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Abstract
As an essential nutrient, Nitrogen (N) availability is fundamental in evaluating forest productivity, and as such, understand-
ing the effects of changing atmospheric N inputs in forest ecosystems is of high significance. While most field experiments 
have been employing ground fertilization as a method to simulate N deposition, two experimental forest sites in Italy have 
adopted the more advanced canopy N application approach. Here we present findings from a case study of wood core analyses 
of predominantly pure, even aged, Sessile oak (Quercus petraea L.) and European beech (Fagus sylvatica L.) forest stands, 
treated with either below or above canopy N fertilization, comparing between the two simulation pathways of increased N 
deposition. The potential effects of elevated N availability on total ring width, mean ring density, and their corresponding 
earlywood and latewood fractions are examined. Our results indicate inconclusive effects of the treatments on the ring width 
traits of both Q. petraea or F. sylvatica, although basal area increment patterns appeared to be affected divergently between 
the species and treatments. Mean and earlywood, but not latewood, densities on the other hand, exhibited a decrease in 
certain years of the treatment period in Q. petraea as result of the above canopy N application only, whereas F. sylvatica 
wood density showed no clear response to any of the treatments. Thus, we are describing distinct reactions of the two broad-
leaved species to the different experimental N deposition approaches, discussing potential growth patterns under increased 
N availability, and emphasizing the importance of considering wood density in assessments of tree biomass accumulation 
and essentially Carbon storage capacities.
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Introduction

With ongoing anthropogenic meddling in the natural Nitro-
gen (N) cycle, elevation in atmospheric N deposition has 
been fairly steady in the past decades. Despite of existing 
evidence suggesting a decline in the total averaged Euro-
pean N deposition rate, the trends are spatially divergent, 
where certain areas still experience an upsurge (Schmitz 
et al. 2019). On a global scale, rates of inorganic N depo-
sition were shown to increase by 8% between 1984–2016 
from 86.6 to 93.6 Tg N  yr−1 (Ackerman et al. 2019). Thus, 
propelling the interest of investigating its function in for-
ests worldwide (Galloway et al. 2008; Bobbink et al. 2010; 
Etzold et al. 2020), in an attempt to uncover and define its 
underlying mechanisms (Khaine and Woo 2015; Carter et al. 
2017), and consequent effects on Carbon (C) storage (Hög-
berg 2007; Janssens et al. 2010; Quinn Thomas et al. 2010).
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When examining plant C and N dynamics, there are 
multiple aspects to consider. The nutrimental condition of 
a habitat as a whole, and its inherent shifts, are reflected in 
the development of different tree compartments (Jiang et al. 
2015), promptly and visibly at times (Guan and Wen 2011; 
Ward et al. 2013; Helm et al. 2023), yet may be latent and 
obscure as well (Wright et al. 1995; de Vries et al. 2014; 
Gagen et al. 2019). As such, the woody tissue may hold 
valuable information on the tree’s health and productivity 
(Helama et al. 2009; Poorter et al. 2010; Gagen et al. 2019; 
Cherubini et al. 2021), allowing for the provision of growth 
patterns and prediction models for fitness and mortality, 
based on tree core characteristics (Baker et al. 2004; Bigler 
et al. 2004; Cailleret et al. 2017; Liang et al. 2021). Various 
measures of tree rings have been studied within the real-
ity of climate shifts (Ferretti et al. 2002; Scharnweber et al. 
2011; St. George and Ault 2014; Borghetti et al. 2017). In 
that, wood density has been shown to alter under varying 
N inputs with divergent responses (Beets et al. 2001; Bucci 
et al. 2006; Pivovaroff et al. 2016), whilst Pretzsch et al. 
(2018) reported a general declining trend in wood density 
in Central European forests, alongside an increase in wood 
volume growth, over the recent century, suggesting a plau-
sible link to rising N deposition rates over the same period.

It is evident that the tree canopy and atmospheric N hold 
a direct interaction where some canopy interception may 
occur with a consequent change in the amount and form of 
deposited N that actually reaches the ground, resulting in a 
considerable regulation of N distribution within the system 
(Sparks 2009). It has been demonstrated that as much as 80% 
of total reactive N descending from the atmosphere may be 
retained by the canopy before eventually arriving at the for-
est floor (Klopatek et al. 2006; Lovett and Lindberg 2011; 
Fenn et al. 2013; Houle et al. 2015), some of which may be 
immobilized or up-taken by the tree and its associated organ-
isms, as well as being volatilized back as gaseous N (Bryan 
Dail et al. 2009; Nair et al. 2016). As experimental designs 
are innately bound by frequent constraints, a major culprit 
in studying forest ecosystems under increased N deposition, 
through means of experimental N addition, resides amongst 
others in the choice of fertilizer, application intervals, and 
administration method, and may limit favorable examination 
of hypotheses. While the majority of past studies investi-
gating the effects of experimental N deposition in forests 
have implemented the traditional ground fertilization meth-
ods (Bebber 2021), an apt approach of above tree canopy 
N application (ACN), which may better mimic the actual 
deposition pathway than below canopy N application (BCN), 
has been adopted in more advanced research. In their thor-
ough reviews, Bortolazzi et al. (2021) and Guerrieri et al. 
(2021b) addressed the matter, accentuating the eminent tree 
canopy-deposition relationship that is often overlooked, and 

presented many of the studies that incorporated the more 
appropriate approach of above canopy N administration.

