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Abstract
The One Health approach is not only focused on diseases and zoonosis control but also on antimicrobial resistance. As concern  
this important issue, the problem of plasmid-mediated colistin resistance recently emerged. Few studies reported data 
about colistin resistance and mcr genes in bacteria from wildlife. In this manuscript, 168 Escherichia coli isolated from  
hunted wild boar were tested; colistin resistance was evaluated by MIC microdilution method, and the presence of mcr-1 and  
mcr-2 genes was evaluated by PCR. Overall, 27.9% of isolates resulted resistant to colistin, and most of them showed a MIC  
value > 256 μg/mL. A percentage of 44.6% of tested E. coli scored positive for one or both genes. In details, 13.6% of isolated harbored  
mcr-1 and mcr-2 in combination; most of them exhibiting the highest MIC values. Interestingly, 19.6% of mcr-positive E. 
coli resulted phenotypically susceptible to colistin. Wild boar could be considered a potential reservoir of colistin-resistant 
bacteria. In the light of the possible contacts with domestic animals and humans, this wild species could play an important 
role in the diffusion of colistin resistance. Thus, the monitoring programs on wildlife should include this aspect.
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Introduction

Colistin, also known as polymyxin E, is a cationic polypep-
tide antibiotic belonging to the class of polymyxins. It was 
firstly isolated from Paenibacillus polymyxa subsp. colisti-
nus in 1947 (Benedict and Langlykke 1947) and recently 
regained attention as one of the last resort antibiotics against 
some multidrug-resistant bacteria belonging to the Entero-
bacteriaceae family, including Escherichia coli, Enterobacter 
spp., Citrobacter spp., Klebsiella spp., and Salmonella spp. 
(Falagas and Kasiakou 2005). The main colistin mechanism 
of action relies on the cell membrane destabilization and 
increased permeability of the lipopolysaccharide due to the 
interaction between the α,γ-diaminobutyric acid (Dab) resi-
due of the positively charged polymyxin and the phosphate 
groups of the negatively charged lipid A membrane, displac-
ing divalent cations (Ca2+ and Mg2+) from the phosphate 
groups of membrane lipids (Dixon and Chopra 1986). Due to 

its high toxicity, from the Seventies, colistin employment in 
human medicine was limited (Koch-Weser et al. 1970), while 
it was frequent in veterinary practices. Colistin has been used 
for animal treatment for decades, especially in Italy, and it is 
still widely employed. However, in Europe, the use of colistin 
in veterinary medicine drastically decreased in recent years 
(European Medicines Agency 2020). Colistin is generally 
used for the treatment of gastrointestinal infections caused 
by E. coli or other Enterobacteriaceae in poultry and pigs, 
especially in intensive settings (Rhouma et al. 2016; Kempf 
et al. 2016). Furthermore, it is employed for the prevention 
of infectious disease and as a growth promoter in certain 
countries; indeed, oral administration of colistin to pigs and 
chickens via feed significantly stimulates the growth of young 
animals, enhances feed conversion, and increases economic 
returns for the farmer (Shen et al. 2020). This antimicrobial 
can be administered topically, by injection, via intramam-
mary route, and orally. In intensive farms, the last option 
allows the concurrent administration of many subjects.

In 2015, the first identification of a transferable plasmid-
located colistin resistance determinant, called mobile colistin 
resistance 1 gene (mcr-1), in E. coli from animals, food, and 
human samples in China (Liu et al. 2016) opened the way to 

 *	 Barbara Turchi 
	 barbara.turchi@unipi.it

1	 Department of Veterinary Science, University of Pisa, 
56126 Pisa, Italy

/ Published online: 27 May 2021

European Journal of Wildlife Research (2021) 67: 57

http://crossmark.crossref.org/dialog/?doi=10.1007/s10344-021-01501-6&domain=pdf


1 3

many studies. These were mainly focused on the molecular 
epidemiology of mcr-mediated colistin resistance and lead 
to the identification of nine variants of the mcr gene (Luo 
et al. 2020).

