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Abstract
In recent years, deep learning-based plant disease classification has been widely developed. However, it is challenging to
collect sufficient annotated image data to effectively train deep learning models for plant disease recognition. The attention
mechanism in deep learning assists the model to focus on the informative data segments and extract the discriminative
features of inputs to enhance training performance. This paper investigates the Convolutional Block Attention Module
(CBAM) to improve classification with CNNs, which is a lightweight attention module that can be plugged into any CNN
architecture with negligible overhead. Specifically, CBAM is applied to the output feature map of CNNs to highlight impor-
tant local regions and extract more discriminative features. Well-known CNN models (i.e. EfficientNetB0, MobileNetV2,
ResNet50, InceptionV3, and VGG19) were applied to do transfer learning for plant disease classification and then fine-
tuned by a publicly available plant disease dataset of foliar diseases in pear trees called DiaMOS Plant. Amongst others, this
dataset contains 3006 images of leaves affected by different stress symptoms. Among the tested CNNs, EfficientNetB0 has
shown the best performance. EfficientNetB0+CBAM has outperformed EfficientNetB0 and obtained 86.89% classification
accuracy. Experimental results show the effectiveness of the attention mechanism to improve the recognition accuracy of
pre-trained CNNs when there are few training data.
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Optimierung der auf Deep Learning basierenden Klassifizierung von Pflanzenkrankheitenmit CBAM

Zusammenfassung
In den letzten Jahren werden immer stärker auf Deep Learning basierende Verfahren zur Klassifikation von Pflanzen-
krankheiten entwickelt. Es bleibt jedoch herausfordernd, ausreichend annotierte Bilddatenbanken aufzubauen, um De-
ep-Learning-Modelle für die Erkennung von Pflanzenkrankheiten effektiv zu trainieren. Der Attention-Mechanismus im
Deep Learning unterstützt das Modell dabei, sich auf die informativen Datensegmente zu fokussieren und die Unter-
scheidungsmerkmale der Eingabedaten zu extrahieren, um die Trainingsleistung zu verbessern. Diese Studie untersucht
das Convolutional Block Attention Module (CBAM) zur Verbesserung der Klassifizierung mit CNNs, einem zusätzlichen
Modul, das mit vernachlässigbarem Overhead in jede CNN-Architektur integriert werden kann. CBAM wird innerhalb
von CNNs verwendet, um wichtige lokale Regionen hervorzuheben und diskriminierende Merkmale zu extrahieren. In
dieser Studie wurden bekannte CNN-Modelle (d.h. EfficientNetB0, MobileNetV2, ResNet50, InceptionV3 und VGG19)
genutzt, um Transfer-Lernen für die Klassifizierung von Pflanzenkrankheiten durchzuführen, und dann durch einen öffent-
lich verfügbaren Pflanzenkrankheitsdatensatz von Blattkrankheiten bei Birnenblättern (DiaMOS Plant) modelliert. Dieser
Datensatz enthält unter anderem 3006 Bilder von Birnenblättern, die verschiedene Stresssymptomen aufweisen. Unter den
getesteten CNNs zeigte EfficientNetB0 die beste Leistung. Durch die Integration von CBAM (EfficientNetB0+CBAM)
konnte diese Leistung übertroffen und eine Klassifizierungsgenauigkeit von 86,89% erreicht werden. Experimentelle Er-
gebnisse zeigen, dass die Nutzung von CBAM zu einer Verbesserung der Erkennungsgenauigkeit von vortrainierten CNNs
führen, insbesondere im Fall wenn nur wenige Trainingsdaten vorhanden sind.

Schlüsselwörter Klassifizierung von Pflanzenkrankheiten · Deep Transfer Learning · Attention-Mechanismus · CBAM ·
Datenlimitierung

Introduction

Plant leaves contain valuable information about plant
health. Because the first symptoms of plant stresses show
up in leaves, the visual assessment of plant leaves is a valu-
able aid in the early detection of plant diseases and the
prevention of crop failure. Yet, leaf disease identification
by agricultural experts based on their experience is a time-
consuming, tedious and inefficient process. On the other
hand, blind use of pesticides in some cases not only does
not prevent diseases but can also affect the quality of the
product and lead to environmental pollution.