Several ACN experiments were previously established 
in various forests and continents. In subalpine Engelmann 
spruce growing in Southwestern US, it was shown that N 
applied from above the tree crown is, similarly to ambient 
N deposition, mostly retained by the canopy, contributing 
to increased photosynthetic processes and foliar growth 
(Sievering et al. 2007; Tomaszewski and Sievering 2007). 
In a low-elevation red spruce and Eastern hemlock domi-
nated forest in Northeastern US, the significance of the 
N-canopy interaction was further confirmed through ACN 
fertilization (Bryan Dail et al. 2009). A large-scale experi-
ment was established in China (Zhang et al. 2015), examin-
ing different levels of ACN and BCN treatments in two sepa-
rate forests dominated by native broadleaved species, where 
multiple investigations were performed and published since, 
presenting an array of species and habitat specific responses 
when measuring stem wood related affects (Yu et al. 2019; 
Guo et al. 2020; Zhang et al. 2022). An acid mist spray 
experiment in Scotland compared the effects of N and Sul-
phur (S) foliar applications in young managed Sitka spruce 
in Scotland, and detected a positive effect on stem radial 
growth when combining N + S during four years of treat-
ment, with a minor insignificant negative effect of N alone 
(Sheppard et al. 2001), which later turned significantly posi-
tive after five years (Sheppard et al. 2004). In mature black 
spruce, growing in a Canadian boreal forest, limited effects 
of ACN treatment on xylem phenology and anatomy were 
found after three years (Lupi et al. 2012), which later faded 
after six years (Dao et al. 2015), to eventually conclude no 
significant effects. Both these latter spruce studies empha-
sized the importance of long-term monitoring for more 
constructive deductions in the context of wood traits, a tree 
tissue that may lag in immediate and/or obvious response.

The interrelation between N deposition and wood den-
sity for both Sessile oak (Quercus petraea) and European 
beech (Fagus sylvatica), two of the more ecologically and 
economically prominent and valuable broadleaved species 
in Europe (Mölder et al. 2019; Baumbach et al. 2019), has 
been reported in several observational and modelling stud-
ies (Braun et al. 1999, 2010, 2017,; Laubhann et al. 2009; 
Kint et al. 2012; Vannoppen et al. 2018; Hess et al. 2018). 
To the best of our knowledge, fewer studies have examined 
effects of experimental N application on mature oak and 
beech wood traits (Becker et al. 1996; Elhani et al. 2005; 
Ponton et al. 2019; Durand et al. 2020). Only one experi-
ment in two Swiss forest sites used actual direct N appli-
cation to oak (Q. cerris and Q. pubescens), and beech (F. 
sylvatica) branches, over a short period, and examined pho-
tosynthetic efficiency, to find an increase in the oak’s foliar 
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photosynthetic measures, and an indeterminate decrease in 
beech (Wortman et al. 2012).

With the intention to contribute in filling some of these 
information voids, we perform an assessment of tree rings 
in two separate pure and mature Sessile oak and European 
beech forests. The objective here is to explore intrinsic 
growth traits in the form of tree ring widths and densities as 
measures for radial tree expansion and wood production, in 
forest stands subjected to two different elevated N treatment 
methods i.e., ACN and BCN. Our main hypotheses in this 
context are: i) while we expect no significant differences 
between the untreated experimental units in the period prior 
to N application, tree ring width and density development 
may be modified under increased experimental N inputs; 
ii) the two different N deposition simulation methods, may 
result in distinct effects on the examined tree ring character-
istics; iii) and finally, the entire treatment period trend might 
reveal sperate inferences than that of the single inter-annual 
rings, which may reflect temporary time point responses.

Methods

Experimental sites

The oak site is located in the temperate forest of Monticolo, 
South-Tyrol, Italy (46°25′35'' N; 11°17′55'' E, 530 m eleva-
tion), with a mean annual temperature of 11.5 °C and mean 
annual precipitation of 835 mm. The soil is an acid brown 
loam, Cambisol (topsoil pH 4.8) overlaying porphyritic 
quartz rock. The site is dominated by Sessile oak (Quercus 
petraea (Matt.) Liebl.; ~ 96%), largely even-age averaged 
at 65 years, with a stand density of 1120 trees  ha−1, mean 
height of 13.3 ± 0.1 m, and mean diameter at breast height 
(DBH) of 18.2 ± 0.2 cm. Recorded atmospheric bulk N 
deposition was estimated at ~ 6.5 kg N  ha−1  yr−1 between 
1996–1999. Initially managed for thinning, the forest 
stand has been unmanaged in the past decades and is part 
of a natural reserve, where no previous experiments were 
conducted.

The beech site is situated on the periphery of the sub-
Alpine plateau of Pian del Cansiglio, Italy (46°3′19’’ N; 
12°22′51’’ E, 1100 m elevation). With an oceanic climate, 
the mean annual temperature is 6.2 °C and mean annual 
precipitation is 2150 mm. The soil is formed on a karst 
bedrock with a carbonate rock matrix, Haplic Luvisol (top-
soil pH 4.3). The site is exclusively dominated by mature 
European beech (Fagus sylvatica L.), even-age averaged 
at 135 years, with a stand density of 170 trees  ha−1, mean 
height of 29.4 ± 0.1 m and mean DBH of 45.5 ± 1.1 cm. 
Historical total N deposition averaging around 17.5 kg N 
 ha−1  yr−1. Previously managed as a high forest, it is currently 

recognized as a natural reserve. Last intervention of low 
intensity thinning was performed in early 2000, and no 
experimental history prior to the current research.

Fertilization treatments

The Monticolo experimental design is detailed and illus-
trated by Giammarchi et al. (2019). Briefly, the site con-
sists of three treatments: 20 kg N  ha−1  yr−1 applied below 
the tree canopy directly to the forest floor (BCN), 20 kg N 
 ha−1  yr−1 applied above the canopy (ACN), and unfertilized 
control. Each treatment is replicated in three circular plots 
(12 m radius), for a total of nine experimental plots, arranged 
in a completely randomized design with a minimum of 
10 m buffer zone to prevent contamination. N fertilizer, as 
 NH4NO3 solution (4.3 g N  L−1), has been applied five times 
during the growing season, from May to September, since 
2015 and annually thereafter, until this day and ongoing. 
The BCN treatment is applied through manual spraying, 
ensuring uniform distribution. For ACN, rotating sprinklers 
mounted on telescopic masts are utilized, providing a largely 
uniform spray radius of 12 m above the tree canopy, from 
the center of the plot. The water supplied with the fertilized 
treatments (210 L  H2O  plot−1  yr−1) is equivalent to a neg-
ligible 0.46 mm of precipitation, compared to the region's 
average annual precipitation. No intervention was performed 
in the control plots. The conservative application rate of 
20 kg  ha−1  yr−1, roughly over three times the background 
atmospheric N deposition, was chosen to simulate feasible 
future scenarios of N deposition increases.

