple covariate distance sampling (MCDS) (Marques 
et al. 2007), an extension of CDS that allow modelling the 

detection probability as a function of variables other than 
distance. Therefore, a graphical exploratory analysis was 
run to assess if the habitat around points and the year might 
biased the estimate of the density. For the habitat, we con-
sidered the cover of open areas (not-irrigated arable lands, 
meadows, horticulture, pastures and sparsely vegetated 
areas), scrublands (Mediterranean maquis, garrigue, shrub-
lands) and woodlands in the 300-m circular plot around the 
sampling points (for more detail, see the paragraph “Envi-
ronmental variables”). The results of this analysis (ESM 
Fig. S1) showed that both years (in particular 2012) and 
the cover of woodlands could bias our estimate because the 
detection distance changed with them. However, the year is 
a factor covariate with eight levels, too many for assessing 
the goodness of fit of the model with the bins obtained by 
grouping data (see further details below) (Marques et al. 
2007); therefore, we did not use the year as a covariate 
but discarded data collected in 2012 (in which detection 
distances were lower than other years) to overcome this 
problem. Consequently, we used as covariate only the cover 
of woodland. To estimate density with MCDS, only half-
normal and hazard rate keys are allowed (Marques et al. 
2007). We built the detection functions using the protection 
levels as strata, i.e. protected areas vs hunting districts; we 
did not use sites as strata because for many of them there 
were too few observations and estimates would have not 
been reliable. For this reason, we preferred to calculate an 
accurate global detection probability, which was then used 
to calculate manually the density (see further details below), 
rather than estimate a global geographically biased density. 
Once the models were computed, ran both with CDS and 
MCDS, we used Akaike’s information criterion (AIC) to 
select the best model (Buckland et al. 1993; Thomas et al. 
2010). Considering that data were binned, the goodness of 
fit of the models was assessed by χ2 tests (Buckland et al. 

Table 2  The average GLMM explaining the occurrence of the Barbary Partridge in Sardinia (Mediterranean Sea). Both the fixed effects (a) and 
the random effects (b) are shown

β standardized coefficient for model predictors, SE unconditional standard error, LCI 95% 95% lower confidence interval, UCI 95% 95% upper 
confidence interval, Σwi relative importance, VIF variance inflation factor

Environmental 
variables

β SE LCI 95% UCI 95% Σwi VIF

(a) Intercept  − 0.626 0.155 - - - -
Olive groves  − 0.379 0.136  − 0.645  − 0.112 1.00 1.028
Woodlands  − 0.450 0.108  − 0.661  − 0.238 1.00 1.046
Pastures 0.182 0.088 0.010 0.353 0.77 1.038
Garrigue 0.263 0.097 0.073 0.452 0.93 1.068
Sparsely veg-

etated areas
 − 0.194 0.127  − 0.444 0.055 0.55 1.044

Temperature in 
April–May

0.767 0.157 0.460 1.074 1.00 1.052

(b) Site × year (126 levels) Variance = 2.471, SD = 1.571
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1993; Thomas et al. 2010). Furthermore, the average proba-
bility of detection was estimated and the effective detection 
radius (EDR) was defined. Finally, we calculated manually 
the density for each study site by dividing the number of 
observations across all points and years at the considered 
site by the surface of the covered area (i.e. the number 
of points sampled at the site multiplied EDR estimated). 

Similarly, we estimated density between protected areas and 
hunting districts. In this way, we obtained more accurate 
estimation of density, reflecting the geographic variation 
across all the Sardinia and the protection level of the area. 
The analyses were performed using the statistical software 
R v.3.6.1 (R Core Team 2019) and the package Distance 
(Miller et al. 2019).