The advancement of deep learning techniques, partic-
ularly convolutional neural networks (CNNs) has become
increasingly popular in precision agriculture Schirrmann et
al. (2021); de Camargo et al. (2021). In recent years, au-
tomatic classification of crop diseases has been carried out
using deep learning models to compensate for the lack of
human expertise. Selvaraj et al. (2019) trained three dif-
ferent CNNs (ResNet50, InceptionV2, and MobileNetV1)
using transfer learning to classify 18 different diseases us-
ing 18000 images of different parts of the banana plant.
It was found that ResNet50 and InceptionV2 based mod-
els performed better compared to MobileNetV1 in their
dataset. Kumar et al. (2020) explored InceptionV3 model
to diagnose coffee leaf diseases. They collected a dataset
of 1747 images of coffee leaves and categorized them into
5 classes (healthy and four different diseases). They uti-
lized the transfer learning technique to reduce the train-

ing time. To overcome the problem of limited data, they
applied data augmentation techniques to increase the data
set used to train the network. Liu et al. (2020) generated
a dataset of 107366 grape leaf images using image enhance-
ment and data augmentation techniques. They proposed
a Dense Inception-based Convolutional Neural Network
(DICNN) to classify images into seven different classes.
Ramcharan et al. (2017) collected a dataset of cassava dis-
ease images including 11670 images of three diseases and
two types of pest damages. They applied transfer learning
to train InceptionV3 model and analyzed the performance
of the model with three different classifiers: the original
softmax, support vector machines (SVM), and k-nearest
neighbor (KNN). Liu and Wang (2020) created a dataset
of tomato diseases and pests under real natural conditions
with 15000 images for 12 different classes of diseases and
pests. They optimized the feature layer of You Only Looks
Once version 3 (YoloV3) model using an image pyramid to
achieve multi-scale feature detection and improve detection
accuracy. Fuentes et al. (2017) considered three detectors:
Faster Region-based Convolutional Neural Network (Faster
R-CNN), Region-based Fully Convolutional Network (R-
FCN), and Single Shot Multibox Detector (SSD) to explore
the performance of Deep Learning in detecting diseases and
pests on tomato. To improve the detection and localization
of bounding boxes, they combined each of the detection
models with deep feature extractors such as VGG network
and Residual Network (ResNet). They evaluted their pro-
posed method on a dataset of tomato diseases and pests,
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which includes 5000 images of nine different classes of
diseases and pests. Liu et al. (2017) proposed an AlexNet-
based deep model for apple leaf disease detection using
a dataset of 13689 images of four different apple disease.
In addition to working on specific species, some research-
ers also focused on classifying different diseases in different
species. Ferentinos (2018) explored different CNN architec-
tures such as AlexNet, VGG and GoogleNet to classify 58
different plant diseases from 25 different plant species. Too
et al. (2019) conducted an experiment to evaluate VGG16,
InceptionV4, ResNet50-152 layers, and DenseNet121 for
classifying 38 different diseases, including diseased and
healthy images of leaves from 14 plants from the plantVil-
lage dataset.

With the advances that have been made through the use
of Deep Learning, some new challenges have also emerged.
Deep Learning techniques require large amounts of data to
train the network, which is virtually impossible to obtain
due to the limited amount of annotated data in plant disease
classification problems. In most cases, researchers fine-tune
off-the-shelf deep models to solve the problem of limited
data. Contrary to popular belief, some research has shown
that transfer learning does not always lead to better per-
formance because features cannot be readily transferred to
other tasks Raghu et al. (2019); He et al. (2019). In addition,
some methods try to improve the performance of the deep
model by using complex scenarios and huge deep learn-
ing models. However, if we have a limited data problem,
using a huge deep model with many parameters can lead
to an overfitting problem. On the other hand, most models
learn not only relevant disease features, but unfortunately
they also learn irrelevant image features such as background
noise or uninfected plant parts Ferentinos (2018); Mohanty
et al. (2016); Toda and Okura (2019); Lee et al. (2020b).
This will lead to confusion between similar plants of differ-
ent disease classes. Therefore, the problem of limited data
leads the model to learn irrelevant features. To solve this
problem, Fuentes et al. (2017, 2019) proposed a region-
based deep neural network to focus on contaminated parts
of leaves. This is a very time-consuming technique because
it requires labour-intensive manual annotation of disease
locations and also depends heavily on prior knowledge of
plant diseases. Lee et al. (2020a) developed a new method
based on GoogleNet and Recurrent Neural Network (RNN)
to automatically locate infected regions and extract rele-
vant features for disease image classification (20 diseases
and one healthy class). However, they performed better with
GoogleNet compared to a combination of GoogleNet with
RNN in the PlantVillage dataset. Using oversized deep neu-
ral network models tends to produce a lot of redundant fea-
tures that are either shifted versions of one another or are
very similar and reduce system performance Ayinde et al.
(2019).

