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Abstract
Despite the soil could contain high amount of phosphorus (P), salinity reduce its availability for crop plants. Hence, farmers
should practice several tactics to ameliorate P deficiency in soils. The current study aimed to assess the importance of zinc
(Zn) supply for mitigating the deficiency of P for canola grown in saline soil. The effects of three Zn rates (0, 150 and
300mg L–1, Zn0, Zn150 and Zn300, respectively) under three P rates (0, 36 and 72kg P2O5 ha–1, P0, P36, and P72, respectively)
on physiological status, yield and quality of canola were measured. Treatments were arranged in the strip plot design based
on completely randomized blocks with three replicates. Findings exhibited that P36 recorded the highest values of membrane
stability index in the 2nd season, while statistically leveled P72 for relative water content and chlorophyll fluorescence in
both seasons. Zn300 exhibited potent effect on all canola physiological traits in both seasons. In both seasons, P36× Zn300,
P72× Zn150 and P72× Zn300 showed the maximum chlorophyll fluorescence and performance index values. Plots treated with
P72 achieved 70.0% increase in canola seed yield, greater than the untreated ones. Seed yield obtained with Zn300 were
higher than Zn0 and Zn150 by1.30 and 1.10 times in 2019/20 season and 1.23 and 1.05 times in 2020/21 season. The highest
oil % was recorded with P0× Zn150 and P72× Zn0 in the 1st season and with P72× Zn150 in the 2nd season.
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Introduction

Globally, canola or rapeseed (Brassica napus L.) is ordered
as the third oil crop after oil palm and soybean for oil pro-
duction with ~76.0 million tons, obtained from ~35.0 mil-
lion hectares (FAO 2019). Since its oil is fortified by a high
amount of oleic acid as a main unsaturated fatty acid, canola
seeds are typified by high quality and quantity of oil (Zhou
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et al. 2019; Mamnabi et al. 2020). According to the cul-
tivated genotype, canola oil comprises 7% saturated fatty
acids, 66% monounsaturated fatty acids, and 27% polyun-
saturated fatty acids (Safavi Fard et al. 2018). The quality
of fatty acid in oilseed crops is mainly depends on the en-
vironment and genotype (Enjalbert et al. 2013; Safavi Fard
et al. 2018).

Production and cultivation of agricultural crops are
hugely influenced by numerous eco-stresses involving
drought, salinity, extreme temperatures, and nutrient de-
ficiency (Rady et al. 2020; Saudy et al. 2020a; Abd El-
Mageed et al. 2021; El-Metwally and Saudy 2021a; Abou
Tahoun et al. 2022; El-Bially et al. 2022a). It has been doc-
umented that such stresses adversely affect crop growth and
development, hence the productivity and quality (Mubarak
et al. 2021).

Soil salinity is one of the most distinctive abiotic stresses
causes major reductions in cultivatable lands and crop yield
and quality (Salem et al. 2021; Abd El-Mageed et al. 2022;
Al-Elwany et al. 2022; Shaaban et al. 2022). It is forecasted
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that approximately 50% of all agricultural lands will be im-
pacted by salinity by 2050 (Shrivastava and Kumar 2015).
Consequently, owing to soil salinity, more than US$12 bil-
lion global losses yearly due to reduced crop productivity
is expected (Jägermeyr and Frieler 2018). Thus, it is im-
portant to recognize the crop responses to salinity stress to
reduce the economic loss and save food security. At the
plant cellular level, salinization causes excessive accumu-
lation of salt ions in soil resulting in toxicity and osmotic
effects of the soil around the roots of the plant. Due to high
osmotic potential in soil rhizosphere, the ability of the crop
plants to absorb soil water is reduced (Machado and Ser-
ralheiro 2017). Furthermore, salt stress including osmotic
and ionic stress interposes with cellular functions of plants
owing to activating production of reactive oxygen species
(ROS), which result in oxidative damage in various cellu-
lar complexes (Gupta and Huang 2014) with altering vital
metabolic processes (Liang et al. 2018). Also, lipid perox-
idation rated increased with salinity (Hernández 2019; Yu
et al. 2020), hence higher membrane permeability and loss
of ions from the cells occur (Gupta and Huang 2014). Ac-
cordingly, severe agricultural concerns can be emerged due
to the limited plant productivity associated with soil salinity
(Isayenkov and Maathuis 2019). To ameliorate the adverse
impacts of salinity on crop plants, several tactics should be
adopted.

