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Abstract
Industrial economic activities produce pollutants and environmentally sustainable production systems in forestry aim to 
minimize these undesirable outputs while maintaining high production and economic growth. In this contribution, we assume 
that in addition to plot-specific inputs and outputs, there are some contextual variables that may be exogenously fixed or 
may be under the control of the decision-makers. In this sense, we first propose a novel and practical approach to calculate 
environmental efficiency by reducing undesirable products. Then, we utilize an inverse data envelopment analysis (IDEA) 
model to effectively manage and reduce CO2 emissions. In doing so, the applied models have been utilized to evaluate the 
efficiencies of 89 forest plots in the USA. Given our estimations in a real application to the forest plots, the study revealed that 
the average environmental efficiency score is nearly 0.75 (out of 1). However, there is potential for improvement by adjust-
ing the impacts of contextual factors, which could raise the score to approximately 0.8. Furthermore, the analysis indicates 
a positive correlation between ownership and environmental efficiency, suggesting that increased ownership leads to higher 
environmental efficiency. Conversely, temperature exhibits a negative correlation with environmental efficiency. Finally, the 
results obtained from the IDEA indicate that in order to reduce undesirable outputs by a specific level of 5–10%, it is neces-
sary to decrease other inputs and outputs. This is because, under the assumption of weak disposability, reducing the level of 
undesirable outputs requires a reduction in certain factors that influence production capacity. In other words, achieving the 
desired reduction in undesirable outputs inevitably involves diminishing certain aspects of the production process. As the 
major conclusion, the emergence of IDEA as a powerful tool for sensitivity analysis, along with its flexible nature, offers 
exciting opportunities for research and practical applications in various fields, including forestry activities. It has the potential 
to enhance overall environmental efficiency and enable better control over GHG emissions levels.

Keywords  Forest plot efficiency · Greenhouse gas emissions (GHGs) · Inverse data envelopment analysis (IDEA) · 
Undesirable outputs

Communicated by Thomas Knoke.

 *	 Alireza Amirteimoori 
	 aamirteimoori@gmail.com; 

alireza.amirteimoori@istinye.edu.tr

	 Majid Zadmirzaei 
	 zadmirzaei@webmail.guilan.ac.ir; 

majid.zadmirzai@gmail.com

	 Andres Susaeta 
	 andres.susaeta@oregonstate.edu

	 Arash Amirteimoori 
	 arash_amirteimoori@alumni.lse.ac.uk

1	 Faculty of Engineering and Natural Sciences, Istinye 
University, Istanbul, Turkey

2	 Department of Forestry, Faculty of Natural Resources, 
University of Guilan, Rasht, Iran

3	 Department of Forest Engineering, Resources 
and Management, College of Forestry, Oregon State 
University, Corvallis, USA

4	 Department of Mathematics, London School of Economics 
and Political Science (LSE), Columbia House, Houghton St, 
London WC2A 2AE, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10342-024-01663-3&domain=pdf