Because the size/shape of a leaf disease may be sig-
nificantly different at different growth stages, the attention
mechanism can enhance disease feature extraction by high-
lighting disease information while suppressing non-disease
features of leaves and understating background information,
resulting in better detection accuracy. The Convolutional
Block Attention Module (CBAM) is an effective attention
module for feedforward convolutional neural networks Woo
et al. (2018). Given an intermediate feature map, CBAM
sequentially infers the attention map along two separate di-
mensions (channel and spatial) and then multiplies the at-
tention map with the input feature map for adaptive feature
refinement. CBAM is a lightweight module with negligible
parameters that can be plugged into the output of any CNN.
In terms of both parameters and computations, the overall
overhead of CBAM is quite small, but its role in improving
the performance of CNNs is remarkable.

In this research, some well-known CNN architectures
such as EfficientNetB0, MobileNetV2, ResNet50, Incep-
tionV3, and VGG19 were trained with images of leaves of
healthy and diseased plants to develop an automatic sys-
tem for plant disease diagnosis. To solve the problem of
limited data and learning irrelevant features, we plugged
CBAM into the output feature map of CNNs to highlight
important local regions and extract discriminative features.
To demonstrate the effectiveness of the proposed system in
a real-world application, we trained and tested our system
using the DiaMOS Plant dataset, which contains images ac-
quired under real field growing conditions Fenu and Malloci
(2021). The DiaMOS Plant dataset is an available dataset
of leaf diseases in pear trees. Amongst others, it contains
3006 images of leaves showing different stress symptoms.
The main contributions of the proposed work can be sum-
marized as follows:

� We show that using a huge deep learning model with
many parameters in small datasets is not an efficient so-
lution.

� We explore the advantage of the attention module for
learning representations of plant diseases in classification
performance.

� We show the effectiveness of the attention mechanism to
extract more discriminative features and improve the per-
formance of pre-trained CNNs with little training data.

The rest of the paper is organized as follows. Sect. 2 in-
troduces the CNN models, the CBAM that was used for
the investigation of the attention mechanism Vaswani et al.
(2017) that affects the performance of the system and pro-
posed system. Sect. 3 presents the dataset used for training
and testing, as well as the training procedure and perfor-
mance evaluation. Sect. 4 presents the results of applying
the proposed models for plant disease detection and diag-
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Table 1 A brief comparison
between the CNN architectures
used in this study

Network Number of parameters Number of layers Input images’ size

EfficientNetB0 5.3M 18 224 � 224 � 3

MobileNetV2 3.5M 53 224 � 224 � 3

InceptionV3 24M 48 224 � 224 � 3

ResNet50 25M 50 224 � 224 � 3

VGG19 143M 19 224 � 224 � 3

nosis, while the paper concludes in Sect. 5 with conclusions
and future research to improve the proposed method.

Methodology

Pre-trained CNNs

In this study, we used the following five pre-trained CNNs
for plant disease classification. We have initialized the net-
works with the weights from ImageNet Russakovsky et al.
(2015) dataset and then frozen all the convolutional and
max-pooling layers so that their weights could not be mod-
ified. Table 1 presents a brief information about the archi-
tecture of each network.

EfficientNet

Using the concept of compound scaling, Tan and Le (2019)
proposed EfficientNet to create various models in the fam-
ily that has great capability of feature extraction. Efficient-
Net is designed based on multiobjective neural architec-
ture search, and composite scaling to regularly measure
the depth, width, and resolution of the network. The core
component of the network is a mobile inverted bottleneck
convolution module which is inspired by inverted residual
and residual structure. In EfficientNet, instead of scaling
only the depth of the network, the network’s width and
resolution are scaled uniformly. Compared to other CNNs
architectures, it has fewer parameters and higher accuracy.
In this study, we used EfficientNetB0 which has 2 convolu-
tion layers and 16 mobile inverted bottleneck convolution
modules. The total number of parameters for the whole net-
work is about 5.3 million. EfficientNetB0 has a predefined
224 � 224 � 3 input size.