Despite the extensive use of colistin in animal farming, 
in many European countries, the resistance against colis-
tin in E. coli from healthy animals seems to be low (< 1%) 
(Kempf et al. 2013). This situation is also observed in other 
countries, such as Brazil and the USA, which importantly 
contribute to food animal farming (Meinersmann et  al. 
2017; Palmeira et al. 2018). However, in the last years, the 
observed resistance rates in Europe and China suggested a 
rapid increase among indicator E. coli from food animals 
(0.9–76.9%) (Liu and Liu 2018).

If on the one hand information on colistin resistance, 
especially the mcr1-mediated resistance, in bacteria from 
farm animals and animal-derived food products is avail-
able (Liu and Liu 2018), those on the prevalence of colistin 
resistance in wildlife are scarce (Shen et al. 2020). Recently, 
Wasyl et al. reported a low prevalence of colistin resistance 
among E. coli from wild boars (n = 278) and wild rumi-
nants (n = 264) hunted in Poland, with only two resistant 
isolates from roe deer, which were mcr-negative (Wasyl 
et al. 2018). This was in accordance with data by Navarro-
Gonzalez et al. who did not detect any colistin-resistant E. 
coli among isolates from wild boar (Sus scrofa) and Ibe-
rian ibex (Capra pyrenaica) in a National Game Reserve in 
northeastern Spain (Navarro-Gonzalez et al. 2013). As for 
Italy, few surveys on antibiotic resistance including colistin 
in Enterobacteriaceae from wildlife were performed. They 
were carried out employing the disk-diffusion method (Foti 
et al. 2009; Zottola et al. 2013; Botti et al. 2013), which is 
not reliable (Tan and Ng 2006).

The present study aimed to investigate the phenotypic 
resistance against colistin in E. coli from hunted wild boar 
and to evaluate the presence of mcr-1 and mcr-2 genes in 
resistant and susceptible isolates. Moreover, the potential 
role of wild boar as a reservoir and carrier of colistin-
resistant bacteria and mobile colistin resistance genes has 
been evaluated.

Materials and methods

Sample collection and Escherichia coli isolation

Two hundred rectal swabs were collected from wild boar dur-
ing hunting seasons 2018–2019 in 4 provinces (Pisa, Livorno, 
Grosseto, Siena) of Tuscany, Italy. All animals were killed 
during the hunting season following the regional hunting law 
(Regolamento di attuazione della legge regionale 12 gennaio 
1994, n. 3 D.P.G.R. 48/R/2017), and no animals were specifi-
cally sacrificed for this study purpose. 

Swabs were collected before slaughtering, and at the same 
time, information about sex and age (Sáez-Royuela et al. 1989) 
of animals was recorded. Escherichia coli isolation was per-
formed on Tryptone Bile X-glucoronide (TBX) Agar (Oxoid, 
Milan, Italy), after enrichment in buffered peptone water 
(Oxoid) at 37 °C for 24 h. Plates were incubated at 42 °C for 
24 h, and one single isolated blue colony from each sample 
was selected as presumptive E. coli isolate, purified on tryptone 
soy agar (TSA) (Oxoid), and subsequently confirmed as E. coli 
using conventional biochemical tests. Isolates were sub-cultured 
in brain and heart infusion broth (BHI) (Oxoid) and frozen 
at − 80 °C, after the addition of glycerol as cryoprotectant.

Phenotypic colistin resistance determination

Minimum inhibitory concentrations (MIC) for colistin were 
determined by the broth microdilution method, following 
CLSI guidelines (CLSI 2015). MIC test was performed in 
cation adjusted Mueller Hinton (MH) broth (Oxoid) employ-
ing colistin sulfate (CARLO ERBA Reagents, Cornaredo, 
Italy). Two-fold dilutions were performed from 256 to 0.5 μg/
mL. According to CLSI and EUCAST recommendations, iso-
lates with MIC values ≤ 2 μg/mL were considered susceptible, 
whereas those with MIC values > 2 μg/mL were recorded as 
resistant (CLSI 2018; EUCAST 2020).