The Cansiglio experimental design is detailed by Teg-
lia et al. (2022). Briefly, the site contains four treatments: 
an ACN treatment with 30 kg N  ha−1  yr−1, BCN treatment 
with 30 kg N  ha−1  yr−1, a double-dose BCN treatment with 
60 kg N  ha−1  yr−1 (denoted as BCN60), and unfertilized 
control. Each treatment was replicated in three plots using a 
randomized block design, for a total of twelve experimental 
plots. The control and both below canopy fertilization treat-
ment plots are square (30 × 30 m), while the ACN plots are 
circular (20 m radius). N has been administered as  NH4NO3 
solution three times annually during the growing season, 
June to September, since 2015 and annually thereafter. 
Similarly to the Monticolo site, below canopy fertilization 
was sprayed manually, while above canopy N was supplied 
via rotating sprinkler towers from the center of the plots, 
with a conservative N application rate of two to three times 
the background atmospheric N deposition.

Tree core sampling and analysis

Due to pre-existing wood sampling of past projects in the 
sites since 2015, and inclination towards minimizing dis-
turbances of the protected forests, limitations in the current 
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sampling were enforced. One 5 cm long wood core sample 
per tree was collected with an increment borer (5 mm diam-
eter) at breast height (~ 1.3 m) from six trees on average 
in each plot (in each site) to ensure a minimum of 18 tree 
repetitions per treatment. The cores from Monticolo were 
collected in early 2022 and the cores of Cansiglio in the end 
of the same year. In each site healthy trees with DBH around 
the stand average were chosen. DBH measurements of the 
cored trees were obtained accordingly. In the BCN60 treat-
ment of the Cansiglio site two wood cores were damaged 
during the analysis process, leaving 16 cores instead of 18 
for this treatment.

After air drying, the cores were sanded and analyzed for 
ring width and wood density via the high-frequency den-
sitometry LIGNOSTATION™ method, considered to pro-
vide relative density measurements (Schinker et al. 2003; 
Shchupakivskyy et al. 2014; Koutsianitis and Barboutis 
2017). The density analysis is based on the interaction 
between continuous electromagnetic waves emitted from a 
transmitter–receiver link of a small electrode system and the 
dielectric properties of the wood. The instrument simultane-
ously measures ring width through optically scanning the 
core path with a high-resolution camera. Analysis with the 
LIGNOSTATION™ allows for distinguishing between the 
seasonal sections of the total ring, providing separate early-
wood and latewood density and width values.

Data and statistical analyses

The analysis of tree cores was performed on rings dating 
back two decades up to the year 2000. While the focus of 
the study was the examination of the N application period 
(2015 and onward), an additional 15-year period prior to 
the beginning of the experiment was chosen as a satisfac-
tory time frame baseline for representing the state of the 
stands prior to any experimental manipulation, for com-
paring between the two periods of pre- and post-treatment. 
The most recent ring of each core (2021 for Monticolo and 
2022 for Cansiglio) was omitted from the analysis to avoid 
potentially misreading non-fully consolidated rings. Tree 
rings were cross-dated with the CDendro software. No age-
related trends or other confounding patterns were detected 
for the analyzed period, thus not warranting for detrending 
or standardization of the data, and eliminating concerns of 
potentially loosing conceivable N treatment signals. Rather, 
the entire raw data was used with no manipulation or any 
removal of data points, and all the presented graphical plots 
are based on treatment averages of the observed values.

Basal area increment (BAI) was estimated as an extended 
measure for stem radial expansion and annual tree growth. 
BAI was computationally reconstructed using the analyzed 
total ring widths and the coinciding current year DBH meas-
urements. DBH values for past years were back-calculated 

using total ring widths under the rough assumption of an 
even total width around a circular stem area section. Fur-
thermore, to assume the power and necessity of including 
wood density in tree C storage assessments, an interaction 
between radial growth and density was to be evaluated. For 
this purpose, we followed previous studies who used the bio-
mass area increment measure (IAB; Vannoppen et al. 2018; 
Van Den Berge et al. 2021), or BAIden as it is referred to by 
Giberti et al. (2022) and referenced here, produced by com-
bining BAI with the annual mean ring density. An overview 
of the mean values of all the above-mentioned measures and 
computed response variables is given in Table 1.

A linear mixed effects model was chosen as a robust 
approach for statistical analysis of the longitudinal tree ring 
time series. Best model fits were chosen according to the 
research objectives for the fixed effects and optimization of 
random effects, while considering the Akaike Information 
Criterion (AIC) and using Maximum Likelihood (ML) and 
Restricted Maximum Likelihood (REML) approximations 
when appropriate. Considering the use of the raw data for 
analyses, and to address potential temporal dependence and 
autocorrelation between consecutive tree rings, an autore-
gressive term of type AR1 for the year variable within the 
tree was incorporated in all the models, which significantly 
reduced the AIC:

The term describes the correlation between the residual 
errors ( �ij and �i′j ) for two consecutive observations (i and 
i′) within the same tree (j). Where � is the autoregressive 
parameter representing the correlation between the observa-
tions in the same tree across different years. �2 is the residual 
variance.

To account for the tree core repeated measurements and 
between individual variability in each treatment level, the 
subject unit of ‘tree’ was set as a random effect. The ‘plot’ 
unit (as the subplot) was included as a random effect in the 
initial model, yet it was found non-constructive to the model 
fit and outcome, and therefore was not included in the final 
model. For potential within individual variability, a random 
slope was additionally set in the random ‘tree’ term, which 
further improved the model. For each response variable a 
different random slope was indicated according to the best 
model fit.

As an initial approach for distinguishing between the two 
periods of prior and post the experiment onset a dummy var-
iable named ‘onset’ was defined with two levels: ‘pre_2015’ 
representing the pre-experiment period of the years 2000 
until 2015, and ‘post_2015’ representing the post-experi-
ment period for the years after 2015. ‘treatment’ and ‘onset’ 
were set as fixed effects with an interaction to investigate 
the average effects of treatment in each period. ‘tree’ was 

(1)CorrAR1
(

�ij, �i�j
)

= �∣yearij−yeari
�j∣�ij ∼ N(0, �2)
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set as a random effect. The best fitted model formula was 
specified as follows:

where RTij represents a given ring trait response variable 
for the i-th observation in the j-th tree. �0 is the intercept. �1 , 
�2 , and �3 are the fixed-effect coefficients for the treatment, 
onset, and the interaction, respectively. u0i and u1i represent 
the random intercept of the tree and random slope term 
(either onset or DBH, according to the better fit) for each 
tree, respectively. �ij is the residual error term.