MobileNet

By replacing the standard convolution layers with depth-
wise separable convolution blocks, Howard et al. (2017)
proposed MobileNet as an efficient and lightweight deep
neural network to be used in mobile applications. Unlike
standard convolution layers which include 3�3 convolution
layer followed by batch normalization and ReLU, in Mo-
bileNet each convolution layer split into a 3 � 3 depthwise

convolution layer and a 1 � 1 pointwise convolution layer.
Depthwise convolution layer filters the inputs and pointwise
convolution layer combines the filtered values into a new set
of outputs. The first version of MobileNet (MobileNetV1)
has a convolution layer and 13 depthwise separable con-
volution blocks. Based on the bottleneck depth-separable
convolution with residuals, Sandler et al. (2018) proposed
the second version of MobileNet called MobileNetV2. The
main advantage of MobileNetV2 is each block has an extra
1�1 expansion layer to expand the data (increase the num-
ber of channels). The residual connection in the bottleneck
residual block works the same as in ResNet. We used Mo-
bileNetV2 with 3.4 M parameters for our experiments that
includes the initial fully convolution layer with 32 filters
and 19 residual bottleneck layers.

Inception

Szegedy et al. (2017) proposed a new type of architecture
called GoogleNet or Inception. Inception networks try to
improve computational efficiency while scaling up the net-
work. The network heavily utilizes NiN (network in net-
work) in its internal architecture to reduce the input dimen-
sion and to increase the network depth along with its width
to improve the overall performance. The filter-level sparsity
blocks are introduced in the inception module with the filter
sizes of 1�1, 3�3, and 5�5. The outputs of all layers are
concatenated into one output vector. In this work, we used
the third version of Inception (InceptionV3) which contains
24 million parameters and 48 layers.

ResNet

To avoid network complexity by increasing network depth
and thus reducing system performance, the Residual Net-
work architecture (ResNet) has been proposed He et al.
(2016). ResNet is composed of several residual blocks with
shortcut connections between layers. ResNet has been de-
veloped with a number of different layers (i.e. 50, 101,
etc.). We chose ResNet-50 for our experiments which con-
tains 49 convolution layers and 1 fully connected layer. The
total number of parameters for the whole network is about
25 million. ResNet-50 has a predefined 224�224�3 input
size.
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Fig. 1 The Convolutional Block
Attention Module (CBAM).
The upper side is the channel
attention module, and the lower
side is the spatial attention
module

VGG

Simonyan and Zisserman (2014) investigated the effect of
increased convolutional network depth on the performance
of deep model and proposed VGGNET. VGGNET is com-
posed of some convolution layers and fully connected lay-
ers. To reduce the number of parameters in VGGNET, con-
volution layers are implemented with small 3 � 3 filters.
Based on the number of convolution layers, two versions of
VGGNET called VGG16 and VGG19 were released which
have 13 and 16 convolution layers, respectively. Compared
to other pre-trained models, VGGNET has has a high num-
ber of parameters which makes it computationally expen-
sive. In this study, we used VGG19 which contains 143M
parameters.

Convolutional block attentionmodule (CBAM)

Oversized deep neural network models tend to produce a lot
of redundant and irrelevant features on small datasets that
are either shifted versions of one another or are very similar.
Using a computationally efficient architecture, Woo et al.
(2018) proposed CBAM to exploit both spatial and chan-
nel-wise attention Chen et al. (2017). The spatial attention
is a process to pay attention by emphasizing the locations
of percepts with high saliency to select relevant informa-
tion. The channel-wise attention is a process that tries to
apply weights to the channels based on their importance
to highlight more important channels. CBAM contains two
sequential submodules called the Channel Attention Mod-
ule and the Spatial Attention Module and can be used for
feed-forward CNN models. These two modules are applied
in a particular order to examine the feature map extracted
by the lower layers. The architecture of both modules are