Presence of colistin resistance genes

The occurrence of plasmid-borne colistin resistance genes 
mcr-1 and mcr-2 was evaluated by PCR, employing primers 
and protocols previously reported (Table 1) (Xavier et al. 2016; 
Barbieri et al. 2017). DNA extraction was performed by Quick-
DNA Plus Kits (Zymo Research, Irvine, CA, USA) following 
the manufacturer’s instructions. PCRs were performed in 25 μl 
of reaction mixtures containing 200 μM of deoxynucleotide 
triphosphates, 0.5 μM of each primer, 1.25 U of Taq polymer-
ase (Lucigen Corporation, Middleton, Wisconsin, USA), and 
2 μl of extracted DNA. All amplifications were carried out in 
the automated thermal cycler Gene-Amp PCR System 2700 
(Perkin Elmer, Norwalk, Connecticut, USA). PCR products 
were analyzed by electrophoresis at 100 V for 45 min on 1.5% 
agarose gel stained with ethidium bromide, and PCR Sizer 
100-bp DNA ladder (Norgen Biotek, Thorold, Canada) was 
used as a DNA marker.

Results

Escherichia coli isolation

One hundred and sixty-eight E. coli were isolated from 
wild boar. In particular, 74 isolates were from males and 
94 from females. Sixty-three, 25, and 80 isolates were from 
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young, sub-adult, and adult wild boar, respectively. As for 
geographical distribution, 60 E. coli were isolated from sam-
ples collected in Grosseto province, 53 in Pisa, 45 in Siena, 
and 10 in Livorno (Table S1).

Phenotypic and genotypic colistin resistance

Overall, 47/168 (27.9%) E. coli scored resistant to colis-
tin, with MIC values ranging between 4 and >256  μg/
mL (Table 2). Thirty out of 168 isolates (17.8%) showed 
a MIC higher than 256 μg/mL. Among susceptible iso-
lates (121/168–72.0%), 95/168 (56.5%) showed a MIC 
lower or equal to 0.5 μg/mL, which was the lowest tested 
concentration.

Genes responsible for colistin resistance, mcr-1 and mcr-
2, were equally distributed in the studied population. Par-
ticularly, 23/168 (13.6%) E. coli harbored both genes, 26/168 
(15.4%) scored positive only for mcr-1, and 26/168 (15.4%) 
for mcr-2. The presence of both genes was mainly associated 
with higher MIC values: 21 mcr-positive isolates had a MIC 
value ≥ 256 μg/mL. Whereas the presence of mcr-1 or mcr-2 
alone was also detected in susceptible E. coli (Table 1), in 
particular, 33/168 (19.6%) isolates were PCR-positive, but 
they showed a MIC value ≤ 2 μg/mL Ninety-three out of 
168 isolates (53.3%) did not show resistance genes; most 
of them exhibited a low MIC value and were, consequently, 
categorized as colistin susceptible (Table 2).

Figure 1 shows the geographic distribution of mcr geno-
typic profiles. No statistical differences were observed among 
sex, age, and provinces considering both phenotypic colistin 
resistance and mcr gene distribution (Figs. S1 and S2).

Discussion

Antimicrobial resistance is one of the main issues for 
human and veterinary medicine with some authors fore-
casting the return in few years to a situation similar to that 
of the pre-antibiotic era (de Kraker et al. 2016; Martens 
and Demain 2017). The rise of multidrug resistance and 
in particular the resistance to β-lactams lead to the urgent 
need for new antibiotics or to the reintroduction of those 
molecules which were no longer in use due to several rea-
sons (Livermore et al. 2011). Polymyxins, in particular 
colistin, were recently reintroduced for humans treatment, 
despite their toxic effects (Li et al. 2006). Contrariwise, the 
large employment of colistin in veterinary medicine was 
constant (European Medicines Agency 2019). Recently, 
the discovery of a plasmid-mediate resistance gene (mcr-
1) encoding for colistin resistance was a matter of great 
concern. This gene, or its variants, was subsequently 
detected all over the world, especially among E. coli or 
other Enterobacteriaceae (Nang et al. 2019). In Italy, some 
studies reported the presence of mcr-positive colistin-
resistant bacteria isolated from humans (Cannatelli et al. 
2016; Simoni et al. 2018). At the same time, some authors 
reported the spreading of colistin-resistant/mcr-positive 
E. coli among breeding animals (Curcio et al. 2017; Alba 
et al. 2018; Magistrali et al. 2018). However, no infor-
mation is available about wild animals, excluding some 
studies which provided evidence of phenotypic colistin 
resistance using the disc diffusion method (Foti et al. 2009; 
Zottola et al. 2013; Botti et al. 2013).