	 European Journal of Forest Research

Introduction

In recent years, the relationship between forests and sustain-
able development has undergone substantial progress (Linser 
and Lier 2020). Wood serves as a fundamental and valuable 
forest resource due to its renewable nature, recyclability, and 
sustainable characteristics. It has consistently demonstrated 
that wood holds several advantages over alternative materi-
als, primarily in terms of its lower environmental impact 
(Janiszewska-Latterini and Pizzi (2023); Keshvardoost-
chokami et al. (2023); Lukawski et al. (2023)).While the 
conservation and utilization of forest resources have long 
been crucial subjects in forest management, contemporary 
developments have brought forth novel dimensions to this 
discourse. The expansion of forest cover and the augmenta-
tion of forest productivity have assumed paramount impor-
tance as essential strategies for addressing climate change 
in the forthcoming 30–50 years. This recognition is shared 
by numerous countries and international organizations, 
who acknowledge the crucial role forests play in mitigating 
the adverse impacts of climate change. For instance, in the 
USA, forests play a crucial role in the overall carbon cycle 
and climate regulation. They act as carbon sinks, absorbing 
more CO2 than they emit. The preservation and expansion of 
forests are therefore important strategies for mitigating cli-
mate change and minimizing CO2 emissions (Walters et al. 
2023). Hence, modeling undesirable output (CO2 emissions, 
etc.) for various forest production systems has attracted 
considerable scholarly attention and is viewed as pivotal in 
safeguarding our planet’s ecological balance and combat-
ing the adverse effects of climate change. To tackle this, 
one well-established managerial tool is data envelopment 
analysis (DEA) which was initially developed by Charnes 
et al. (1978) and has since been extended by other scholars 
in order to model undesirable output and measure environ-
mental efficiency (Long et al. 2015). The analysis conducted 
by the DEA involves evaluating and comparing the envi-
ronmental efficiency of a specific set of decision-making 
units (DMUs) based on their utilization of multiple inputs 
and corresponding outputs. For example, some studies have 
treated environmental factors as undesirable outputs, such 
as carbon emissions and waste generation (Seiford and Zhu 
2002; Hua and Bian 2007; Zhou et al. 2014; Maghbouli 
et al. 2014), while others have considered them as inputs, 
such as energy consumption and water usage (Liu and Sharp 
1999; Dyckhoff and Allen 2001; Hailu and Veeman 2001). 
However, the current methodology falls short in accurately 
representing the intricacies of the manufacturing process. To 
address this limitation, Färe et al. (1989) and Picazo-Tadeo 
et al. (2005) proposed an alternative approach that utilizes 
a directional distance function and incorporates a weak dis-
posability assumption. In recent attempts, this methodology 

aims to expand the assessment of positive outputs while also 
contracting the evaluation of negative outputs (Fujii and 
Managi 2013; Huang et al. 2014; Tongying et al. 2017; Fan 
et al. 2017; Yu et al. 2018). In the field of forestry and its 
related activities, considerable research has been conducted 
to measure environmental efficiency (Obi and Visser (2018); 
Obi and Visser (2020); Obi et al. 2023). The predominant 
model used by scholars in this regard is the SBM-DEA 
model (Yang et al. 2011; Li et al. 2021; Zhang and Xu 2022). 
However, there is only one instance of applying a two-stage 
DEA model for measuring environmental efficiency. Specifi-
cally, Tan et al. (2023) employed the super-efficient DEA 
model to assess the forestry eco-efficiency (FECO) of 30 
provinces and cities in China between 2008 and 2021. Addi-
tionally, the study utilized the Tobit model to examine the 
influencing factors on FECO, with the aim of gaining deeper 
insights into the level of sustainable development in forestry. 
However, DEA is traditionally recognized as a data-driven 
methodology that can give rise to issues related to homoge-
neity. For example, there might exist some contextual fac-
tors which impact on DMUs’ environmental efficiency and 
steer forest managers toward an unfair comparison. Banker 
and Natarajan (2008)’s definition of contextual variables 
includes those variables that may be exogenously fixed as 
well as others that may be under the control of the DMU 
managers. Managers should therefore include two-stage effi-
ciency measurements in their evaluation process; firstly, they 
should calculate environmental efficiency to assess DMUs’ 
performance. Secondly, they need to separately adjust the 
effects of contextual factors by various regression models in 
order to obtain reliable results (Djordjević et al. 2023). In the 
context of DEA methodology, the inquiry recently revolved 
around ascertaining the maximum feasible augmentation in 
input allocation for a unit with the objective of augmenting 
its outputs by a specific magnitude, while simultaneously 
preserving its current efficiency levels should the unit per-
sist with its operations (Zhang and Cui 2016). To close this 
theoretical gap, Inverse DEA (IDEA) is an analytical tech-
nique employed in post-DEA sensitivity analysis to address 
resource allocation problems. Its primary aim is to iden-
tify the optimal quantities of inputs and/or outputs for each 
DMU when subjected to perturbations in either inputs or 
outputs. Since Wei et al (2000) formulated the first instance 
of an inverse DEA model in 2000, the IDEA approach has 
garnered considerable attention and popularity in recent 
years, primarily due to its wide range of applications across 
various sectors. These sectors encompass business (Hos-
seininia and Saen 2020; Amin and Ibn-Boamah 2023), sup-
ply chain management (Kalantary and Saen 2019; Gharibi 
and Abdollahzadeh 2021; Moghaddas et al. 2022), educa-
tion (Guijarro et al. 2020; Le et al. 2021), manufacturing, 
sustainable production (Hassanzadeh et al. 2018; Yousefi 
et al. 2021), energy, and environment (Ghiyasi 2019; Lim 
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2020; Orisaremi et al. 2022). In terms of environmental effi-
ciency assessment, a groundbreaking inverse DEA model 
was developed with the objective of minimizing greenhouse 
gas (GHG) emissions across 23 oil companies situated in 
the USA and Canada (Wegener and Amin 2019). This inno-
vative model provided valuable insights and strategies for 
effectively managing and reducing GHG emissions within 
the oil industry. In another recent investigation carried out 
by Emrouznejad et al. (2019), a unique approach so-called 
inverse DEA was utilized to allocate CO2 emissions among 
specific sectors within the Chinese manufacturing industries. 
The research findings revealed three distinct stages in the 
process: reduction of total CO2 emissions, allocation to two-
digit industries, and subsequent allocation to various prov-
inces. Nevertheless, there is only encompassing research 
conducted by He et al. (2022); the authors employed DEA to 
illustrate the efficiency of China's forest carbon sink. Addi-
tionally, a gray prediction model was utilized to estimate the 
alteration in the input indicator as China approaches peak 
carbon levels. Lastly, the inverse DEA model was applied to 
investigate the increase in forest carbon sink across various 
provinces within China.