shown in Fig. 1. The incoming feature map to the CBAM
is transfered into the feature map F 2 RC�H�W where
H and W denote the height and width of the feature map
and C denotes the number of channels. In the following,
the spatial dimension from the input map is removed by
maximum and average pooling layers. The global average
pooling layer obtains the aggregated spatial information,
whereas the global max pooling layer captures distinctive
object features to infer finer channel-wise attention. Using
two shared dense layers, CBAM computes a channel atten-
tion map MC 2 RC�1�1 from the reduced map (channel
attention module, upper side of Fig. 1). Then, a channel
refined feature map is obtained by multiplying the chan-
nel attention map by the incoming feature map F, such that
each element in F is multiplied by the corresponding chan-
nel weight in the channel attention map. Compared to the
channel attention module, the spatial attention module laid
more emphasis on the parts of the feature map, which is
complementary to the channel attention. To compute the
spatial attention module MS 2 R1�H�W (lower side of
Fig. 1), the channel refined feature map is squeezed into
two 2D feature maps using maximum and average pool-
ing along the channel axis. The two 2D feature maps are
then concatenated and convolved by a standard convolution
layer. To yield the final output of the CBAM, each element
in the channel-refined map is multiplied with the weight
by the corresponding spatial weight in the spatial attention
map. As a result, CBAM can focus on ‘what’ and ‘where’ to
highlight using the channel and the spatial attention opera-
tions, respectively. Thus, CBAM learns the key information
in channel dimension and the spatial dimension to extract
more efficient features.
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Fig. 2 The overall architecture of the models used in this study. The
left side (a) is the pre-trained model and the right side (b) is the pre-
trained model integrated with CBAM

ProposedModel

The pre-trained CNNs have been implemented for the Im-
ageNet classification problem, which includes 1000 cate-
gories of objects. Therefore, we transferred all their layers
except the fully connected (FC) layers and replaced them
with the FC layers including the global average pooling
layer, batch normalization, flatten, dense, dropout, softmax
layer, and a classification output layer which corresponds to
the classes of our dataset (i.e. 4 classes of plant diseases).
To show the effectiveness of CBAM, that it extracts more
discriminative features and improves the performance of
the pre-trained CNNs, we plugged the CBAM to the out-
put feature map of the CNNs. Then, we applied the FC
layers in the same way as the pre-trained models. Fig. 2
provides overviews of the pre-trained model and the pre-
trained model integrated with CBAM (pre-trained+CBAM)
architectures. We applied CBAM to the output feature map
of the pre-trained model to extract more efficient features.

Table 2 Number of images which were available in each class after
labeling the 3006 leaf images

Leaf Symptoms Number of Images

Healthy 43

Spot 884

Curl 54

Slug 2025

Experimental setup

Image dataset

In this study, we used a field dataset to diagnose and clas-
sify plant symptoms called DiaMOS Plant Fenu and Mal-
loci (2021). DiaMOS Plant is a pilot dataset containing
images of an entire growing season of pear trees, which
includes 3,006 leaf images. Using different devices includ-
ing a smartphone (Honor 6�) and DSRL camera (Canon
EOS 60D), the images were collected from three pear trees
of the same plot in Italy (2021) with two types of resolu-
tions, at 2976 � 3968 and 3456 � 5184, respectively. The
leaf images were captured from the upper side of the leaf
in uncontrolled conditions including various lighting, an-
gle, background, and noises. These characteristics lead to
a dataset that can be used for a real application. An ex-
pert has labeled biotic and abiotic stresses of each original
image of the entire leaf into one of the four categories:
leaf spot (caused by bacteria and fungi), leaf curl (multiple
causes e.g. pests, diseases), slug damage (Caliroa cerasi),
and healthy leaf. In Table 2 the number of images is given
which were available in each class after labeling the 3006
leaf images.

