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Abstract
Soil not only represents the main supporter for root growth, but also is the supplier of water and nutrients. However,
several soils, i.e. sandy soils, do not adequately fulfill the plant growth requirements of the environmental resources.
Therefore, it is necessary to compensate, even partially, the lack of these required resources for better plant growth and
development. Amino acids could introduce a substantial solution in this respect. Therefore, two field experiments under field
conditions were carried out to investigate the effect of glutamic (GLA) and 5-aminolevulinic (ALA) acids on photosynthesis
pigments, oxidative defense indicators as well as yield and seed quality of peanut. Three concentrations of glutamic acid
(10, 20 and 40mgL–1, denoted GLA10, GLA20, and GLA40, respectively) and three concentrations of 5-aminolevulinic
acid, (10, 20 and 40mgL–1, abbreviated to ALA10, ALA20, and ALA40, respectively), in addition to a check treatment
(tap water) were applied. Treatments were arranged in a randomized complete block design with three replicates. Findings
exhibited potentiality of GLA20 treatment for recording the highest values of chlorophyll a, chlorophyll b, chlorophyll a/b,
carotenoids and total pigments compared to the other treatments. The increases in indole acetic acid, phenolics and free
amino acids were 68.1, 58.9 and 19.6% as well as 64.6, 51.2 and 17.7%, due to application of GLA20 and ALA20,
respectively. Substantial improvements in pod yield ha–1, oil %, flavonoids and antioxidant activity were obtained with
GLA20 or ALA20. In conclusion, since glutamic or 5-aminolevulinic acids at concentration of 20mgL–1 showed promotive
effect on physiological and biochemical status of peanut, such amino acids should be adopted as a promising practice in
peanut cultivations.
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StimulierendeWirkung von Glutaminsäure und 5-Aminolävulinsäure auf photosynthetische
Pigmente, physio-biochemische Bestandteile, antioxidative Aktivität und Ertrag von Erdnüssen

Zusammenfassung
Der Boden ist nicht nur der Hauptträger des Wurzelwachstums, sondern auch der Lieferant von Wasser und Nährstoffen.
Einige Böden, z.B. Sandböden, erfüllen jedoch die Anforderungen des Pflanzenwachstums an die Umweltressourcen nicht
in ausreichendem Maße. Daher ist es notwendig, den Mangel an diesen erforderlichen Ressourcen für ein besseres Pflan-
zenwachstum und eine bessere Entwicklung auszugleichen – auch nur teilweise. Aminosäuren könnten in dieser Hinsicht
eine Lösung darstellen. Daher wurden zwei Feldversuche unter Freilandbedingungen durchgeführt, um die Wirkung von
Glutaminsäure (GLA) und 5-Aminolävulinsäure (ALA) auf die Photosynthesepigmente, die Indikatoren für den oxidativen
Schutz sowie den Ertrag und die Samenqualität von Erdnüssen zu untersuchen. Drei Konzentrationen von Glutaminsäure
(10, 20 und 40mgL–1, bezeichnet als GLA10, GLA20 bzw. GLA40) und drei Konzentrationen von 5-Aminolävulinsäu-
re (10, 20 und 40mgL–1, abgekürzt als ALA10, ALA20 bzw. ALA40) wurden zusätzlich zu einer Kontrollbehandlung
(Leitungswasser) angewendet. Die Behandlungen wurden in einem randomisierten vollständigen Blockversuch mit drei
Wiederholungen angeordnet. Die Ergebnisse zeigten, dass die GLA20-Behandlung im Vergleich zu den anderen Behand-
lungen die höchsten Werte für Chlorophyll a, Chlorophyll b, Chlorophyll a/b, Carotinoide und Gesamtpigmente aufwies.
Der Anstieg der Indolessigsäure, der Phenole und der freien Aminosäuren betrug 68,1, 58,9 und 19,6% bzw. 64,6, 51,2 und
17,7% durch die Anwendung von GLA20 und ALA20. Mit GLA20 bzw. ALA20 wurden erhebliche Verbesserungen des
Schotenertrags pro ha, des Ölanteils, der Flavonoide und der antioxidativen Aktivität erzielt. Da Glutaminsäure oder 5-Ami-
nolävulinsäure in einer Konzentration von 20mgL–1 eine positive Wirkung auf den physiologischen und biochemischen
Status der Erdnuss zeigten, sollten diese Aminosäuren im Erdnussanbau eingesetzt werden.