In all the above-mentioned recent studies, the main goal 
is to determine the specific input and/or output adjustments 
necessary for the DMUs to attain a predefined efficiency 
target. Hence, the initial hypothesis of this practical research 
is to determine if the suggested methodology is capable of 
mitigating CO2 emissions and how much the contextual 
factors can influence the results of this study.

To the best of our awareness, no study has been 
conducted to assess the environmental efficiency of the US 
forest sector using the two-stage DEA and simultaneously 
IDEA approaches, even though this sector holds immense 
importance for the region. This presents a unique 
opportunity to explore and uncover new insights into the 
environmental performance of the sector. To address this 
void, the novel contribution of this study is threefold:

•	 Evaluate environmental efficiency by incorporating the 
weak disposability assumption to effectively mitigate 
CO2 emissions in the initial stage.

•	 Utilize a regression model as an intermediate analysis 
in the second stage to justify the impact of contextual 
factors.

•	 Minimize the levels of undesirable outputs, specifically 
CO2 emissions, to the greatest extent possible within 
some predefined scenarios. Indeed, our developed IDEA 
model enables us to conduct a sensitivity analysis on 
the results of environmental efficiency and ultimately 
determine the optimal variations of the applied dataset.

The remaining sections of this practical research 
are outlined as follows: Sect.  “Problem statement” 

describes the problem statement and research questions. 
Sect. “Methodology” provides a detailed description of 
the applied DEA, regression analysis, and IDEA modeling 
techniques. Sect. “An application to forest sector” applies the 
proposed procedure to a real dataset in the US forest sector. 
Sects. “Results”, “Discussion”, and “Concluding remarks” 
present the obtained results, discussion, and concluding 
remarks, respectively.

Problem statement

Suppose there are J forest plots with each one using I inputs 
to generate R desirable outputs and K undesirable outputs. 
Moreover, we assume that in addition to these inputs and 
outputs, there are a finite number of contextual and explana-
tory variables that have significant impact on the perfor-
mance of the plots. The work process in a sample forest plot 
is depicted in Fig. 1.

How do the contextual variables affect the technical 
efficiency of forest plots?

Consider a specific DMUo ∶ Suppose we are interested in 
reducing the level of undesirable outputs from wo to wo − �o , 
while preserving the current efficiency level. How much the 
level of desirable outputs and inputs of DMUo should be 
reduced?