Fig. 2  The response curves of 
the environmental variables 
selected in the average GLMM 
built to investigate the occur-
rence of the Barbary Partridge 
in Sardinia (Mediterranean Sea)
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Results

Barbary Partridge occurrence

The Barbary Partridge occurred in 54 study sites (80.6%) 
and in 527 points (42.2%) (Fig. 1). The pairwise com-
parison suggested that 12 environmental variables 
affected in a remarkable way the species occurrence 
(ESM Tables S2-S3, Figs. S2-S3). These encompassed 
both topography, land use and all the climatic variables 
considered. Indeed, we found the species in areas at low 
altitude, with garrigue and pastures, especially in warmer 
and dryer sites with reduced seasonality (ESM Figs. S2-
S3). The land use diversity and the protection of the site 
did not affect the species occurrence. The average GLMM 
showed that six variables affected in a marked way the 
Barbary Partridge occurrence (Table  2, Fig.  2, ESM 
Fig. S4, ESM Table S5). In particular, garrigues and pas-
tures increased its probability of occurrence while olive 
groves, woodlands and sparsely vegetated areas decreased 
it. Moreover, the temperature in April–May had a posi-
tive effect on the species occurrence. The VIF revealed 
no collinearity among variables (Table 2), and the model 
residuals did not show any spatial correlation (Moran test, 
I = 0.191, P = 0.424). The conditional R2 explained on 
average 51.2% of the variance, whereas the marginal R2 
explained on average 14.5%. ROC analysis showed a good 
ability of the model to distinguish between occupied and 
not occupied points (AUC = 0.887, P < 0.001). The aver-
age probability of occurrence estimated in Sardinia by the 
model was equal to 0.385 ± 0.198 (SD) (min. 0.006, max. 
0.864), with higher values in lowlands (ESM Fig. S5). 
The probability of occurrence was similar between pro-
tected areas (median ± IQR; 0.39 ± 0.59) and hunting 
districts (0.39 ± 0.45) (Mann–Whitney U test, P = 0.087).

Barbary Partridge abundance

Between 2004 and 2013, we collected 1459 observations 
of 1582 partridges. The pairwise comparison showed that 
10 environmental variables affected in a remarkable way 
the species abundance (ESM Table S2, Figs. S6-S7). These 
encompassed both topography, land use and all the climate 
variables used. Indeed, we found higher abundances of the 
species in areas at low altitude, with not irrigated arable 
lands and without woodlands. Besides, the Barbary Par-
tridge abundance was positively related to warmer and dryer 
areas with good solar radiation (ESM Figs. S6-S7). The land 
use diversity and the protection of the site did not affect the 
species abundance. The average GLMM showed that five 
variables affected the abundance of the species (Table 3, 
Fig. 3, ESM Fig. S8, ESM Table S6). In particular, Barbary 
Partridge was more abundant in not irrigated arable lands, 
avoiding woodlands. Besides, the temperature in April–May 
and solar radiation were positively related to its abundance, 
which was affected negatively by temperature seasonality. 
The VIF revealed no collinearity among variables (Table 3) 
and the model residuals did not show any spatial correla-
tion (Moran test, I = 0.394, P = 0.347). The conditional R2 
explained on average 18.5% of the variance, whereas the 
marginal R2 explained on average 7.5%. The goodness of 
fit of the model was good; indeed, the observed and the 
predicted abundances were positively correlated (r = 0.542, 
P < 0.001). The average number of partridges estimated in 
Sardinia by the model was equal to 2.4 per 300-m buffer, 
equal to a density of 8.6 ind./km2 ± 0.537 (SD) (min. 3.9, 
max. 18.6) and, following the occurrence model, showed 
higher values in lowlands (ESM Fig. S9). The estimated 
abundance was almost the same between protected areas 
(median ± IQR; 2.4 ± 1.00) and hunting districts (2.4 ± 1.13) 
(Mann–Whitney U test, P = 0.800).

Table 3  The average GLMM explaining the abundance of the Barbary Partridge in Sardinia (Mediterranean Sea). Both the fixed effects (a) and 
the random effects (b) are shown

β standardized coefficient for model predictors, SE unconditional standard error, LCI 95% 95% lower confidence interval, UCI 95% 95% upper 
confidence interval, Σwi relative importance, VIF variance inflation factor

Environmental 
variables

β SE LCI 95% UCI 95% Σwi VIF

(a) Intercept 0.861 0.045 - - - -
Not irrigated 

arable lands
0.099 0.036 0.028 0.170 0.94 1.114

Woodlands  − 0.078 0.039  − 0.154  − 0.001 0.73 1.063
Temperature 

seasonality
 − 0.049 0.052  − 0.152 0.053 0.36 1.238

Solar radiation 0.080 0.045  − 0.009 0.169 0.63 1.147
Temperature in 

April–May
0.131 0.048 0.036 0.226 0.96 1.167

(b) Site × Year (126 levels) Variance = 0.491, SD = 0.700
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Density of the Barbary Partridge