Macronutrients play a crucial role in plant growth and
development and productivity (Abd-Elrahman et al. 2022;
Elgala et al. 2022; Saudy and El-Metwally 2022). Of these,
phosphorus (P) is an essential element for enhancing yield
and quality (Saudy and El-Metwally 2019; Saudy et al.
2020b). However, P availability in soil is substantially in-
fluenced by soil condition, resulting in low P accumulation
in the economic product of the crops (Salem et al. 2022).
The exposure of P to fixation in soils represents a critical
issue. In this regard, conversion of about 80% of P fertiliz-
ers soil application was observed to be in unavailable form
(Walpola and Yoon 2012). For instance, in calcareous or
normal soils and acidic soils, P converted into an insolu-
ble complex (Satyaprakash et al. 2017; Kumar et al. 2018),
causing P deficiency (Saudy et al. 2022c). Lack of P affects
the normal plant growth and brings about premature death
of older leaves (Niu et al. 2013).

Being it is an activator of phosphoenolpyruvate carboxy-
lase and ribulose diphosphate carboxylase and oxygenase,
zinc (Zn) increased photosynthesis rate and photo-assim-
ilates translocation and proteins synthesis (Olama et al.
2014; Ebrahimian et al. 2017; Manaf et al. 2019; Afsahi
et al. 2020). Hence, protein and oil content of oilseed crops
were stimulated by Zn supply (Weisany et al. 2014; Shah-
savari and Dadrasnia 2016). The biosynthesis of enzymes
such as carbonic anhydrase, alcohol dehydrogenase, and
superoxide dismutase (Cakmak 2000) as well as indole-3-

acetic acid (Fang et al. 2008) cannot be completed without
Zn. A physiological stress was reported in plants subjected
to Zn deficiency (Vojodi Mehrabani et al. 2018). While, un-
der normal and stressed conditions Zn exhibited significant
improvements in crop growth and yield (El-Metwally and
Saudy 2021b; Saudy et al. 2021b, 2022a).

Despite the availability of P and Zn in most cultivated
soils is low, such issue could be addressed by fertilization
(Montalvo et al. 2016; Saudy et al. 2020b). We hypno-
tized that combined application of P and Zn could adjust
the nutrient balance in canola plants grown in saline soil.
Therefore, physiological status and productivity of canola
as influenced by P plus Zn were assessed under soil salinity
conditions.

Materials andMethods

Experimental Site Description

Field trials were done in two successive winter seasons
(2019/20 and 2020/21) at the field crops research sta-
tion located at El-Fayoum Governorate, Egypt (latitudes:
29° 020 and 29° 350 N, longitudes: 30° 230 and 31° 050 E,
and altitude: +15m.a.s. l.). Furthermore, the main physio-
chemical characteristics of the soil were measured accord-
ing to Page et al. (1982) and Klute and Dirksen (1986).
The soil had a loamy sand texture (71.6%), silt (16.4%),
clay (12.0%) with bulk density (1.56g cm–3), pH (7.78),
electrical conductivity of saturation extract (ECe= 6.24
dSm–1), cation exchange capacity (11.2cmol kg–1), calcium
carbonate (8.3%), organic carbon (0.86%), available N,
(54.3mg kg–1 soil), available P (4.3mg kg–1 soil), avail-
able K (43.1mg kg–1 soil) and available Zn (0.72mg kg–1

soil). The experimental site located in an arid region with
moderate winters and rare precipitation.