Next, for a further investigation of potential treatment 
effects on the ring traits within each individual annual 
ring, ‘treatment’ and ‘year’ were set as fixed effects with 
an interaction, where ‘year’ was set as a categorical varia-
ble. ‘tree’ was set as a random effect. The best fitted model 
formula was specified as follows:

where RTij represents a given ring trait response variable 
for the i-th observation in the j-th tree. �0 is the intercept. 
�1 , �2 , and �3 are the fixed-effect coefficients for treatment, 
year, and the interaction, respectively. u0i and u1i represent 
the random intercept for the tree and a random slope term of 
year, respectively. �ij is the residual error term.

Finally, for BAI and BAIden, an evaluation of the over-
all patterns across the total analyzed periods divided into 
the two periods of prior and post the experiment was per-
formed, while keeping ‘year’ as a numerical predictor, to 
produce slope trend values. Here, an addition of ‘DBH’ 
as a fixed factor proved to improve the models, but not the 
random slope term. For the pre-treatment period, a general 
trend for the entire stand was derived for the experimental 
units combined, while for the post-treatment period the 
treatments were kept separate as per the previous models:

Equation 4 is for the pre-treatment period, and Eq. 5 is for 
the post-treatment period. Where RTij represents either the 
BAI or BAIden response variables for the i-th observation 
in the j-th tree. �0 is the intercept. �1 , �2 , �3 , and �4 are the 
fixed-effect coefficients for treatment, year, the interaction of 
year and treatment, and DBH, respectively. u0i represents the 
random intercept for the tree. �ij is the residual error term.

(2)
RTij =�0 + �1trtmntij + �2onsetij + �3(trtmn × onset)ij

+ u0j + u1j(onsetijorDBHij) + �ij

(3)
RTij =�0 + �1trtmntij + �2yearij + �2(trtmn × year)ij

+ u0j + u1jyearij + �ij

(4)RTij = �0 + �2yearij + �4DBHij + u0i + �ij

(5)
RTij =�0 + �1trtmntij + �2yearij + �3(trtmn × year)ij

+ �4DBHij + u0j + �ij
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After deriving an initial inference from the linear mixed 
models, particular significance determination was performed 
for the differences between each treatment pair using the 
Tukey post-hoc test for multiple pairwise comparisons 
(Tables S1-S28). A Z-test was performed for determining 
significant differences between the BAI and BAIden slope 
values within the individual treatments (Table S29).

All computation was carried out with R software: BAI 
reconstruction with the ‘dlpR’ package; linear modeling 
with the ‘nlme’ package; and post hoc analysis with the 
‘emmeans’ package (Bunn 2008; Pinheiro and Bates 2023; 
Lenth et al. 2023; R Core Team 2023).

Results

Oak ring width and wood density

Ring widths of Q. petraea showed marked inter-annual oscil-
lations through the entire analysis period, where total, ear-
lywood, and latewood ring widths all followed a parallel 
trend (Fig. 1a,b,c). No overall differences were determined 
between any of the treatments in any of the ring width traits 
at any point in time by the ‘onset’ model (Table 2). With 
that said, when testing for differences between the treat-
ments in each individual year (Tables S7-S9), a significant 

Fig. 1  Monticolo ring data of total (a) earlywood (b), and latewood 
(c) widths, and mean (d), earlywood (e), and latewood (f) densities, 
between 2000 and 2020 for Q. petraea. General averages for each 
annual growth ring (n = 18, SE). Note the y axis for densities is not 

set to zero. Dashed line indicates the experiment onset in 2015, with 
the light gray area thereafter indicating the post-treatment fertilization 
period. Asterisks indicate significant post-hoc pairwise comparison 
differences (p < 0.05)
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decrease in the earlywood width of ACN compared to the 
control was found by the post-hoc analysis, in 2015 (Fig. 1b; 
Table S8, p = 0.008), as well as in 2009, prior to the experi-
ment onset (Table S8, p = 0.045).

Ring wood density exhibited lower inter-annual vari-
ability, and similarly to width, mean, earlywood, and late-
wood ring densities all followed a comparable and similar 
trend (Fig. 1d,e,f). Non of the ring density measures pre-
sented an overall effect of any treatment in any period as 
indicated by the ‘onset’ model (Table 2). This is despite 
a possible decreasing trend that was visually suggested in 
the mean density of the ACN treatment from 2017 (on the 
third year after the beginning of fertilization) and onwards, 
while BCN stayed closely uniform with the control (Fig. 1d). 
Indeed, this seeming decrease became meaningful in 2018 
as was indicated by the mixed model results of the indi-
vidual annual rings (Table S10), and the post-hoc analyses 
confirmed that ACN had a significantly lower mean density 
than BCN (Table S10, p = 0.018), yet not compared with 
the control (Table S10, p = 0.068). The difference between 
ACN and BCN was reduced in 2019 (Table S10, p = 0.062), 
while becoming significant between ACN and the control 
(Table S10, p = 0.043). In the final analyzed year, the extent 
of reduction between ACN and the other treatments was 
further diminished (Table S10, p = 0.097, p = 0.141). Early-
wood density (Fig. 1e), which appeared visibly more vari-
able than mean density was indeed slightly more impacted 
by N addition in both 2018 and 2019 (Table S11, p = 0.011 
and p = 0.033, for ACN vs. BCN in 2018 and 2019, respec-
tively, and p = 0.046 for ACN vs. control in 2019). For late-
wood density (Fig. 1f), no significant treatment response was 
determined (Table S12). None of the density measures were 
found significantly different in any individual year prior to 
N application (pre-treatment period). All mixed model and 
post-hoc results for the treatment effects in each individual 
annual tree ring, and full onset models, for Q. petraea may 
be found in Online Resource 1.