Schlüsselwörter Antioxidantien · Glutamat · Hormonelle Vorstufen · Ölsaaten · Pflanzenpigmente · Reaktive
Sauerstoffspezies

Introduction

Under natural conditions, many crops are vulnerable to a va-
riety of stresses, such as drought, salinity, heavy metals, and
disease (Shahid et al. 2017; Saudy and El-Metwally 2019;
Abd–Elrahman et al. 2022). Crops cultivated in marginal
or sandy soils, especially in arid and semi-arid regions (El-
Metwally et al. 2022) could subject to unfavorable edaphic/
atmospheric conditions, causing yield losses (Saudy et al.
2020a; Mubarak et al. 2021; Salem et al. 2021, 2022).
Oilseed crops are the third most significant crops after cere-
als and legumes (Lafarga 2021). The seeds of oil crops are
the main source of edible oils used directedly in human nu-
trition or in several chemical industries. Among the edible
oilseeds, peanut (Arachis hypogaea L.) seeds are used as
a chief source of vegetable oils all over the world (Krishna
et al. 2015). Peanut is an annual crop widely cultivated in
equatorial and sub-equatorial climatic zones. Under such
conditions crop tolerance should be enhanced to face the
probable stressful impacts (El-Metwally et al. 2021; El-
Metwally and Saudy 2021; Saudy et al. 2021; El-Bially
et al. 2022b).

Amino acids as osmolytes participate in plant stress re-
sponses, sharing in regulation of ion transport, the stomatal
opening and detoxification mechanisms (Rai 2002). More-
over, amino acids have several significant biological tasks in
plant cells involving boosting nutrient uptake, translocation

and metabolism, vitamin biosynthesis, growth biostimula-
tion, creating higher tolerance to environmental stresses as
well as synthesis and production of aminochelate fertilizers
(Sharma and Dietz 2006; Souri and Hatamian 2019, Bakry
et al. 2020). Glutamic acid is one of the most important
amino acids in plants and has a major role in the biosyn-
thesis of proline and other nitrogen-containing compounds
(Okumoto et al. 2016). Several studies have pointed out
the positive effect of glutamic acid application on photo-
synthetic activity and leaf functionality assessed through
the chlorophyll fluorescence measurement (Lv et al. 2009;
Fabbrin et al. 2013; Röder et al. 2018). Glutamic acid appli-
cation had a positive effect also under stressful conditions,
reducing physiological damage by enhancing the activity
of antioxidant enzymes (Lee et al. 2017). Generally, the
exogenous application of amino acids has been shown to
enhance growth and productivity in many crops (Cao et al.
2010; Amin et al. 2011; Khan et al. 2012; Mohammadipour
and Souri 2019a; Fahimi et al. 2016; Saudy et al. 2020b).

5-aminolevulinic acid as a plant growth regulator is
responsible for numerus biological activities in plants.
Biosynthesis of chlorophyll, and cytochrome is mainly de-
pendent on 5-aminolevulinic acid (Ali et al. 2015; An et al.
2016). Enhanced chlorophyll content could contribute to
the increases in leaf net photosynthetic rate by 5-aminole-
vulinic acid that may promote the light harvesting capacity
(Youssef and Awad 2008). 5-aminolevulinic acid enhanced
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photosynthesis (Wang et al. 2004, 2018), primary root elon-
gation (An et al. 2019), and plant biomass accumulation
(Nunkaew et al. 2014). Moreover, 5-aminolevulinic acid
has a substantial role in plant response to abiotic stress (Wu
et al. 2019). In this respect, application of 5-aminolevulinic
acid enhanced plant tolerance to various abiotic stresses,
such as heat stress (Zhang et al. 2012), salinity (Naeem
et al. 2012) and water deficit stress (Liu et al. 2011). Glu-
tamic acid is considered a precursor of 5-aminolevulinic
acid, in plants, 5-aminolevulinic acid is synthesized from
glutamate and appears to be highly regulated; this reaction
requires a glutamyl-tRNA intermediate as well as ATP and
NADPH cofactors (Beale 1990).

However, how 5-aminolevulinic acid and glutamic acid
application and their effective concentration may influence
peanut growth and productivity and seed quality are not
well documented. Therefore, the objective of this study was
to evaluate the physiological and biochemical effects of
5-aminolevulinic acid and glutamic acid on peanut yield
and seed quality under sandy soil conditions.