Methodology

Environmental efficiency assessment

Suppose there are J forest plots (each one as a DMU) to be 
evaluated andxj =

(

x1j, ..., xIj
)T

≥ 0 , yj =
(

y1j, ..., yRj
)T

≥ 0 
and zj =

(

w1j, ...,wKj

)T
≥ 0 are respectively, the input, 

desirable output, and undesirable output vectors of plot j . 
We assume that in addition to the plot-specific inputs and 

Fig. 1   A systemic view to a sample forest plot
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outputs, there are a finite number of contextual variables 
that have significant impact on the process. Suppose that 
(

z1j, ..., zLj
)T

≥ 0 denotes the vector of contextual variables. 
To achieve plot-specific efficiency, we use a two-stage pro-
cedure involving efficiency calculation in the first stage 
and removing the impact of contextual variables in the 
second stage. In this sense, in the first stage, we use the 
weak disposable model of Kuosmanen (2005) to calculate 
plot-wise environmental efficiency scores. Then, in the 
second stage, we use ordinary least squares (OLS) tech-
nique to remove the impact of contextual variables on the 
efficiency scores generated from the first stage.

To estimate the technical efficiency of plot εoε in the 
first stage, we use the following output-orientation model 
of Kuosmanen (2005):

Suppose �∗
o
 is relative environmental efficiency of DMUo . 

In order to remove the impact of contextual variables on 
efficiency scores, we use ordinary least squares method. The 
production frontier in technology set of model 1 is monotone 
increasing, piecewise linear and concave. Hence, as Banker 
and Natarajan (2008) stated, the regression of the calculated 
efficiency scores by Model (2) on the contextual variables 
using ordinary least squares provides good estimation of the 
parameters of contextual variables. In this sense, in order 
to refine efficiency scores, we will apply the following 
regression model in the second stage:

in which Log(�∗
o
) is the logarithm of the environmental 

efficiency score of DMUo obtained from model 2. In 
regression model (2), �0 and � are, respectively, the intercept 
and error term. The coefficients �l ∶ l = 1, ..., L can be 
positive or negative. The signs of �l indicate that the l − th 
contextual variable has a direct or inverse impact on the 
environmental performance of DMUo . Upon estimating 
the regression parameters using the least squares method, 

(1)

�∗
o
= min�

s.t.

J
∑

j=1

(

�j + �j

)

xmj ≤ xmo,m = 1, ...,M,

J
∑

j=1

�jyrj ≥ �yro, r = 1,… ,R,

J
∑

j=1

�jwkj = wko, k = 1,… ,K,

J
∑

j=1

(

�j + �j

)

= 1,

�j,�j ≥ 0, j = 1,… , J.

(2)Log(�∗
o
) = �0 + �1z1o + �2z2o +⋯ + �LzLo + �

it becomes feasible to compute the residuals. The accurate 
environmental efficiency is therefore estimated as:

An inverse DEA model

In this section, we discuss the problem of inverse DEA in 
two scenarios:

First, we examine the case that if we reduce undesirable 
outputs to a certain amount, how much should we reduce 
the inputs and the desirable outputs in order to maintain the 
level of environmental efficiency?

Second, we investigate that if we are interested in 
increasing the level of outputs to a certain amount, how 
much the inputs and undesirable outputs are increased 
while preserving the level of environmental efficiency?

In the first approach, the problem is: if DMUo decreases 
its current level of undesirable outputs to wo − � , how 
much should the inputs and desirable outputs be reduced 
to maintain the current efficiency level. We believe that 
reducing undesirable outputs requires reducing inputs and 
desirable outputs. In order to determine the optimal values 
of the changes in inputs and desirable outputs, we solve 
the following multi-objective linear programming problem 
model (3):

�
∗

o
= �∗

o
−
[

Log
(

�∗
o

)

−
(

�0 + �1z1o + �2z2o +⋯ + �LzLo + �
)]

(3)

Max�m ∶ m = 1,… ,M

Min�r ∶ r = 1,… ,R

Min

M
∑

m=1

sm

Min

R
∑

r=1

dr

s.t.

J
∑

j = 1

(

�j + �j

)

xmj + sm = �∗
o
(xmo − �m),m = 1,…M,

J
∑

j = 1

�jyrj − dr =
(

yro − �r
)

, r = 1,… ,R,

J
∑

j=1

�jwkj = wko − �k, k = 1,… ,K,

J
∑

j = 1

(

�j + �j

)

= 1,

�j ≥ 0, j = 1,… , J,

sm, dr, �m,�r ≥ 0, for allmandr.
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Clearly, the vector 
(

xo − �, yo − � ,wo − �
)t belongs to 

Pos(A) , in which A = [X, Y ,W]t and is the set of all non-
negative linear combinations of A . (Note that X, Y  and W 
are matrixes of all inputs, desirable outputs and undesir-
able outputs, respectively.) This guarantees the feasibility 
of model (3).