Beech ring width and wood density

For F. sylvatica growing in the Cansiglio forest, all width 
measures followed a rather unison trend for all treatments 
(Fig. 2a,b,c), with notable inter-annual fluctuations. Simi-
larly to the case of Q. petraea, no treatment effects were 
found by the ‘onset’ model for any of the ring width meas-
ures in either of the two time periods (Table 3), yet the statis-
tical analysis of the individual annual rings revealed several 
significant differences by both the mixed model and post-hoc 
tests (Tables S19-S21), here in each of the ring width traits. 
For total width, significantly lower in ACN compared to 
BCN60 in 2016 (Table S19, p = 0.022) and nearly signifi-
cant in 2009 (Table S19, p = 0.053; Fig. 2a). For earlywood 

width, significant differences appeared in 2015, lower in 
ACN compared to BCN (Table S20, p = 0.002), and com-
pared to BCN60 in 2016 (Table S20, p = 0.04; Fig. 2b). For 
latewood width, BCN60 was found significantly higher com-
pared to all other treatments in 2006 (Table S21, p = 0.023, 
p = 0.036, p = 0.042), and compared to ACN in 2017 
(Table S21, p = 0.028; Fig. 2c).

Ring density of F. sylvatica displayed a high intra-
annual variability (Fig.  2d,e,f). No significant overall 
impacts of any treatment were indicated by the ‘onset’ 
analysis for any of the density traits, prior nor post N 
application (Table 3). While, the mixed model test of the 
individual years suggested some significant differences in 
each of the three density measures (Tables S22-24), none 
were reaffirmed by the subsequent post-hoc analysis. All 
mixed model and post-hoc results for the treatment effects 
in each individual annual tree ring, and the full onset mod-
els, for F. sylvatica may be found in Online Resource 2.

BAI and BAIden trends

After establishing no significant differences in total ring 
widths and mean densities between the treatments prior to 
the experiment, BAI and BAIden trends for the pre-treatment 
period were computed for all experimental units combined to 
present the overall temporal trends in the entire forest stand. 
The BAI trend for both oak and beech trees was generally 
negative in the two decades since 2000 (Fig. 3a,c; Table 4), 
and although extremely minimal when looking at the years 
prior to the experiments, the downward trend appeared to 
notably increase in the years after 2015. During the period 
of N fertilization, the ACN treatment seemed to somewhat 
attenuate the decline in the negative BAI trend of the two 
species, as indicated by the milder slopes of ACN compared 
to the control. While in Monticolo the BCN treatment was 
well paralleled with the control, in Cansiglio both BCN and 
BCN60 treatments had the opposite effect of ACN, induc-
ing a greater decline in the BAI trend, which was closely 
significant for BCN compared to ACN (Table 4, p = 0.052), 
but not nearly as much compared to the control (p = 0.385).

The BAIden trends in the pos-treatment period did not 
display markedly different patterns than that of BAI as a 
whole, generally slightly decreasing the observed BAI slope 
(Fig. 3b,d; Table 4). Yet only in the ACN treatment of Q. 
petraea, the incorporation of density in BAI to produce 
BAIden seemed to somewhat amend the treatment effect 
that was observed in the BAI trend (Fig. 3a,b), resulting 
in a larger slope. An outcome that might be expected by 
the corresponding decreased mean density (Fig. 1d). In F. 
sylvatica, although no concrete effects of N on mean den-
sity was concluded, when considering it within the BAIden 
trend, here the impact of density appeared to be prominent 
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in both of the below canopy treatments (Fig. 3c,d; Table 4), 
as the decline that was observed in their BAI trends was 
significantly contracted for BCN and nearly significant for 
BCN60 (Table S29, p = 0.027 and p = 0.059, respectively). 
Full mixed model and post-hoc results for BAI and BAIden 
of both species may be found in Online Resource 3.

Discussion

It is evident that the majority of existing N application 
studies in oak species reveal a positive relation between N 
availability and radial growth (Jennings et al. 2016; Becker 
et al. 1996). In Q. petraea in particular, an increase in ring 

width expansion was detected following administration of an 
excessive 220 kg N  ha−1  yr−1 (along with Ca fertilization) to 
the forest floor during two consecutive years (Ponton et al. 
2019; Durand et al. 2020). The positive effects on radial 
growth were immediate, yet diminished after five years of 
monitoring, while no effects on wood density were observed 
at all. While the effects of N amendment in trees may mani-
fest either promptly or only some years after N application 
(Sheppard et al. 2001, 2004), in our Q. petraea, after six 
years of consecutive, and moderate, annual N fertilization, 
neither of the treatments induced changes in ring widths 
compared to the control.

We observed a general high inter-annual variability in 
the ring widths of Q. petraea in Monticolo, and an overall 

Fig. 2  Cansiglio ring data of total (a) earlywood (b), and latewood 
(c) widths, and mean (d), earlywood (e), and latewood (f) densities, 
between 2000 and 2021 for F. sylvatica. General averages for each 
annual growth ring per treatment (n = 16–18, SE). Note the y axis 

for densities is not set to zero. Dashed line indicates the experiment 
onset in 2015, with the light gray area thereafter indicating the post-
treatment fertilization period. Asterisks indicate significant post-hoc 
pairwise comparison differences (p < 0.05)
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negative radial growth trend over the past two decades. 
Inter-annual variability in ring widths of Q. petraea was 
previously linked to various climate variables, where 

precipitation frequently enhanced radial growth and tem-
perature had a negative effect (Cedro 2007; Arend et al. 
2011; Härdtle et al. 2013; Delpierre et al. 2016), dependant 

Fig. 3  Basal area increment (BAI) and biomass area increment 
(BAIden) trends for Q. petraea in Monticolo (a, b), and F. Sylvatica 
in Cansiglio (c, d). General patterns for pre-experiment years (n = 54–
60), and patterns separated by treatment for post treatments years 

(n = 16–18). Dashed line indicates the experiment onset in 2015, with 
the light gray area thereafter indicating the post-treatment fertilization 
period

Table 4  Basal area increment (BAI) and biomass area increment 
(BAIden) trends for the two separated periods of before and after 
experiment onset (upper section) and post-hoc pairwise comparison 

between the treatments of the post experiment period (lower section), 
of Q. petraea in Monticolo and F. sylvatica in Cansiglio.