Training procedure and performance evaluation

In order to have an unbiased comparison, we adopted the
same strategy for training and evaluation of the pre-trained
and the pre-trained+CBAM models. The experimental
framework was written in Python 3.7 and the Keras deep
learning 2.4.3 library based on TensorFlow 2.2.1 backend .
Models were executed on a single NVIDIA GeForce RTX
2080Ti GPU with 11 GB of video memory. In Fenu and
Malloci (2021), the DiaMOS Plant dataset was divided into
training, validation, and test sets with a ratio of 7 W 2 W 1,
respectively. To preserve the percentage of samples for each
class, the authors of the DiaMOS Plant split the dataset
into training, validation, and test sets with the ShuffleSplit
strategy provided by the scikit-learn 0.23.2 library. The
ShuffleSplit strategy does not guarantee that all folds will
be different Pedregosa et al. (2011), so it is probable that
there are overlaps between training and testing sets. After
a thorough investigation, we found that our hypothesis is
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correct and there are about 200 overlaps between training
and test sets. To prevent overlapping and invalid comparison
between models, we performed ten-fold cross-validation.
The complete dataset was split into ten folds. Then, we
iteratively trained the deep learning models on nine folds
while using the remaining holdout fold as the test set. The
fitting procedure performed a total of ten times. To train
the models, we set the number of epochs and the batch
size to 100 and 32, respectively. As the dataset includes
a limited number of images and to prevent overfitting
and manage the unbalance of the classes, we applied data
augmentation, including horizontal and vertical mirroring,
rotation, color variation, and all images were resized to
224 � 224�3. The input images of the CNNs underwent
one-to-one augmentation without duplication. To avoid
a long training time, we used pre-trained models trained
using the ImageNet dataset with a cross-entropy function.
To avoid the plateau phenomenon, the model’s validation
loss was monitored during the reduction of the learning
rate to stop it when it does not improve. A learning-rate
of 2 � 10−5 and a momentum of 0.9 were set. We used
the Adam algorithm for optimization. The performance of
the models was evaluated by macro-averaged and micro-
averaged versions of precision, recall, F-score, and overall
classification accuracy extracted by the confusion matrices
as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-Score = 2 � Precision � Recall

Precision + Recall
(3)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively. Precision is
the ratio of correctly predicted positive observations to the
total predicted positive observations, whereas Recall (Sen-
sitivity) is the ratio of correctly predicted positive observa-
tions to all observations in the actual class. Thus, precision
focuses on the prediction, whereas recall focuses on the
measurements. F-Score is the harmonic average of Preci-
sion and Recall. The measure selected by the authors for
ranking the systems was the overall classification accuracy
score.

Results and Discussion

The results obtained by the five pre-trained CNNs for
classification of the pear disease images with and without
applying CBAM to the output of CNNs are presented in the
Table 3. The values are the means over the ten folds. We
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Table 4 Comparison of dif-
ferent networks in terms of
parameters and computation
over ten fold cross validation
(mean˙ standard deviation)
when we integrated them to
CBAM. CBAM has a light
overhead and computational
load

Network Number of parameters Training time (s/epoch) Classification
time (ms/image)