We collected 1200 observations of 1323 partridges, exclud-
ing 2012 (see the previous paragraph “Barbary Partridge 
density”). On average, 1.1 partridges per point were detected 
(SE = 0.013, min = 1, max = 6). The best detection proba-
bility function was the half-normal cosine without wood-
land cover as covariate (Table 4; Fig. 4) (χ2 = 0.291, df = 2, 

P = 0.865); this gave an EDR equal to 152 m. Using this 
radius, the surface reference was equal to 0.07  km2; there-
fore, the global average density estimated was 14.1 ind./km2 
(SE = 1.88, min = 0, max = 71.0) (for estimates of each site, 
see ESM Table S7). The estimated density in protected areas 
was 16.2 ind./km2 (SE = 2.38, min = 0, max = 71.0), whereas 
in hunting districts was 15.0 ind./km2 (SE = 3.18, min = 0, 
max = 52.4).

Fig. 3  The response curves of 
the environmental variables 
selected in the average GLMM 
built to investigate the abun-
dance of the Barbary Partridge 
in Sardinia (Mediterranean Sea)
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Discussion

This research was aimed to explore how the environment 
(topography, land use and climate) affects the occurrence and 
abundances of Barbary Partridges in Sardinia and to estimate 
its breeding density. The study was based on data collected 
for 8 years in 67 sites distributed throughout the island. The 
study highlighted the importance of some environmental 
characteristics in influencing both the probability of presence 
and the abundance of the species. We found that the species 
selects areas with garrigue and pastures, and with low cover of 
woodlands, olive groves and sparsely vegetated areas (i.e. bare 
rocks, cliffs and beaches). This is not surprising inasmuch it 
is known that the species lives mainly in open areas, such as 
pastures, with shrubs and garrigue, even though a low cover 
of woodland is tolerated (Cramp 1980; Brichetti et al. 1992; 
Brichetti and Fracasso 2004; Hanane 2019). Moreover, uni-
variate analysis showed that the species occurs with higher 
abundances at low altitude, as found both in north-eastern 

Sardinia (Chiatante et al. 2020) and in southern Sardinia, 
where the species had higher densities within 250 m a.s.l. 
(Murgia and Murgia 2003). Generally, the altitude seems not 
very important for the species, also occurring up to 3300 m in 
High Atlas (Cramp 1980), despite in the last century in Sar-
dinia, it was observed a tendency to shift its range from low-
lands towards hills, up to 600–700 m (Brichetti et al. 1992). 
As previously said, the species lives in open areas with shrubs, 
as has been confirmed by Chiatante et al. (2020) in north-
eastern Sardinia, a pattern found also in the present research; 
indeed, the Barbary Partridge occurrence is positively related 
to garrigue and pastures. The garrigue is likely to be used as 
a refuge from predators and to conceal the nest, whereas pas-
tures are necessary to forage and to guarantee a good source 
of arthropods for chicks (Potts 2012). This is common in the 
Mediterranean Basin also for a similar Alectoris species (e.g. 
red-legged partridge Alectoris rufa; Chiatante et al. 2013). 
The positive relation between partridges and shrub cover was 
also found in North Africa, being the main factor driving 
the nest site selection and the breeding performance of the 
Barbary Partridge (Hanane 2019, 2020). Generally, the spe-
cies occurs also in croplands and, in Sardinia, especially in 
the lowland (Brichetti et al. 1992; Hanane 2020). Our results 
highlight the importance of not irrigated arable lands for the 
species abundance, which were mainly composed of cereal 
crops. This fact could suggest that not irrigated arable lands 
are supplementary habitat for the species (sensu Dunning 
et al. 1992), at least in Sardinia. In fact, the species can per-
sist also in areas without croplands, but in association with 
garrigue and pastures, which provide an additional amount of 
suitable habitat allowing partridge populations to reach higher 
abundances. However, it is reasonable to think that these habi-
tats could be considered suboptimal and sink areas in which 
the breeding success is quite low (Hammerquist Wilson and 
Crawford 1987; Aldridge and Boyce 2007).