Trend values are for slopes. For the pre-treatment periods (< = 2015) general averages for the entire stand. For the post-treatment period 
(> = 2015) separated by treatment
Pairwise comparisons are corresponding for the post-treatment years (> = 2015)
Values are for estimates of marginal trends, with the Standard Error in parenthesis. P-values are in Italics

Treatments Q. petraea F. sylvatica

BAI BAIden BAI BAIden

Pre-treatment  − 0.08 (0.02) 0.001  − 0.06 (0.02) 0.013  − 0.00 (0.07) 0.991  − 0.01 (0.05) 0.835
Control  − 0.63 (0.08) 0.000  − 0.58 (0.08) 0.000  − 1.46 (0.36) 0.000  − 1.10 (0.26) 0.000
ACN  − 0.48 (0.08) 0.000  − 0.56 (0.08) 0.000  − 0.96 (0.36) 0.008  − 0.63 (0.26) 0.010
BCN  − 0.66 (0.08) 0.000  − 0.58 (0.08) 0.000  − 2.27 (0.36) 0.000  − 1.29 (0.26) 0.000
BCN60  − 2.19 (0.38) 0.000  − 1.29 (0.27)  0.000
Control—ACN  − 0.15 (0.11) 0.354  − 0.03 (0.11) 0.968  − 0.50 (0.51) 0.762  − 0.43 (0.36) 0.628
Control—BCN 0.02 (0.11) 0.977 0.00 (0.11) 1.000 0.82 (0.51) 0.385 0.19 (0.36) 0.951
ACN—BCN 0.17 (0.11) 0.256 0.03 (0.11) 0.967 1.32 (0.51) 0.052 0.62 (0.36) 0.310
Control—BCN60 0.73 (0.53) 0.514 0.20 (0.37) 0.950
ACN—BCN60 1.23 (0.53) 0.094 0.63 (0.37) 0.326
BCN—BCN60  − 0.09 (0.53) 0.998 0.00 (0.37) 1.000
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on the seasonal dynamics, of the current and previous years. 
Nevertheless, oaks do exhibit high plasticity in their reac-
tion, often displaying marked resilience to environmental 
stress (Friedrichs et al. 2009; Mérian et al. 2011; Lebour-
geois et al. 2013; Trouvé et al. 2017). Although we show a 
significant decrease in the earlywood of ACN compared to 
the control in 2015, it is doubtful to conclude that the effect 
of the N application is involved since the formation of ear-
lywood ends in Q. petraea in adjacency to the beginning of 
the growing season (addressed later), and thus in 2015 ended 
prior to the very first fertilization event of the experiment. 
Together with the fact that in 2009 a similar significant dif-
ference was found, these results may be rather attributed 
to incidental divergences stemming from the higher overall 
variance in earlywood traits and the general susceptibility of 
ring width towards climatic conditions.

Mean ring wood density of our oaks, in contrast to ring 
width, seemed to experience a decline already on the third 
year for the ACN treatment, to become significant in reduc-
tion on the fourth year, compared to the BCN treated trees 
which remained rather consistent with the untreated control. 
Decrease in wood density is not uncommon in N applica-
tion experiments (Ross et al. 1979; Hättenschwiler et al. 
1996; Beets et al. 2001; Raymond and Muneri 2000; Kos-
tiainen et al. 2004), and is possibly related to changes in 
stem hydraulic architecture and water use efficiency. Wood 
density has a direct link to transport system performance and 
vigor of the tree stem, where thicker cell walls are made to 
endure larger negative water pressure stress, and are conse-
quently more resistant to cell implosion and organ cavitation 
(Hacke et al. 2001, 2005; Zanne et al. 2010). Lower wood 
densities on the other hand, have been shown to go in accord 
with increased stem conductivity (Hacke et al. 2010), while 
associated with higher foliar N at the same time (Bucci et al. 
2006; Pivovaroff et al. 2016).

When comparing to reported literature values for Q. pet-
raea (Zhang et al. 1993; Bergès et al. 2000, 2008; Cedro 
2007; Vavrcik and Gryc 2012), our oaks seem to present 
general average wood densities on the higher end of the spe-
cies spectrum, whilst total ring widths being lower. Thus, the 
relatively prompt apparent response of mean ring density 
to the direct contact of applied N with the foliage of the 
ACN treated trees, despite our conservative amount of added 
N, may be due to a sufficient leeway in the form of robust 
woody tissue to spare, for a worthwhile compromise towards 
improved conductivity (Pérez-de-Lis et al. 2018). Once the 
tree canopy experienced an elevated N supply, a shift could 
have been triggered in an aim to support the increased essen-
tial nutrient inflow. The additional N availability could have 
promoted growth processes where the decrease in density 
may allow for a potentially more efficient tree stem transport 
system.

According to our results of a moderately higher signifi-
cance in the decrease of earlywood density than that of the 
mean density in the ACN treatment, in conjunction with no 
significant effects on latewood density, it is evident that the 
earlywood might be the more sensitive fraction of the ring 
and the determining factor in the overall mean ring density 
of Q. petraea (that, in spite of the latewood section having 
a slightly higher proportion of the total ring). This propo-
sition is contrary to the findings of Pretzsch et al. (2018) 
who argued the opposite, namely that latewood is the main 
determinant in the mean ring density. With that said, the 
role of other environmental variables i.e.,  CO2, temperature, 
and growing season prolongations, where not excluded from 
their analyses, therefore these may come as a reasoning for 
the distinction in findings. Pretzsch et al. (2018) did however 
attribute a century long general decrease in wood density 
to concomitant N deposition increases in Central European 
forests, which is in line with the density reduction that we 
observed.