ResNet50 25698180 116.3˙2.46 32.3˙1.84

ResNet50+CBAM 26749158 123.8˙1.96 32.7˙1.47

VGG19 143555844 165.5˙2.76 46.7˙2.24

VGG19+CBAM 144622054 173.3˙3.13 48.1˙2.94

InceptionV3 23913252 118.6˙3.24 33.5˙ 2.23

InceptionV3+CBAM 24964230 121.4˙2.68 34.8˙1.91

MobileNetV2 3578948 96.7˙3.65 24.5˙2.34

MobileNetV2+CBAM 3990086 99.4˙1.43 26.5˙1.97

EfficientNetB0 5370528 86.6˙1.64 22.1˙1.33

EfficientNetB0+CBAM 5781666 92.3˙2.12 22.9˙1.55

compared the performance of applying CBAM on the out-
put of ImageNet pre-trained models including ResNet50,
VGG19, InceptionV3, MobileNetV2 and EfficientNetB0
since they were reported to be the baseline models for pear
disease identification on the DiaMOS Plant dataset Fenu
and Malloci (2021). As we have discussed in Sect. 3.2,
there are overlaps between training and test sets provided
by DiaMOS Plant dataset collectors. This is the main reason
why they have achieved higher rates than us. Therefore, for
an unbiased comparison, we trained and tested the models
on disjoint sets over ten-fold cross validation. First, we
compared the performances of the three most depth models
i.e. ResNet50, VGG19 and InceptionV3. The ResNet50,
VGG19 and InceptionV3 achieved accuracies of 69.90,
73.09 and 76.61%, respectively. The ResNet50, VGG19
and InceptionV3 are very huge and heavy models that have
many parameters to learn. On the other hand, DiaMOS Plant
dataset is an imbalanced small dataset with 3,505 images,
which includes 43 and 54 images for healthy and curl
classes, respectively. As we discussed earlier, using a huge
deep learning model with many parameters on a small
dataset can lead to an overfitting problem and consequently
reduce system performance in the test set. To demonstrate
the role of CBAM in representation power enhancement
and performance improvement, CBAM was only plugged
into the baseline networks. The networks integrated with
CBAM outperform the baselines in terms of all the per-
formance metrics except for VGG19. VGG19+CBAM has
close performance with VGG19 for micro-averaged pre-
cision and micro-averaged F-score metrics. This could be
due to the large size of VGG19 for DiaMOS Plant dataset.
However, the networks with CBAM achieved the best ac-
curacies compared to the baselines, demonstrating that the
CBAM generates a richer descriptor and spatial attention
that complements the channel attention effectively. Ap-
plying CBAM to the output of the models improved the
accuracies of ResNet50, VGG19, and InceptionV3 by 1.46,
0.33, and 1.26%, respectively. Since the overall overhead
of CBAM is quite small in terms of both parameters and

computation as shown in the Table 4, CBAM was also
applied to the light-weight networks, MobileNetV2 and Ef-
ficientNetB0. MobileNetV2 and EfficientNetB0 achieved
accuracies of 82.06 and 85.82%, respectively, indicating
that using the light-weight backbone networks for the
small DiaMOS Plant dataset leads to better performances.
As shown in the Table 3, we observe significant im-
provements from MobileNetV2 and EfficientNetB0 for all
performance metrics, demonstrating the effect of applying
CBAM to the baseline methods. MobileNetV2+CBAM and
EfficientNetB0+CBAM achieved accuracies of 83.99 and
86.89%, respectively, which are greater than MobileNetV2
and EfficientNetB0 by 1.93 and 1.07%, respectively. Com-
pared to the baselines, EfficientNetB0 has the best results
for all performance metrics. EfficientNetB0 integrated with
CBAM outperforms EfficientNetB0 and improves macro-
averaged and micro-averaged versions of precision, recall,
F-score, and overall classification accuracy.

To make the role of CBAM in discriminative feature
enhancement and performance improvement more trans-
parent, gradient-weighted class activation maps (Grad-
CAM) Selvaraju et al. (2017) were applied to Efficient-
NetB0 and EfficientNetB0+CBAM networks using images
from the DiaMOS Plant test set to highlight important re-
gions. Grad-CAM is a gradients-based visualization method
that tries to calculate the importance of the spatial locations
in convolutional layers with respect to a unique class. We
attempted to look at how CBAM helps the network to
enhance the power of discrimination by highlighting the
regions that the network has considered as important for
predicting a class. The visualization results of CBAM-
integrated EfficientNetB0 (EfficientNetB0+CBAM) were
compared with baseline (EfficientNetB0). Fig. 3 illustrates
the visualization results. The Softmax scores for target
class and also different classes are shown in the figure.

From Fig. 3, it can be seen that EfficientNetB0+CBAM
covers the plant symptoms regions better than Efficient-
NetB0. CBAM helps EfficientNetB0 to better exploit infor-
mation in leaf diseases regions and aggregate features from
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Fig. 3 Grad-CAM visualization results that highlight the importance
regions for trained model prediction. We compared the visualization
results of CBAM-integrated EfficientNetB0 (EfficientNetB0+CBAM)
with baseline (EfficientNetB0). The grad-CAM visualization was cal-
culated for the last convolutional outputs. The ground-truth label is
shown on the top of each input image and P denotes the softmax score
of each network for the different classes. The correctly predicted class
and its score are shown in blue and the incorrectly predicted class and
its score are shown in red. It is apparent that CBAM supports the net-
work to correct its prediction and increase target class scores

them. Due to the high degree of similarity between leaf
spot and slug damage in some images, the network predicts
the target class incorrectly. As shown in Fig. 3, Efficient-
NetB0 predicted the slug input image as leaf spot class. The
feature refinement process of CBAM helps the network to
utilize given features well and correct its prediction. In ad-
dition, for the leaf spot input, CBAM helps the network
to increase the target class score and decrease other class
scores accordingly. This leads to a more discriminative deep

Fig. 4 Confusion matrices re-
lated to a EfficientNetB0 and
b EfficientNetB0+CBAM for
classifying plant disease images
of the DiaMOS Plant dataset
(obtained by summing the con-
fusion matrices of all the ten
folds)

learning model, which can help classifying real application
data.