Experimental Treatments and Crop Husbandry

In our experiment, three P fertilizer rates, i.e., 0 (P0),
36 (P36), and 72 (P72) kg P2O5 ha–1 were supplied in the
form of superphosphate (15.5% P2O5), which is commonly
used as P fertilizer. The P fertilizer rates were incorporated
into the soil prior to planting. Plants exogenously sprayed
with three concentrations of Zn in the form of ZnSO4

namely, 0 (Zn0; tap water as a control), 150 (Zn150), and
300 (Zn300) mgL–1. The experiment was in a two-factor
strip plot design based on completely randomized blocks
with three replicates, where the horizontal factor included
the P fertilization rates and the vertical factor included
foliar-applied Zn levels. The Zn concentrations were added
as foliar application twice at 45 and 60 days from planting
(DFP). Foliar Zn application was applied by a fan nozzle
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on a hand sprayer to lessen solution drift. To guarantee op-
timal Zn absorption into canola plant leaves, 0.1%, v/v of
the non-ionic surfactant Tween® 20 was added to the fo-
liar-sprayed Zn solution. Healthy seeds of Brassica napus
L. cultivar Serw4 were obtained from the Crop Research
Institute, Agricultural Research Center, Egypt. Seeds were
sown by hand on the 15th and 10th of November at 5kg
seed ha–1 in hills spaced by 0.2m on one side of 0.6m dis-
tanced rows. Each individual plot was 4m in length× 3m in
width forming 12m2 net area with five rows. The thinning
process was carried out at the 4-leaf stage (25 DFP) to
maintain the strongest and healthful two canola plants per
hill. The surface irrigation system was used, and canola
plants needed six irrigations through the growing season
according to the daily reference crop evapotranspiration,
totaling 3066m3 ha–1. During soil tillage and plant growth,
the recommended nitrogen (N) and potassium (K) fertiliz-
ers in form of ammonium sulphate and potassium sulphate
with rates of 108kg ha–1 and 58kg ha–1, respectively were
applied. The total amount of N fertilizer was top-dressed
in three split doses at 21, 35, and 50 DFP, while the K fer-
tilizer, in two equal applications, was added directly during
the soil tillage and after thinning process, respectively.

CropMeasurements

Physiological Traits

Membrane stability index (MSI%) and relative water con-
tent (RWC%) were measured according to Premachandra
et al. (1990) and Hayat et al. (2007), respectively. Chloro-
phyll fluorescence and photosynthetic performance index as
a convenient tool to assess photosynthetic efficiency, was
determined according to Maxwell and Johnson (2000) and
Clark et al. (2000) by Handy PEA, Hansatech Instruments
(Ltd, Kings Lynn, UK).

Seed Yield and Protein and Oil Content

During the two canola cropping seasons, measurements of
seed yield and its attributes and seed quality were recorded
at harvest (162 DFP). Five guarded canola plants were ran-
domly chosen and carefully harvested from each plot to
count the siliques number plant–1. Canola yield was deter-
mined by manually harvesting all the plants of three inner
rows from each plot. These harvested plants were field sun-
dried for three days to reduce plant moisture to the great-
est extent possible before oilseed separation by threshing.
Canola seed yield and weight of 1000 seeds were recorded
based on 12% seed moisture content. Canola seed repre-
sentative subsamples (~200g from each plot) were further
purified to eliminate impurities or damaged seed for seed

oil and protein determination using a Zeltex ZX-50 portable
seed analyzer (Zeltex Inc., Hagerstown, Maryland, USA).

Statistical Analysis

Analysis of variance using InfoStat statistical software (Di
Rienzo et al. 2013) was performed to determine the im-
pacts of phosphorus and zinc levels and their interaction
on canola performance according to the strip-plot design
based on completely randomized blocks. Wherever, the F-
test showed significant (p≤ 0.05) differences among mean
values, the differences among treatments were compared
using Duncan’s test (Steel and Torrie 1980).

Results

Physiology of Canola

Data in Table 1 illustrated that under saline soil condition,
without P or Zn application, reductions in membrane stabil-
ity index, relative water content, chlorophyll fluorescence
and performance index were recorded in both growing sea-
sons of 2019/20 and 2020/21. On the contrary, P supply
enhanced all canola physiological parameters. Herein, high
rate of P (P72) showed the maximum values of membrane
stability index in the 1st season as well as relative water
content, chlorophyll fluorescence and performance index in
both seasons. P36 recorded the highest values of membrane
stability index in the 2nd season, while statistically leveled
P72 for relative water content and chlorophyll fluorescence
in both seasons.