Earlywood is largely of lower density than latewood and 
contains a higher percentage of larger transport vessels pro-
viding the main pathway for water and nutrient flux dur-
ing the growing season (Feuillat et al. 1997; Umebayashi 
et al. 2008). Its’ development begins and consolidates rather 
early in ring-porous species, even prior to full leaf formation 
(Kitin and Funada 2016), and earlywood to latewood transi-
tion in Q. petraea in particular may commence as soon as 
the month of May (Michelot et al. 2012b). At first glance, 
this might appear counterintuitive when considering our 
fertilization regimen, beginning right after leaf maturation 
(around June in the Monticolo forest). Nonetheless, it has 
been demonstrated that the earlywood often bears an imprint 
of the previous years’ (as well as the pre-growing season) 
conditions (González and Eckstein 2003; Fonti and García-
González 2004; Fonti et al. 2007; González-González et al. 
2014). In Q. petraea, earlywood and its vessel area compo-
sition have been linked to the precipitation rate of the pre-
ceding growing seasons in certain environments (Fonti and 
García-González 2008), while ring density as a whole was 
impacted by various previous year climate variables (Van-
noppen et al. 2018). It has been suggested that earlywood 
formation originates in the over-wintered cambial cells of 
the prior growing season (Gričar and Čufar 2008). Further, 
earlywood development depends on past non-structural C 
reserves (Barbaroux and Bréda 2002; Kimak and Leuen-
berger 2015). For both C and N, allocation to different com-
partments of the tree is spread out along the annum, where 
N transportation ensues later in the vegetative season, peak-
ing around senescence with leaf N resorption (El Zein et al. 
2011a, 2011b; Bazot et al. 2013; Gilson et al. 2014). There-
fore, one may assume that increased direct foliage N uptake, 
during the growing season period, between June–Septem-
ber in our case, might propel an altered forthcoming-season 
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earlywood production, of presumably wider transport vessels 
together with a less dense fibrous vicinity, to support likely 
another anticipated nutrient rich season.

In regard to the BCN treated trees in Monticolo, which 
did not seem to experience this new nutrient balance, we 
may suggest that the distinction could arise from the rather 
conservative amount of ground N fertilization, that might 
have been initially intercepted by the thick perennial leaflit-
ter layer in our forest stands prior to even reaching the soil, 
and possibly up-taken by lower organisms thereafter, and/
or being volatilized in part at the same time. Indeed, Da Ros 
et al. (2023) found a significant difference in the N recovery 
between the two treatments in our site after a 15N tracer fer-
tilization event during the 2016 growth season in Monticolo, 
where the vast majority of labeled N in the BCN treatment 
was retained by the litterfall layer and soil within 4 months 
post fertilization, twice as much as in the ACN treatment. 
In contrast, tree N recovery, albeit detected in rather low 
amounts altogether, was twice as much in ACN than in BCN.

In the case of the beech trees in the Cansiglio forest site, 
lower earlywood width was found in the ACN treatment 
compared to both below canopy N treatments in the first 
two years of the experiment. In the latewood width, the ACN 
treatment was also shown as significantly lower than that 
of BCN60 only in 2017, while being significantly higher 
in BCN60 compared to the rest of the treatments in 2006. 
At the same time, the total ring width of ACN was signifi-
cantly lower than in BCN60 only, in 2016. These differences 
may plausibly imply that above canopy N application may 
cause a mild decrease in the ring width of F. sylvatica, while 
below canopy fertilization may somewhat increase it, yet 
when taking into account the entire time series, it does not 
appear as a consistent tendency considering significant dif-
ference determined in the pre-experimental year. Therefore, 
at this point no definitive statements can be confidently made 
regarding the effects of any type of N application on the 
ring with of our beech trees. The contrasting results of the 
linear mixed model and post-hoc tests for the density traits, 
ultimately showing no significant effects of any treatment 
in this regard, reinforce the possibility that the supposed 
responses seen in the ring widths may essentially be due to a 
high inter-subject variability of the individual trees, resulting 
in random signals.

In other studies relating N availability with beech tree 
ring characteristics, Guerrieri et al. (2021a) found a posi-
tive correlation of soil and leaf N to BAI and a negative 
link with wood density. A similar scale negative effect of 
N deposition on wood density was reported by Vannop-
pen et al. (2018). In ~ 80 old F. sylvatica stands fertilized 
with either N or NPKCa (100 kg N  h−1a  yr−1 during two 
consecutive years), radial growth increase was determined 
for the NPKCa treatment but not for N alone (Elhani et al. 
2005). BAI based growth models concerning N deposition 

in European forest monitoring plots showed significant posi-
tive effects on Scots Pine, Norway Spruce, and oaks, yet for 
beech significance was only nearly achieved (Laubhann et al. 
2009). A three-decade monitoring period of BAI revealed 
a decline in F. sylvatica between 1987–2014, along with an 
inversive relation with N deposition where a positive effect 
was observed up to 26 kg N  h−1a  yr−1, and turned negative 
thereafter (Braun et al. 2017). This was reinforced by the 
models of Kint et al., (2012), who showed a correspond-
ing inversive trend where the negative effect ensued around 
21 kg N  ha−1  yr−1 (and 28 kg N  ha−1  y−1 for Pedunculate 
Oak for that matter). Hess et al. (2018), likewise found both 
favorable and opposing effects on beech ring widths and 
radial growth with increasing N deposition (of up to 14 kg 
N  h−1a  yr−1), depending on interactions with temperature, 
precipitation, and tree age. It is thus apparent that N loads 
beyond certain thresholds may not act agreeably for overall 
tree productivity and may farther turn antagonistic (Fleischer 
et al. 2013; Flechard et al. 2020a, 2020b). The ambient N 
deposition of ~ 17.5 kg N  ha−1  yr−1 in the Cansiglio forest 
surrounds the critical N loads for beech suggested above, 
and considering the additional supplied amount of 30 kg 
N  ha−1  yr−1 (more so in the double-dose BCN treatment), 
exceeds the presumable threshold considerably. While our 
beech trees seemed to remain supposedly indifferent after 
seven years of fertilization in terms of the measured ring 
traits, the BAI results did point to a possible adverse effect 
of the BCN treatments after all. Indeed, the general declin-
ing trend in BAI appeared to be enhanced in both BCN 
treatments compared to the control, suggesting that a lim-
ited undertone response to the added N might have existed 
nonetheless. The implied opposite effect of ACN on the 
BAI trend further supports this notion, and at the same time 
indicates that the mode of N application may in fact mat-
ter here as well, and could induce opposing radial growth 
effects in F. sylvatica. For the oak trees in Monticolo, grow-
ing under ~ 6.5 kg N  ha−1  yr−1 of ambient N deposition, total 
ring width also did not change with any of the added 20 kg N 
 ha−1  yr−1 treatments, while the declining BAI trend seemed 
to be similarly mitigated by the ACN treatment, although 
with no evident impact of BCN in this case.