Material andMethods

Trial Site Description

Along two summer growing seasons of 2019 and 2020
(from May to October), the current study was conducted
under field conditions at the research station of National
Research Centre, El Nubaria District, Egypt (30°310N,
30°180E; 21m above sea level). Soil of the experimental
site was sandy and its mechanical and chemical properties
(Table 1) were determined according to Jackson (1973).
The study location belongs to arid regions with no rainfall
and hot dry in summer. The averages of air temperature,
wind speed, relative humidity and insolation incident were
29.9 and 30.4 oC, 3.02 and 3.04m sec–1, 52.7 and 54.6%
and 29.1 and 30.3MJm–2 day–1 in 2019 and 2020 seasons,
respectively. The preceding cultivated crop was wheat in
both seasons.

Treatments and Practices

The experiment included three concentrations of glutamic
acid, GLA (10, 20 and 40mgL–1, denoted GLA10, GLA20,
and GLA40, respectively) and three concentrations of
5-aminolevulinic acid, ALA (10, 20 and 40mgL–1, ab-

Table 1 Soil physico-chemical properties of El-Nubaria region

Particle size distribution (%) Texture
class

Chemical properties

Coarse sand Fine sand Clay+ silt Organic natter (%) pH EC
(dSm–1)

CaCO3

(%)

55.1 40.5 4.4 Sandy 0.35 8.6 0.32 3.55

breviated to ALA10, ALA20, and ALA40, respectively),
in addition to a check treatment (tap water). Treatments
were arranged in a randomized complete block design with
three replicates. At 30 and 45 days after sowing (DAS), the
aqueous solutions of each glutamic and 5-aminolevulinic
acids were separately sprayed. The spray solution of amino
acids was applied by a knapsack sprayer had one nozzle
with using 480L water ha–1 as a solvent/carrier.

Prior to seeding, ordinary single super phosphate at a rate
of 350.0kg ha–1 was broadcasted and incorporated into
soil. The experimental unit area was 10.5m2; including
five ridges, 3.5m length and 0.6m width. On the 27th and
31st of May in 2019 and 2020, respectively, peanut culti-
var Giza-6 seeds (3–4 seeds per hill) were inoculated with
the specific Rhizobium strain and immediately sown, 0.25m
apart on both sides of the ridge. At 25 DAS, plants were
thinned to one plant per hill, followed by fertilizing 150.0kg
ha–1 of ammonium nitrate (33.5% N). Moreover, plants re-
ceived 150.0kg ha–1 of potassium sulphate (48.0% K2O) at
35 DAS.

Assessments

Physiological Parameters

At 60 DAS, the top leaf of peanut plant was isolated to
estimate the physiological parameters. Photosynthetic pig-
ments expressed in chlorophyll a and b and carotenoids
contents in fresh plant were estimated using the method
of Lichtenthaler and Buschmann (2001). Indole acetic acid
(IAA) content was extracted and analyzed by the method
of Larsen et al. (1962). Phenolics content was analyzed ac-
cording to Danil and George (1972). Free amino acid con-
tent was extracted as described by Vartainan et al. (1992).
and determined with the ninhydrin reagent method (Yemm
and Cocking 1955).

Agronomic Traits

At harvest (on 3rd and 5th October in 2019 and 2020, re-
spectively), plants of the central two ridges were collected
to estimate pods number and weight plant–1, seed index and
pod yield ha–1.
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Biochemical Parameters

In peanut seeds, oil content was determined by using Sox-
helt extraction apparatus using petroleum ether as a sol-
vent and then the seed oil percentage was calculated on dry
weight basis according to AOAC (2012). Flavonoids con-
tents using aluminum chloride colorimetric assay (Ordoñez
et al. 2006) and antioxidant activity (DPPH %) according
to Gyamfi et al. (1999) were estimated.

Data Analysis

Prior to analysis of variance (ANOVA), the collected data
were subjected to homogeneity test (Levene 1960) and An-
derson-Darling normality test (Scholz and Stephens 1987).
Since the outputs proved that the homogeneity and nor-
mality of the data are satisfied for running further a one-
way ANOVA for the data of the two seasons was per-
formed according to Casella (2008), using Costat software
program, Version 6.303 (2004). Means separation was per-
formed only when the F-test indicated significant (P≤ 0.05)
differences among the treatments using Duncan’s multiple
range test.