Spraying of Zn at a rate of 300mg L–1 (Zn300) exhib-
ited potent effect on all canola physiological traits in both
seasons. However, the differences between 300mg L–1

and 150mg L–1 Zn did not reach the level of significance
(p≥ 0.05) for membrane stability index in the 2nd sea-
son, chlorophyll fluorescence, in the 1st season as well
as relative water content and performance index in both
seasons.

The interaction revealed that except membrane sta-
bility index in the 1st season, all other canola physio-
logical traits significantly (p≤ 0.05) affected by P× Zn
treatments (Table 1). Membrane stability index was higher
with P0× Zn300, P36× Zn0, P36× Zn150 and P72× Zn300 than
the other combinations in the 2nd season. The combi-
nations of P0× Zn300, P36× Zn150 and P72× Zn300 (in both
season); P36× Zn300 (in the 1st season) as well as P72× Zn0

and P72× Zn150 (in the 2nd season) were the most effi-
cient for increasing relative water content. In both seasons,
P36× Zn300, P72× Zn150 and P72× Zn300 showed the maximum
chlorophyll fluorescence and performance index values.
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Table 1 Physiological attributes of canola plants grown in saline soil as affected by phosphorus, zinc and their interaction in 2019/20 and 2020/21
seasons

Treatment Membrane stability index (%) Relative water content (%) Chlorophyll fluorescence Performance index

2019/20 2020/21 2019/20 2020/21 2019/20 2020/21 2019/20 2020/21

Phosphorus, P (kg ha–1)

P0 80.0± 0.9c 77.3± 1.5b 82.6± 1.00b 78.6± 1.5a 0.83± 0.006b 0.83± 0.007b 12.1± 0.57b 15.2± 0.61a

P36 81.2± 0.7b 79.3± 0.7a 85.1± 0.62a 79.1± 0.9a 0.84± 0.002a 0.85± 0.002a 13.2± 0.39b 16.5± 0.31a

P72 82.4± 1.0a 77.4± 1.4b 84.5± 0.70ab 80.5± 0.7a 0.84± 0.001a 0.85± 0.002a 15.3± 0.50a 16.5± 0.38a

Zinc, Zn (mg L–1)

Zn0 78.7± 0.4c 75.4± 1.4b 82.2± 0.96a 77.5± 1.4a 0.82± 0.006b 0.83± 0.008c 12.3± 0.55b 14.9± 0.50b

Zn150 80.9± 0.6b 78.5± 0.8a 84.6± 0.73a 80.3± 0.7a 0.84± 0.002a 0.84± 0.002b 14.2± 0.63a 16.5± 0.34a

Zn300 84.0± 0.6a 80.2± 1.0a 85.4± 0.42a 80.4± 0.9a 0.84± 0.001a 0.85± 0.001a 14.1± 0.64a 16.8± 0.37a

P×Zn

P0× Zn0 77.3± 0.1a 71.3± 0.6e 78.9± 1.24c 73.2± 0.1d 0.80± 0.000d 0.80± 0.001c 10.3± 0.10c 13.0± 0.39c

P0× Zn150 88.0± 0.8a 79.5± 0.6b 84.3± 0.07b 79.3± 0.5bc 0.84± 0.004c 0.85± 0.001ab 13.8± 0.70b 16.9± 0.53ab

P0× Zn300 82.6± 1.1a 81.2± 0.6ab 84.5± 0.72ab 83.3± 0.8a 0.84± 0.000bc 0.84± 0.001ab 12.2± 0.65bc 15.7± 0.27b

P36× Zn0 79.8± 0.7a 80.6± 0.2ab 83.7± 0.33b 77.7± 0.2c 0.84± 0.003c 0.85± 0.004a 13.1± 0.73b 15.8± 0.05b

P36× Zn150 80.5± 1.2a 80.7± 0.4ab 85.2± 1.42ab 81.7± 2.0ab 0.84± 0.003bc 0.84± 0.002b 12.6± 0.47b 16.4± 0.85ab