Climate impacts on beech stem growth and ring develop-
ment have been studied extensively (Leuschner et al. 2001a; 
Bouriaud et al. 2004, 2005; Scharnweber et al. 2011; Mich-
elot et al. 2012a). Although beech appears often as the more 
sensitive to environmental conditions altogether between the 
two species (Campioli et al. 2012; Michelot et al. 2012a), it 
was shown to prevail as the dominant one in mixed forests 
with oak (Leuschner et al. 2001b; Petritan et al. 2012, 2021). 
It may be argued that the beech in Cansiglio might endure 
larger N loads than in other habitats, and with a seemingly 
lower susceptibility than the oak in Monticolo. It is impor-
tant to note here as well the age difference between the two 
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species, where the mature beech is at ~ 135 years while the 
oaks are at the verge of maturity at ~ 65, which might con-
tribute to an overall increased resilience towards environ-
mental stresses, and a possibly higher resistance of the beech 
trees to N overloads in particular.

Contrary to the prevailing findings, where ring width and 
density alter in parallel under a changing environment, this 
was not the case in our oaks. Alterations in transport ves-
sel size or area do not always manifest in conjunction with 
changes in ring width and may be affected by different fac-
tors to different extents (Fonti and García-González 2008). 
A similar lack of accord between external radial expansion 
and internal wood anatomy variations, was presented in two 
of the few existing ACN vs. BCN experiments (performed 
in broadleaf dominated mixed Chinese forests; Jiang et al. 
2018; Zhang et al. 2022), emphasizing that wood related 
phenological shifts may develop beneath the surface, here 
in the context of varying N availabilities. Stressing yet again 
the importance of including measures such as wood density 
when investigating C sequestration. Indeed, further intrin-
sic wood traits may undergo morphological changes, where 
inner vessels may contract or expand (Spannl et al. 2016), 
along with changes in fibrous tissue, while on the macro 
scale total ring size may not budge. Thus, the differentia-
tion of tree rings to the early and late wood fractions is one 
step forward in uncovering these phenomena, yet farther dis-
crimination may be required for a deeper grasp of the trees’ 
actual state (Carrer et al. 2015; García-González et al. 2016).

Moreover, changes in wood density, especially when not 
accompanied with complimenting radial growth, may fur-
ther take a substantial portion in the C stocks estimations, 
as suggested by our biomass area increment trends. When 
considering the density measure with BAI in BAIden in the 
ACN treatment of Q. petraea, albeit with a subtle effect, 
the mild upturn of the BAI trend (compared to the control 
and BCN), was lost, in accordance with the density reduc-
tions. Furthermore, even though density did not appear to 
be altered in F. sylvatica as consequence of any N treat-
ment, the decrease that was visible in the BAI trend of both 
below canopy N treatments, was reduced with the inclusion 
of wood density when presenting BAIden. The effect of den-
sity here was as such, that there was a significant difference 
between the BAI and BAIden slopes of the BCN treatment, 
and nearly significant for BCN60. It is thus notable that 
wood functional traits, hereby tree rings and their physiol-
ogy, are of major importance for both ecological and practi-
cal reasons, and considering the possible trade-offs between 
the ring traits, their significance in deeply understanding the 
trees’ productivity and C storage capacity with relation to its 
environment calls for a continuous and thorough investiga-
tion of as many measures as admissible (Ferretti et al. 2002; 
Chave et al. 2009; Njana et al. 2016; Giberti et al. 2023).

Conclusions

In the current study we utilized two N application approaches 
for simulating elevated N deposition in Q. petraea and F. syl-
vatica, the conventional ground N fertilization, and the more 
befitting above canopy N application which mimics closer 
the interaction of the tree with atmospheric deposition. The 
ring widths of both species were not conclusively affected by 
any of the treatments, yet when translating the ring widths to 
BAI, some patterns emerged where ACN appeared to have a 
positive effect while BCN had the opposite on the temporal 
trend. When looking at wood densities on the annual tree 
ring scale, Q. petraea was the more receptive between the 
two species, exhibiting decreases in mean density under 
the above canopy N application only, accentuating the 
established importance of the relationship between the tree 
canopy and atmospheric N deposition, and emphasizing the 
significance in choosing the right N application method for 
experimental research. The earlywood density fraction of Q. 
petraea underwent an additional decrease, while latewood 
was not affected, pointing to earlywood being the sensitive 
section of the ring towards N inputs. F. sylvatica did not 
show concrete changes in ring wood density, yet when evalu-
ating biomass area increment (BAIden) through incorporat-
ing density in BAI, the previously observed negative effects 
of both below canopy N treatments on the BAI patterns were 
weakened.

Since our outcomes are based on a rather limited number 
of trees, and cores per tree, it would be encouraged to further 
substantiate the findings on a larger sample size. In addition, 
we determined significance of the N application on wood 
density of Q. petraea in middle years of the treatment period 
but not the last year. Considering past studies that observed 
reactions in wood traits to experimental treatments only 
some years down the monitoring periods, or rather responses 
in early years which diminished thereafter, a repeated anal-
ysis of our trees in upcoming years might be advised, as 
the experiment persists. Finally, in our field experiment, N 
was the singular factor differentiated in the system. Despite 
the advantages in focusing on one particular aspect of the 
environment for a deeper grasp of its role, it is clear that 
the interaction with other factors is substantial, thus further 
investigations including additional elements such as climate 
variables and age-related effects may be valuable.

With our current demonstration of the species-specific 
reactions to potential anticipated scenarios of increased N 
deposition rates, we aimed to contribute to a better under-
standing of possible consequences of increased N availabil-
ity on the growth and wood formation in Q. petraea and 
F. sylvatica, whilst presenting the unique responses to dif-
ferent N application methodologies and utilizing restrained 
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fertilizer dosages to encourage careful experimental designs 
with a long-term aptitude in similar prospective studies.
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