Table 2 Photosynthesis pigments of peanut response to glutamic and 5-aminolevulinic acids application in 2019 and 2020 seasons

Variable Chlorophyll (mg 100g–1 f wt.) Carotenoids
(mg 100g–1 f wt.)

Total pigments
(mg 100g–1 f wt.)Chlorophyll a Chlorophyll b a/b

Season of 2019

GLA10 927.8± 2.5d 689.4± 1.7bc 1.34± 2.62cd 320.1± 0.8e 1937.3± 3.3e

GLA20 1230.8± 3.7a 767.0± 3.9a 1.61± 0.08a 385.3± 0.1a 2416.5± 10.5a

GLA40 982.1± 1.0c 768.4± 2.8a 1.27± 0.01d 350.4± 1.0c 2101.0± 2.9c

ALA10 904.5± 4.6e 656.5± 1.1cd 1.37± 0.01c 307.1± 3.1f 1868.1± 8.9f

ALA20 1096.0± 1.3b 727.1± 3.2ab 1.50± 0.01b 359.8± 0.8b 2182.9± 3.7b

ALA40 981.4± 2.3c 717.1± 2.5b 1.36± 0.01cd 339.1± 3.7d 2037.6± 8.6d

Check treatment 857.9± 2.5f 627.4± 2.3d 1.36± 9.39cd 284.3± 2.2g 1769.6± 2.6g

Season of 2020

GLA10 912.9± 9.1d 680.8± 6.0c 1.34± 0.01c 321.9± 2.2cd 1915.6± 15.9d

GLA20 1229.1± 2.0a 790.1± 11.5a 1.55± 0.02b 377.0± 7.2a 2396.2± 4.6a

GLA40 1154.5± 8.6b 739.5± 9.8b 1.56± 0.03b 346.1± 2.6b 2240.1± 4.9b

ALA10 879.0± 11.4de 648.0± 5.8d 1.35± 0.01c 312.3± 1.7d 1839.4± 16.4e

ALA20 1196.9± 7.1a 727.0± 12.1b 1.64± 0.03a 355.2± 2.8b 2279.2± 7.4b

ALA40 1110.4± 20.9c 692.9± 4.3c 1.60± 0.02ab 332.8± 1.7c 2136.1± 25.2c

Check treatment 863.8± 18.5e 635.8± 7.4d 1.35± 0.04c 282.2± 5.9e 1781.9± 15.6f

GLA10, GLA20, and GLA40 as well as ALA10, ALA20, and ALA40 are exogenous applications of glutamic acid and 5-aminolevulinic acid at
concentrations of 10, 20 and 40mgL–1, respectively. Different letters within columns indicates that there are significant differences at 0.05 level
of probability

Results

Photosynthesis Pigments

Significant differences in photosynthesis pigments were ob-
tained owing to application of different levels of glutamic
and 5-aminolevulinic acids in 2019 and 2020 seasons (Ta-
ble 2). In 2019 season, glutamic acid at a rate of 20mgL–1

showed the highest values of chlorophyll a, chlorophyll b,
chlorophyll a/b, carotenoids and total pigments. Also,
the differences between glutamic acid at rate of 20 and
40mgL–1 and 5-aminolevulinic acid at a rate of 40mgL–1

in chlorophyll b were not significant. In 2020 season, glu-
tamic acid at a rate of 20mgL–1 recoded also the maximum
values of all photosynthesis pigment traits, except chloro-
phyll a/b. ALA20 was similar to GLA20 for achieving the
maximum value of chlorophyll a. Chlorophyll a/b showed
the highest values with ALA20 along with ALA40.

Biochemical Constituents of Peanut Leaves

Both of GLA20 and ALA20 in 2019 and 2020 seasons, in
addition to GLA40 (in 2019 season for free amino acids)
showed enhancement effects on indole acetic acid, pheno-
lics and free amino acids (Table 3). As averages of the two
seasons, the increases in indole acetic acid, phenolics and
free amino acids were 68.1, 58.9 and 19.6% as well as 64.6,
51.2 and 17.7%, due to application of GLA20 and ALA20
respectively.
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Table 3 Indole acetic acid, phenolics and free amino acids of peanut response to glutamic and 5-aminolevulinic acids application in 2019 and
2020 seasons

Variable Indole acetic acid
(µg 100g–1 f wt.)