P36× Zn300 83.4± 0.2a 76.7± 1.1c 86.5± 0.75a 77.8± 0.6c 0.85± 0.001a 0.85± 0.001a 14.0± 0.73b 17.1± 0.09ab

P72× Zn0 79.2± 0.4a 74.3± 0.5d 84.0± 1.18b 81.6± 2.0ab 0.84± 0.002bc 0.84± 0.003ab 13.5± 0.12b 15.9± 0.28ab

P72× Zn150 82.1± 0.8a 75.4± 0.2cd 84.3± 2.02b 79.9± 0.1abc 0.85± 0.002ab 0.85± 0.005ab 16.3± 0.68a 16.2± 0.52ab

P72× Zn300 86.0± 0.6a 82.6± 1.0a 85.2± 0.13ab 79.9± 0.1abc 0.85± 0.001ab 0.85± 0.001a 16.0± 0.44a 17.5± 0.81a

p-value

P 0.009** 0.030* 0.090* 0.180ns <0.001** <0.001** 0.006** 0.012ns

Zn 0.003** 0.005** 0.159ns 0.088ns 0.003** <0.001** 0.002** 0.001**

P× Zn 0.147ns <0.001** 0.017* 0.001** <0.001** <0.001** 0.073* 0.025*

CV (%) 1.22 1.46 1.20 2.11 0.41 0.42 8.04 4.86

P0, P36 and P72: 0, 36 and 72kg P2O5 ha–1, respectively; Zn0, Zn150 and Zn300: 0, 150 and 300 Zn mgL–1, respectively. Values are the mean of
3 replicates± standard errors. Means not sharing the common letters for each factor in each column differ significantly at p≤ 0.05

However, these combinations were statistically at par with
P0× Zn150, P0× Zn300 and P36× Zn0 (for chlorophyll fluores-
cence) and with P0× Zn150 and P36× Zn150 (for performance
index) in the 2nd season.

Canola Yield Traits

Siliques no. plant–1, seed index and seed yield of canola
significantly (p≤ 0.05) influenced by P and Zn and their
interaction in both seasons (Table 2). The main effects of for
each P and Zn clarified the progressive increase in all yield
traits with increase the application rate. Accordingly, as
averages of the two seasons, plots treated with P72 achieved
increases of 35.6, 14.8 and 70.0% in siliques no. plant–1,
seed index and seed yield, respectively, greater than the
untreated ones.

Zn300 possessed the maximum increases in all yield traits
however, significantly equaled Zn150 for siliques no. plant–1,
in the 1st season and seed index n both seasons. Seed
yield of Zn300 were higher than Zn0 and Zn150 by1.30 and
1.10 times in 2019/20 season and 1.23 and 1.05 times in
2020/21 season.

Concerning the interaction, seed index and seed yield of
canola significantly responded to P× Zn, while siliques no.
plant–1 did not affect (Table 2). All combinations between
P and Zn showed similar improvements in seed index and
seed yield in both seasons, except for P0× Zn0 and P0× Zn150,
which recorded lower values.

Canola Protein and Oil

The responses of seed oil and protein content as affected
by individual effects of P and Zn are illustrated in Fig. 1.
P36 gave the maximum value of seed protein % in 2020/21
season. While, P72 showed the highest increase in seed oil
% in both seasons statistically leveled with P36 in 2019/20
season.

Addition of Zn300 caused the highest seed protein content
in both seasons, without significant differences with Zn150

in the 2nd season. Also, Zn150 showed the maximum oil
content in both seasons, significantly leveled with Zn300 in
the 2nd season.