Regarding the climate, as expected, both univariate and 
multivariate analyses showed that it affects both the spe-
cies occurrence and abundance. In general, the species 
inhabits areas with high temperatures and low precipita-
tions during the whole years. This is not surprising, in 
fact, the Barbary Partridge is well adapted to live in warm 
and dry conditions (Huntley et al. 2007). The selection 

Table 4  Distance sampling 
models computed to estimate 
the density of Barbary Partridge 
in Sardinia (Mediterranean 
Sea). We showed the function 
(key + series adjustment), the 
model used, the number of 
parameters (m), the AIC and 
its Δ and the average estimated 
detection probability (Pa)

Function Model m AIC Δ AIC Pa (mean ± SE)

CDS half-normal cosine  ~ 1 2 3379.77 0.00 0.258 ± 0.019
CDS uniform cosine  ~ 1 3 3381.78 2.01 0.259 ± 0.020
CDS hazard rate simple polynomial  ~ 1 2 3382.10 2.33 0.300 ± 0.026
MCDS hazard rate simple polynomial  ~ WOOD 3 3383.97 4.20 0.300 ± 0.026
CDS half-normal Hermite polynomial  ~ 1 1 3399.29 19.52 0.362 ± 0.013
MCDS half-normal cosine  ~ WOOD 2 3400.88 21.11 0.361 ± 0.013
MCDS half-normal Hermite polynomial  ~ WOOD 2 3400.88 21.11 0.361 ± 0.013

Fig. 4  Histograms of the detection function calculated to estimate the 
density of the Barbary Partridge in Sardinia (Mediterranean Sea). On 
the y-axis the detection distance in meters, on the x-axis the detection 
probability (from 0 to 1)
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for dryer conditions is underlined also by the positive 
effect of the solar radiation for the species abundance that 
we found with univariate analyses, which confirms what 
Chiatante et al. (2020) supposed in the north-eastern Sar-
dinia. Indeed, in this area, the species selects slopes facing 
to the east that receive higher solar radiation than other 
exposures, resulting in higher evapotranspiration rates 
and higher temperature (Kirkby et al. 1990; Adams 2007; 
Zahran and Gilbert 2010). Another important result is the 
strong positive effect of temperature and, especially, the 
negative effect of precipitation during April–May, which 
is the main period of incubations and hatchings of this 
species in Italy (Brichetti and Fracasso 2004). Generally 
speaking, it is known that the short-term annual variations 
in weather affect the population dynamic of birds (Demp-
ster 1975; Elkins 2004). As a matter of fact, the weather 
in spring and summer influences the bird numbers over the 
next seasons (Golovatin 2002; Enemar et al. 2004). Obvi-
ously, these negative effects of weather on birds are more 
evident in extreme landscapes (Greenwood and Baillie 
1991; Robinson et al. 2014; Walther et al. 2017). Likewise 
other birds, also partridges are negatively affected by bad 
weather conditions both on breeding densities (Potts 2012) 
and on the time spent in the vocal activity, as found for the 
red-legged partridge, the grey partridge (Perdix perdix) 
and the northern bobwhite (Colinus virginianus) (Green 
1984; Pépin and Fouquet 1992; Wellendorf et al. 2004). 
Similarly, bad weather is a limiting factor that reduces the 
lek attendance of the greater sage grouse (Centrocercus 
urophasianus) and the sharp-tailed grouse (Tympanuchus 
phasianellus) (Bradbury et al. 1989; Drummer et al. 2011; 
Fremgen et al. 2019). In addition, the breeding success 
is low with bad weather conditions (Erikstad and Spidso 
1982; Montagna and Meriggi 1991; Zheng-Ji and Yue-Hua 
1997; Pleasant et al. 2006; Guttery et al. 2013). None-
theless, many researches showed that the rainfalls prior 
to hatching enhance chick survival, perhaps because wet 
weather increases the nest concealment and the arthropod 
fauna availability (Erikstad and Andersen 1983; Lucio 
1990; Goddard and Dawson 2009; Caudill et al. 2014).

It is important to underline the absence of relation with the 
protection level of the area both for occurrence and abundance, 
as found also by previous research (Chiatante et al. 2020). How-
ever, in protected areas, there was a slightly higher density than 
hunting districts (16.2 vs 15.0 ind./km2). This weak difference 
is likely related to the quite similar environmental characteris-
tics of sites and the very low hunting pressure on the species 
(2 days for hunting season). However, it is known that, even in 
these circumstances, the conservation of a game species could 
be threatened (De Leo et al. 2004), also considering that in Sar-
dinia, poaching is a serious threat (Brochet et al. 2016) and that 
regulatory measures exist but are enforced due to an insufficient 
number of wardens (BirdLife International 2016).