Phenolics
(mg 100g–1 f wt.)

Free amino acids
(mg 100g–1 d wt.)

Season of 2019

GLA10 50.5± 0.6bc 91.0± 0.9d 262.1± 0.7b

GLA20 64.5± 0.8a 115.4± 1.8a 284.4± 0.6a

GLA40 47.1± 0.7c 104.6± 1.0b 279.6± 0.5a

ALA10 51.1± 3.1bc 100.4± 1.1c 258.2± 0.1b

ALA20 62.9± 0.3a 104.9± 0.9b 278.7± 8.9a

ALA40 54.5± 1.2b 99.2± 0.3c 256.9± 1.9b

Check treatment 37.2± 0.8d 72.0± 0.9e 238.1± 1.4c

Season of 2020

GLA10 50.5± 0.9b 90.7± 1.4c 259.7± 1.8c

GLA20 64.8± 1.1a 114.5± 2.2a 282.5± 1.6a

GLA40 53.2± 1.4b 107.4± 0.9b 272.0± 1.6b

ALA10 49.9± 1.5b 89.6± 1.1c 253.9± 1.0d

ALA20 63.7± 0.7a 113.9± 1.6a 279.1± 0.9a

ALA40 51.8± 1.8b 105.2± 1.1b 270.7± 1.5b

Check treatment 39.8± 1.2c 72.7± 1.5d 235.9± 2.7e

GLA10, GLA20, and GLA40 as well as ALA10, ALA20, and ALA40 are exogenous applications of glutamic acid and 5-aminolevulinic acid at
concentrations of 10, 20 and 40mgL–1, respectively. Different letters within columns indicates that there are significant differences at 0.05 level
of probability

Table 4 Branches and pods number plant–1 and pod yield of peanut response to glutamic and 5-aminolevulinic acids application in 2019 and
2020 seasons

Variable Branches number plant–1 Pods number plant–1 Pod yield (t ha–1)

Season of 2019

GLA10 10.00± 0.57b 37.00± 1.15c 51.43± 0.81d

GLA20 13.33± 0.66a 46.66± 2.18a 64.36± 0.64a

GLA40 8.66± 0.33bc 43.00± 0.57b 58.36± 0.75b

ALA10 8.66± 0.33bc 33.00± 0.57d 50.03± 0.81de

ALA20 8.33± 0.33c 42.33± 0.33b 61.03± 1.48b

ALA40 7.66± 0.33cd 38.66± 0.88c 55.26± 1.01c

Check treatment 6.66± 0.33d 22.00± 0.57e 48.40± 0.55e

Season of 2020

GLA10 11.33± 0.33b 37.00± 2.08de 50.33± 0.87c

GLA20 14.00± 0.57a 48.33± 1.20ab 63.86± 0.72a

GLA40 12.66± 0.88ab 44.66± 0.88bc 58.30± 1.33b

ALA10 10.66± 0.33b 34.33± 1.45e 49.13± 0.82c

ALA20 11.33± 0.33b 49.33± 1.45a 62.06± 0.73a

ALA40 10.66± 0.33b 41.33± 2.02cd 55.70± 0.92b

Check treatment 8.33± 0.88c 22.66± 1.20f 47.16± 1.27c

GLA10, GLA20, and GLA40 as well as ALA10, ALA20, and ALA40 are exogenous applications of glutamic acid and 5-aminolevulinic acid at
concentrations of 10, 20 and 40mgL–1, respectively. Different letters within columns indicates that there are significant differences at 0.05 level
of probability

Agronomic Traits

As presented in Table 4, the peanut agronomic traits ex-
pressed in branches number plant–1, pods number plant–1

and pod yield ha–1 statistically responded to glutamic and
5-aminolevulinic acids in 2019 and 2020 seasons. In this

respect, only GLA20 was the effective treatment for en-
hancing the agronomic traits in the first season. However,
in the second season, the differences between GLA20 and
GLA40 (for branches number plant–1) as well as GLA20
and ALA20 (for pods number plant–1 and pod yield ha–1)
were not significant.
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Biochemical Constituents of Peanut Seeds

Oil % (Fig. 1), flavonoids (Fig. 2) and antioxidant activity
(Fig. 3) of peanut seeds significantly responded to glutamic
and 5-aminolevulinic acids in 2019 and 2020 seasons. In
both seasons, application of GLA20 had the potential to
increase oil %, flavonoids and antioxidant activity by about
1.10, 1.75 and 1.20 times, respectively, over the check treat-
ment. ALA20 and ALA40 treatments markedly equaled
GLA20 for antioxidant activity in the second season.