Remarkable effects of the interaction between P and
Zn on seed and protein content of canola were obtained
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Table 2 Yield attributes of canola plants grown in saline soil as affected by phosphorus, zinc and their interaction in 2019/20 and 2020/21 seasons

Treatment Siliques no. plant–1 Seed index (g) Seed yield (t ha–1)

2019/20 2020/21 2019/20 2020/21 2019/20 2020/21

Phosphorus, P (kg ha–1)

P0 142.0± 5.1c 148.5± 4.3c 2.79± 0.14b 2.94± 0.17b 2.06± 0.09c 2.04± 0.05c

P36 171.8± 4.2b 167.5± 5.1b 3.18± 0.08a 3.37± 0.07a 2.63± 0.14b 2.74± 0.16b

P72 192.5± 4.6a 201.4± 6.6a 3.14± 0.05a 3.44± 0.06a 3.45± 0.11a 3.52± 0.09a

Zinc, Zn (mg L–1)

Zn0 153.1± 8.0b 156.2± 6.4c 2.84± 0.16b 2.96± 0.18b 2.34± 0.19c 2.44± 0.20c

Zn150 172.1± 7.8a 170.5± 8.4b 3.07± 0.04a 2.34± 0.06a 2.76± 0.22b 2.84± 0.23b

Zn300 181.0± 7.1a 190.8± 9.0a 3.18± 0.07a 3.45± 0.05a 3.04± 0.21a 3.01± 0.23a

P× Zn

P0× Zn0 123.6± 0.6a 136.9± 1.4a 2.36± 0.26c 2.29± 0.06d 1.79± 0.10b 1.89± 0.05b

P0× Zn150 144.0± 1.5a 145.6± 2.7a 2.97± 0.06b 3.23± 0.07c 2.10± 0.09b 2.09± 0.09b

P0× Zn300 158.4± 1.0a 163.1± 5.8a 3.03± 0.11ab 3.30± b0.05c 2.27± 0.10a 2.14± 0.09a

P36× Zn0 157.9± 3.3a 152.6± 4.2a 3.11± 0.17ab 3.15± 0.10c 2.18± 0.11a 2.19± 0.11a

P36× Zn150 174.6± 1.9a 164.1± 3.2a 3.17± 0.03ab 3.44± 0.11ab 2.58± 0.04a 2.80± 0.12a

P36× Zn300 183.0± 5.9a 185.7± 2.4a 3.26± 0.18a 3.52± 0.02a 3.13± 0.03a 3.23± 0.08a

P72× Zn0 178.0± 1.6a 179.0± 4.3a 3.07± 0.14ab 3.44± 0.10ab 3.04± 0.09a 3.22± 0.04a

P72× Zn150 197.7± 1.3a 201.8± 1.2a 3.07± 0.02ab 3.34± 0.11abc 3.60± 0.08a 3.65± 0.13a

P72× Zn300 201.7± 9.6a 223.5± 3.1a 3.26± 0.06a 3.53± 0.07a 3.71± 0.08a 3.68± 0.06a

p-value

P <0.001** <0.001** 0.003** 0.001** <0.001** <0.001**

Zn 0.003** 0.003** 0.351ns 0.001** <0.001** 0.001**

P× Zn 0.478ns 0.478ns 0.019* <0.001** 0.020* 0.030*

CV (%) 3.51 3.51 4.45 2.97 5.62 6.34

P0, P36 and P72: 0, 36 and 72kg P2O5 ha–1, respectively; Zn0, Zn150 and Zn300: 0, 150 and 300 Zn mgL–1, respectively. Values are the mean of
3 replicates± standard errors. Means not sharing the common letters for each factor in each column differ significantly at p≤ 0.05

Fig. 1 Seed protein and oil content of canola plants grown in saline
soil as affected by phosphorus and zinc in 2019/20 and 2020/21 sea-
sons. P0, P36 and P72: 0, 36 and 72kg P2O5 ha–1, respectively; Zn0,
Zn150 and Zn300: 0, 150 and 300 Zn mgL–1, respectively. Values are
the mean of 3 replicates± standard errors. Means not sharing the com-
mon letters for each factor in each bar differ significantly at p≤ 0.05

(Fig. 2). P0× Zn150, P0× Zn300 and P36× Zn150 in both seasons,
in addition to P72× Zn150 and P72× Zn300 in the 1st season as
well as P36× Zn0 and P36× Zn300 in the 2nd season were the
effective combination for increasing protein %. The high-
est oil % was recorded with P0× Zn150 and P72× Zn0 in the
1st season and with P72× Zn150 in the 2nd season.