Confusion matrices related to the performance of Effi-
cientNetB0 (as the best performed pre-trained CNN) and
EfficientNetB0+CBAM are shown in Fig. 4. The confusion
matrices obtained by summing confusion matrices of all the
ten folds. The confusion matrix provides the performance
of a predictive model to show which classes are being pre-
dicted correctly and which are incorrectly predicted. As
we can see, EfficientNetB0 predicted some slug damage
images as leaf spot class because of the high degree of sim-
ilarity and imbalanced data. Integrating the network with
CBAM helps to distinguish between classes and improve
classification accuracy.

It is interesting that these improvements result from plug-
ging CBAM into the pre-trained models with a negligible
parameter overhead, indicating that enhancement is not due
to a naive capacity increment but because of CBAM’s effec-
tive feature refinement. As a result, the networks integrated
with CBAM outperform all the baselines, demonstrating
the general applicability of CBAM across different archi-
tectures. CBAM can be seamlessly integrated and trained
into any CNN architecture to improve networks. In addition,
the result using the light-weight backbone networks (Mo-
bileNetV2 and EfficientNetB0) and the overhead of CBAM
show that CBAM can be an effective module to improve
the performance of networks in low-end devices.

To determine whether there were statistically significant
differences between the mean of the pre-trained and the
pre-trained+CBAM models in Table 3, the paired t-test was
conducted. In the paired t-test, if p-Value < ˛ = 0.05,
the null hypothesis is rejected, which means that differ-
ences in the model outcomes are so convincing at 95% of
confidence that they can be considered significant. Table 5
reports the results of the paired t-test. According to Table 5,
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Table 5 The results of the paired
t-test between pre-trained and
proposed models

Pre-trained model Proposed model Tobs p-Value

ResNet50 ResNet50+CBAM −6.5682 0.0003

VGG19 VGG19+CBAM −1.6273 0.1477

InceptionV3 InceptionV3+CBAM −2.4375 0.0449

MobileNetV2 MobileNetV2+CBAM −6.0106 0.0005

EfficientNetB0 EfficientNetB0+CBAM −6.9361 0.0002

p-Value < 0.05 were found in all comparisons except for
VGG19. Using a huge deep learning model with many pa-
rameters such as VGG19 on a small dataset can lead to an
overfitting problem and consequently reduce system per-
formance in the test set. Therefore, CBAM plugging to
VGG19 has no effect on improving the performance. From
Table 5, the null hypothesis is rejected for ResNet50, In-
ceptionV3, MobileNetV2, and EfficientNetB0, and it can
be concluded that the resultant accuracy in Table 3 between
the pre-trained and the pre-trained+CBAM models are not
due to chance for the mentioned networks. According to
Table 5, the hypothesis proposed in innovations is proven.

Conclusions and Future Directions

In this study, the Convolutional Bottleneck Attention Mod-
ule (CBAM) was investigated to improve the representation
power of CNN networks for automatic plant disease classi-
fication. We applied attention-based feature refinement with
two different modules, channel and spatial, to the baselines’
output feature map to improve performance while keeping
overhead low. CBAM helps baselines learn what and where
to highlight to effectively refine features. We have shown
that integrating CBAM with baselines has higher general-
ization ability than baselines, especially in discriminating
similar symptom classes. We conducted our experiments on
the DiaMOS Plant dataset, which was collected under un-
controlled conditions. The integrated baselines with CBAM
performed better than all other baselines. We also showed
that CBAM causes the network to properly focus on the
target plant disease class. CBAM could help networks over-
come the problem of lack of sufficient training data needed
to learn deep models. In this study, we only plugged CBAM
into the pre-trained models to show the important role of
the attention module in improving plant disease classifica-
tion in an imbalanced small dataset. Future research direc-
tions include: (1) developing a novel deep model based on
the attention module, e.g., CBAM and residual or dense
blocks with light weights such as SoilNet Alirezazadeh et
al. (2021) for plant disease classification; (2) using a mar-
gin-based softmax loss Alirezazadeh et al. (2022); Tavakoli
et al. (2021) instead of the original softmax to improve the
discriminative power of the feature space.
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