Table 1   Employed primers and 
related information

Gene Primer Sequence Annealing 
temperature

Expected 
product 
(bp)

Reference

mcr-1 mcr1-F CGG​TCA​GTC​CGT​TTG​TTC​ 58 °C 309 Barbieri et al. (2017)
mcr1-R CTT​GGT​CGG​TCT​GTA​GGG​

mcr-2 mcr2-IF TGT​TGC​TTG​TGC​CGA​TTG​GA 65 °C 566 Xavier et al. (2016)
mcr2-IR AGA​TGG​TAT​TGT​TGG​TTG​CTG​

Table 2   Distribution of 
MIC values in relation to the 
observed genotype

* Isolates with MIC values > 2 μg/mL were considered resistant according to CLSI and EUCAST guidelines

  MIC μg/mL

Genes  ≤ 0.5 1 2* 4 8 16 32 64 128 256  > 256 Total

mcr-1 + mcr-2 1 1 0 0 0 0 0 0 0 2 19 23
mcr-1 11 2 0 0 0 0 0 2 5 0 6 26
mcr-2 15 2 1 0 0 0 0 2 0 1 5 26
mcr-negative 68 13 7 2 2 0 0 1 0 0 0 93
Total 95 18 8 2 2 0 0 5 5 3 30 168
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In the present work, colistin resistance in 168 E. coli iso-
lated from hunted wild boar was evaluated, using the recom-
mended MIC microdilution method (CLSI 2015; Tan and 
Ng 2006). A percentage of 28.0% of tested bacteria resulted  
phenotypically resistant to colistin. Obtained results showed 
a higher percentage of colistin-resistant E. coli compared 
to that obtained in Italy for isolates from farm swine. In 
particular, Alba et al. (2018) detected resistance rates rang-
ing from 0.6 to 6.5% in E. coli from fattening pigs. The 
last EFSA report on antimicrobial resistance in zoonotic 
and indicator bacteria from humans, animals, and food 
showed a percentage of colistin-resistant indicator E. coli 
in fattening pigs of 0.6% in Italy (EFSA and ECDC 2019). 
The higher percentage of colistin-resistant E. coli detected 
in wild boar could be related to the environmental pollu-
tion and the behavior of this animal species. Although wild 
animals are not directly exposed to antimicrobials for treat-
ment, they could easily come in contact with antimicrobial 
residues or antimicrobial-resistant bacteria. Indeed, many 
human activities (ex. hospitals, livestock facilities, sewage 
system,  wastewater treatment facilities, agricultural ferti-
lization) could contribute to the release in the environment 
of antimicrobials or antimicrobic resistant bacteria (Dolejska  
and Papagiannitsis 2018). Some studies highlighted that 
antimicrobial-resistant bacteria are more often detected in 

omnivorous wild animals (Vittecoq et al. 2016), and this 
could be linked to a possible “accumulation” process. Wild 
boars are omnivorous, scavengers, and semi-synanthropic 
animals; furthermore, they could easily come in contact 
with livestock and breeding environments; for these reasons, 
these animals seem to be perfect candidates to acquire and 
cumulate antimicrobial-resistant bacteria. To support this 
hypothesis, it should be noted that isolates examined in this 
investigation were previously characterized for their anti-
biotic susceptibility profile and resulted resistant to many 
other antimicrobials, (Bertelloni et al. 2020a). To the best 
of author knowledge, no data on colistin resistance in E. 
coli, or other bacteria, from wild boar in Italy, are avail-
able. Furthermore, considering other European countries, 
few studies were performed. One of them was carried out 
in Poland and one in Spain, and in both cases, authors did 
not detect colistin-resistant E. coli (Navarro-Gonzalez et al. 
2013; Wasyl et al. 2018).