For the period 2004–2013, we estimated a density equal 
to 14.1 ind./km2 for the Barbary Partridge (hence, approxi-
mately 7.0 pairs/km2), an estimate quite high respect to 
other studies (0.6–1.5 pairs/km2, Murgia and Murgia 2003) 
and in line with others (8.3–14.3 pairs/km2, Luchetti et al. 
2005; 5.1–22.9 pairs/km2, Chiatante et al. 2020). Similar 
densities (8.3 pairs/km2) were estimated also in Algeria 
(Akil and Boudedja 2001). However, these differences arise 
likely because previous researches in Sardinia were carried 
out in small areas possibly not representative of the whole 
island. We think that our estimate is quite plausible, because 
of the large sample size and because we analysed data fol-
lowing all suggestions available in the literature to avoid 
biases (Prieto Gonzalez et al. 2017). Anyway, despite the 
population trend in Italy is declining (Nardelli et al. 2015), 
our results showed an estimate in line with the threshold 
value of 6–7 pairs/km2 which should be used to evaluate as 
‘Favourable’ the status of the species population at a local 
scale (Gustin et al. 2016). Finally, we argued about the dif-
ferent estimates obtained with 300-m buffers (8.6 ind./km2) 
and distance sampling (14.1 ind./km2). Many studies have 
found differences between indices of relative abundances 
calculated within fixed-radius plots (such as the buffer of 
300 m) and distance sampling estimates (Norvell et al. 2003; 
Buckland et al. 2008; Gottschalk and Huettmann 2011). All 
of them stressed the more convincing estimates of distance 
sampling, which gives precise unbiased results respect to a 
study design based on a relative abundance approach, in as 
much it takes into account the detectability of individuals 
(Buckland et al. 1993). However, relative abundances reflect 
species responses to ecological gradients and can be easily 
employed to investigate trends, therefore are very useful in 
some circumstances (Hutto and Young 2003; Johnson 2008; 
Banks-Leite et al. 2014).

In conclusion, the Barbary Partridge in Sardinia occurs 
in areas with garrigue and pastures, especially at low alti-
tude, with densities of 14.1 ind./km2 (slightly higher in pro-
tected areas than hunting districts), and with higher abun-
dances where dry arable lands are available. These findings 
are important in the view of the species conservation status. 
First, could improve the knowledge required to define its 
status assessment. Indeed, as previously said, the species is 
classified by IUCN as data deficient (Rondinini et al. 2013) 
and there is a lack of information to establish its Favourable 
Reference Value for breeding populations at a regional scale 
in Italy (Gustin et al. 2016). Then, knowing its ecology, dis-
tribution and status may help conservation biologists to plan 
management actions aimed to maintain viable populations if 
necessary, such as habitat improvement actions and restock-
ing programs (BirdLife International 2016). For instance, our 
findings could be useful to plan habitat improvement actions 
like game crops, which can be created to support the species 
populations, particularly in areas where the abundances are 
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low. Indeed, in Portugal, the similar red-legged partridges liv-
ing in areas of agricultural abandonment are favoured by the 
presence of legume game crops (Reino et al. 2016). On the 
other hand, our models can be used to address in a sustainable 
way restocking programs of weak populations, for instance in 
areas with a high probability of species occurrence, as done 
for other Alectoris species (Meriggi et al. 2007). Moreover, we 
highlighted the importance of climate on the species occur-
rence and abundance, because the species is disadvantaged by 
low temperature and high precipitation, especially during the 
breeding season. Our findings are relevant also in view of cli-
mate changes. Indeed, the projections of the IPCC (Intergov-
ernmental Panel on Climate Change) showed a trend toward 
the increase of temperature and the decrease of precipitation 
in the Mediterranean Basin and in Italy, even though also 
indicate general increases in the intensity and frequency of 
extreme precipitation (IPCC 2013; Desiato et al. 2015). In 
this context, the species could be favoured in the next decades, 
despite some studies argue that the species will be extinct in 
the next future in Europe (Huntley et al. 2007).

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10344- 021- 01519-w.
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