Fig. 1 Oil % of peanut seeds response to glutamic and 5-aminole-
vulinic acids application in 2019 and 2020 seasons. GLA10, GLA20,
and GLA40 as well as ALA10, ALA20, and ALA40 are exogenous ap-
plications of glutamic acid and 5-aminolevulinic acid at concentrations
of 10, 20 and 40mgL–1, respectively. Different letters within columns
indicates that there are significant differences at 0.05 level of probabil-
ity

Fig. 2 Flavonoids of peanut seeds response to glutamic and 5-aminole-
vulinic acids application in 2019 and 2020 seasons. GLA10, GLA20,
and GLA40 as well as ALA10, ALA20, and ALA40 are exogenous ap-
plications of glutamic acid and 5-aminolevulinic acid at concentrations
of 10, 20 and 40mgL–1, respectively. Different letters within columns
indicates that there are significant differences at 0.05 level of probabil-
ity

Fig. 3 Antioxidant activity (DPPH) of peanut seeds response to glu-
tamic and 5-aminolevulinic acids application in 2019 and 2020 sea-
sons. GLA10, GLA20, and GLA40 as well as ALA10, ALA20, and
ALA40 are exogenous applications of glutamic acid and 5-aminole-
vulinic acid at concentrations of 10, 20 and 40mgL–1, respectively.
Different letters within columns indicates that there are significant dif-
ferences at 0.05 level of probability

Discussion

Physiologically, various reactive oxygen species (ROS),
such as superoxide radical (O2

� –), hydroxyl free radical
(OH�), singlet oxygen (1O2) and hydrogen peroxide (H2O2),
are continuously produced as a natural byproducts of plant
cellular metabolism (Mahalingam and Fedoroff 2003; Mit-
tler et al. 2004). The presence of ROS may influence cell
membrane properties and give rise to oxidative damage
to proteins, lipids, nucleic acids, and carbohydrates, redox
imbalance, peroxidation of plasmalemma, DNA mutation,
protein denaturation and ultimately cell death (Gill and
Tuteja 2010; Sharma et al. 2012). Moreover, ROS lead to
the inactivation of proteins and inhibit the activity of multi-
ple enzymes involved in metabolic pathways, and result in
the oxidation of other macromolecules including lipids and
DNA (Hossain et al. 2014). Therefore, plant cells should
be equipped with an antioxidant defense mechanism to
detoxify the harmful effects of ROS.

Foliar application of amino acids is one of the recent
agricultural approaches to improve plant growth, yield and
quality properties (Sadak et al. 2015; Souri and Hatamian
2019; Saudy et al. 2020b, Sadak and Ramadan 2021). Thus,
lately, application of amino acids to plants, particularly un-
der adverse environmental conditions, became a pivotal ac-
tion in agricultural practices (Ma et al. 2017; Souri et al.
2017). In this context, results of the current research dis-
played the importance of exogenous spray of amino acids,
i.e. glutamic and 5-aminolevulinic acids as a modern strat-
egy for improving the plant pigments, yield and quality of
peanut. In this regard, most studied traits exhibited increases
with low amino acid concentration (10mgL–1), especially
for glutamic acid, greater than the check treatment. More-
over, increasing the concentration up to 20mgL–1 whether
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for glutamic acid or 5-aminolevulinic acid led to substantial
increase in chlorophylls and carotenoids (Table 2). While,
higher concentration of both amino acids, i.e. 40mgL–1