As regard resistance genes, 44.64% of test E. coli resulted 
positive for one or both tested mcr genes. The two genes 
resulted equally distributed in the studied bacterial popula-
tion. This is in contrast with other studies carried out in Italy 
on animal isolates, where mcr-1 resulted the predominant 
gene, while mcr-2 was rarely detected. However, these inves-
tigations were conducted on E. coli isolated from livestock 

Fig. 1   Geographical distribution of the mcr-positive E. coli isolated form wild boar in relation to investigated provinces (Tuscany region, Italy)
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and in different geographic areas (Curcio et al. 2017; Alba 
et al. 2018; Magistrali et al. 2018). Furthermore, mcr-2 was 
detected in migratory birds which could be a possible source 
of diffusion in the ecosystem (Ahmed et al. 2019). Most mcr-
positive E. coli resulted phenotypically resistant, in particular 
those harboring both genes. The high prevalence of the resist-
ance genes is consistent with the high percentage of resistant 
isolates detected by the phenotypic test. Nevertheless, 19.6% 
of isolates were mcr-positive but phenotypically susceptible 
to colistin. This is an unexpected result since the available 
information is scant. Indeed, most of the studies evaluated 
the presence of mcr genes in resistant isolates, and only a few 
authors reported the occurrence of susceptible phenotype in 
mcr-positive strains (Liassine et al. 2016; Quan et al. 2017; 
Magistrali et al. 2018). However, some hypotheses could be 
done. The lack of the expression of resistance genes is well 
documented, recently also for colistin, and it could be related 
to many different causes (Hughes and Andersson 2017; Nang 
et al. 2019). Furthermore, many variants exist for mcr genes 
(Partridge et al. 2018), and this may be suggestive of their 
high variability. So, it is plausible to speculate that some 
mutations occurred, impairing the gene functions. Further-
more, these defective genes can rapidly spread in bacteria 
populations, considering that they are plasmid-associated. 
In accordance with our study, some recent works showed a 
poor concordance between the mcr genes presence and the 
phenotypic resistance detected (Aguirre et al. 2020; Vidal 
et al. 2020). Finally, some isolates (3.0%) scored negative for 
both mcr-1 and mcr-2, but resulted phenotypically resistant. 
This could be due to the presence of other mobile colistin 
resistance elements; some of them reported in Italy like mcr-
3 and mcr-4 (Alba et al. 2018), or to chromosomal resistance 
genes (Moffatt et al. 2019).

Conclusions

Wild boar could share habitats with domestic animals, espe-
cially where extensive farming is adopted. This could lead 
to the transmission of pathogens to breeding animals. Fur-
thermore, wild boar is one of the most abundant hunted spe-
cies in some countries, like Italy (Bertelloni et al. 2020b), 
and, recently, these animals gain access to peri-urban and 
urban environments; these circumstances could, directly 
or indirectly, expose humans to infections by zoonotic or 
antimicrobial-resistant microorganisms carried by wild boar 
(Torres et al. 2019; Bertelloni et al. 2020b; Cilia et al. 2020). 
Polymyxins are considered last-line treatments for multid-
rug-resistant Gram-negative bacterial infections. Consider-
ing the rising problem of colistin resistance linked to plas-
mid-mediated genes, it is important to monitor all possible 
reservoir niches. This work showed the high circulation of 
phenotypic resistant and mcr-1- and mcr-2-positive E. coli 

isolates among the wild boar population of Central Italy. 
These results highlight by one side the possible impact of 
antimicrobial pollution on wild boar and, more in general, on 
ecosystems, on the other side the possible role these animals 
could play as carriers of colistin-resistant bacteria and genes. 
Wild boar could reintroduce these bacteria in food animals 
producing system or transmit them directly to humans, repre-
senting a serious hazard for animals and human health. In the 
One Health approach to antimicrobial resistance, it remains 
important the constant monitoring of wildlife populations.
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