Discussion

There is no doubt that the crop plants that subjected to
environmental stresses cannot grow and develop normally
(El-Bially et al. 2018, 2022b; El-Metwally et al. 2022).
Under abiotic stresses such as salinity, drought and heat,
disturbance in the physiological status is realized (Semida
et al. 2015; Saudy et al. 2021a; Abd El-Mageed et al.
2020; Makhlouf et al. 2022). Consequently, crop produc-
tivity and quality adversely influenced (El-Metwally et al.
2021; Saudy et al. 2022b). Specifically, salinity has mul-
tiple adverse effects start in the soil and extend to plant
metabolism. Despite the large-scale supply of P fertilizer
could increase the total quantity of P in arable lands, large
amount of P is fixed in the saline soil, which is difficult to
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Fig. 2 Seed protein and oil content of canola plants grown in saline
soil as affected by the interaction of phosphorus (P) and zinc (Zn) in
2019/20 and 2020/21 seasons. P0, P36 and P72: 0, 36 and 72kg P2O5

ha–1, respectively; Zn0, Zn150 and Zn300: 0, 150 and 300 Zn mg L–1,
respectively. Values are the mean of 3 replicates± standard errors.
Means not sharing the common letters for each factor in each bar differ
significantly at p≤ 0.05

move to the crop rhizosphere. Hence, P utilization rate did
not exceed 25% (Perassi and Borgnino 2014). Soil envi-
ronment was affected by salinity causing nutrient lack and
affected the content of available phosphorus in soil (Xie
et al. 2022). In salt-affected soils (salinity or alkalinity im-
pacts) the applied phosphorus to the soil transforms into
insoluble form of phosphate with low availability (Bruland
and DeMent 2009). Saline soil is typified by low nutrient
ion activity, involving P and Zn, due to intemperate ra-
tios of Na+/Ca2+, Na+/K+, Ca2+/Mg2+, and Cl–/NO3– in the
soil solution, which affected the plant growth and nutrient
uptake (Grattan and Grieve 1992; Bidalia et al. 2019). In
sodium chloride medium, significant reduction in nitrogen,
potassium and zinc was obtained (Murat et al. 2007). Ad-
ditionally, high osmotic pressure and increase Na+ and Cl–

inflow into root cells, generated by salinity, create shortage
in the vital nutrient uptake, causing ionic imbalance in plant
cells (Wang et al. 2017).

Accordingly, salinity generates another abiotic stress ex-
pressed in P deficiency. Due to such stress, membrane sta-
bility index, relative water content, chlorophyll fluorescence
and performance index of canola were deteriorated under
salinity. Unlike, providing the saline soil with P improved
the physiological state of canola.

On the other site, by adjusting the permeability of cell
membrane zinc quenches excessive Na uptake under salin-
ity (Aktaş et al. 2006). Also, zinc decreased Na accretion
and improved K/Na ratio in plants under salinity (Saleh
et al. 2009; Nadeem et al. 2020). Therefore, canola cell
membranes exhibited high permeability, hence leakage
of some compounds from the roots under Zn deficiency.
While, Zn supply improved the physiological state of
canola expressed in enhancing membrane stability index,
relative water content, chlorophyll fluorescence and perfor-
mance index. Consequently, yield traits and seed quality
were increased.

Since phosphorus level in soil is one of the signifi-
cant factors affecting the zinc mobility and uptake (Wei
et al. 2007), foliar application of Zn was more efficient
for enhancing canola physiology and yield under P supply.
Also, Zn has a crucial act in indole acetic acid biosynthe-
sis, beginning of the primordia of the reproductive organs
and metabolic reactions (Brown et al. 1993; Rehman et al.
2012), hence canola yield traits were improved.

Conclusion

Since salinity has disturbed the physiological processes of
the plant, there have been quantitative and qualitative losses
in the canola yield. According to the findings of the current
study, the integration between P and Zn helped canola plants
grown in saline soil to produce high yield with good quality
oil and protein. It is worthily to note that supplying canola
grown in saline soils with Zn can compensate the deficiency
in P and vice versa.
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