showed less effect comparing to 20mgL–1. An increase
in leaf pigments owing to application of amino acids has
also been reported in previous researches (Fahimi et al.
2016; Mohammadipour and Souri 2019b). Higher chloro-
phyll content of leaves obtained with amino acids sup-
ply could be due to their motivative effect on chlorophyll
biosynthesis, synchronizing with decrease in chlorophyll
degeneration (Souri et al. 2017; Fahimi et al. 2016). The
improvements in plant growth, biomass, and photosynthetic
machinery might have resulted from decreased the produc-
tion electrolyte leakage and ROS caused by the addition of
glutamic acid (Farid et al. 2020). Owing to their hormone-
like activity and acting in signal transduction, amino acids
serve as prophylactic agents against stress conditions and
can also enhance the control of stomata and gene expres-
sion toward better plant growth (Svennerstam et al. 2008;
Souri 2016). Among plant growth regulators, ALA is an es-
sential biosynthetic precursor of all tetrapyrrole compounds
(chlorophyll, heme, and vitamin B12) (Senge et al., 2014),
which have promotive effects on plant growth and plant
biomass (Fu et al. 2014; Xu et al. 2015). Exogenous ALA
markedly improved carotenoid biosynthesis by upregulating
the gene expression levels of geranylgeranyl diphosphate
synthase, phytoene synthase 1, phytoene desaturase, and ly-
copene b-cyclase (Wang et al. 2021). Accordingly, exoge-
nous application of amino acids can increase chlorophyll
biosynthesis and photosynthetic rates resulting in improved
plant growth particularly under adverse climatic conditions
(Shams et al. 2016).

Amino acids not only enhanced photosynthetic pigments
of peanut but also the defense response indicators. Herein,
all applied concentrations of glutamic acid or 5-aminole-
vulinic acid surpassed the check treatment for increasing
indole acetic acid, phenols and free amino acids (Table 3).
Exogenous supply of ALA increased the contents of soluble
sugars, soluble proteins, total free amino acids, and ascor-
bic acid (vitamin C) as well as eleven kinds of amino acid
components (Zhang et al. 2012; Wang et al. 2021). Also,
improvement in root and shoot growth, and leaf pigmen-
tation and vitamin C content were mainly observed in low
to moderate levels of glutamine (Noroozlo et al. 2019). It
should be explained that ascorbic acid could regulate plant
growth (El-Bially et al. 2018, 2022a) through the interac-
tion with phytohormones (Pastori et al. 2003). Ascorbic
acid as an antioxidant may act as an alternative electron
donor of photosystem II (PSII) in photosynthesis process,
where the electron transfer is inhibited due to the inacti-
vation of oxygen-evolving complex (Gururani et al. 2012).
Ascorbic acid as an alternative PSII electron donor can lan-
guish the processes of photoinactivation and minimize the

ROS activity in the photosynthetic thylakoid membranes,
and thus minimize the damage to the entire photosynthetic
apparatus (Venkatesh and Park 2014). Consequently, the
improvements in peanut growth due to ALA application
were obtained.

In addition to proline, other amino acids could act as
osmoprotectatnt agents in plants under water deficit stress
(Zulfiqar et al. 2020; Makhlouf et al. 2022), and thus play
a significant role in improving the relative water content
of plant tissues (Teixeira et al. 2020; Alfosea-Simon et al.
2020). Enhancement in leaf relative water content with
ALA application may reduce stomatal limitation to gas ex-
changes, thereby also contributing to the increases in leaf
net photosynthetic rate (Youssef and Awad 2008). Since
glutamic and 5-aminolevulinic acids have the potentiality
to induce the synthesis of photosynthesis pigments, indole
acetic acid, phenolics and free amino acids, branching and
pod yield as well as seed quality were improved. Amino
acids can act as hormone precursors and they can con-
tribute to regulate carbon and nitrogen metabolisms and
to promote nitrogen assimilation (Calvo et al. 2014; Colla
and Rouphael 2015; Bulgari et al. 2019).

Findings of the current study also proved the superiority
of glutamic acid for promoting the synthesis of photosyn-
thesis pigments (Table 2). Moreover, the overall response
of peanut to exogenous application of glutamic was better
than those of 5-aminolevulinic in agronomic traits (Table 4)
and seed quality (Figs. 1, 2 and 3). This observation may
correlate with the fact that glutamic acid is the source of
ALA synthesis (Czarnecki and Grimm 2012).

Conclusion

Findings indicate that the application of amino acids as
growth stimulants has practical implications in the produc-
tion of oil crops such as peanut. Application of glutamic
acid or 5-aminolevulinic acid under normal or stressful
circumstances had beneficial changes on peanut crop ex-
pressed in improvements of photopigments and antioxidant
defense mechanisms. Therefore, application of such amino
acids in peanut field is considered a promising practice for
raising yield and quality particularly under arid zones. It is
interesting to note that glutamic acid or 5-aminolevulinic
acid were more effective with using the concentration of
20mgL–1 for better growth and yield than lower or higher
concentrations.
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