In model 3, the r-th undesirable output is reduced by �r 
and we are interested in determining the minimum values 
of reduction in desirable outputs and maximum values of 
reduction in inputs. It should be pointed out that �r are 
user-defined values. Model 3 is a multi-objective linear 
programming model, and it is not easy to calculate an 
optimal solution to satisfy all objects. Suppose.

� = Min
{

�m ∶ m = 1,… ,M
}

 a n d 
� = Max

{

�r ∶ r = 1,… ,R
}

  .  C l e a r l y , 
� ≤ �m, forallm = 1,… ,M  and � ≥ �r, forallr = 1,… ,R . 
In order to derive a non-dominated solution, we can easily 
solve the following single-objective model:

Now suppose we are interested in increasing the level 
of desirable outputs from yro to yro + �r . The object is to 
determine the new optimal values for inputs and undesirable 
outputs, while preserving the level of environmental 
efficiency. To determine the optimal values of the changes 
in inputs and undesirable outputs, we solve the following 
linear programming problem:

(4)

Max � − � −

M
∑

m=1

sm −

R
∑

r=1

dr

s.t.

J
∑

j = 1

(

�j + �j

)

xmj + sm = xmo − �m,m = 1,…M,

J
∑

j = 1

�jyrj − dr = �∗
o

(

yro − �r
)

, r = 1,… ,R,

J
∑

j=1

�jwkj = wko − �k, k = 1,… ,K,

J
∑

j = 1

(

�j + �j

)

= 1,

� ≤ �m, for all m = 1,… ,M,

� ≥ �r, for all r = 1,… ,R,

�j ≥ 0, j = 1,… , J,

sm, dr, �m, �r ≥ 0, for all m and r.

In model 5, sm, dr, �, �m,�,�k, �j and �j are decision 
variables and �r is user-defined values. An important point to 
be noted is that model (5) may lead to infeasibility in some 
real cases. This is due to the fact that the user-defined values 
�r may be infeasible in practice. In this case, an interaction 
may be useful to achieve a feasible plan.

An application to forest sector

We now proceed to illustrate the practical application of our 
proposed approach by employing a dataset comprising 89 
forest plots situated in the state of Oklahoma, USA. It should 
be noted that forest plots serve as the unit of observation for 
the forest inventory analysis (FIA) program. A standard plot 
typically comprises about four subplots, each with a radius 
of 7.3 m (equivalent to 0.015 hectares). Within each standard 
plot, trees with a diameter greater than 13 cm are measured. 
Additionally, within each subplot, a nested microplot with 
a 2.1-m radius (equivalent to 0.001 hectare) is utilized to 
measure trees with a diameter less than 13 cm (Burrill et al. 
2021). This dataset, obtained from the FIA (USDA Forest 
Service 2023), encompasses detailed information regarding 
the ecosystem services generated by these forest plots in 
2018.

In this application, we seek to estimate the environmental 
efficiency of the plots with emphasis on their ability to gen-
erate desirable outputs and reduce undesirable outputs. In 
this sense, we chose four desirable outputs, timber produc-
tions ( y1 ), carbon sequestration ( y2 ), water production ( y3 ) 

(5)

Min� + � +

M
∑

m=1

sm +

R
∑

r=1

dr

s.t.

J
∑

j = 1

(

�j + �j

)

xmj + sm = xmo + �m,m = 1,…M,

J
∑

j = 1

�jyrj − dr = �∗
o

(

yro + �r
)

, r = 1,… ,R,

J
∑

j=1

�jwkj = wko + �k, k = 1,… ,K,

� ≤ �m, for allm = 1,… ,M,

� ≤ �k, for allk = 1,… ,K,

J
∑

j = 1

(

�j + �j

)

= 1,

�j ≥ 0, j = 1,… , J,

sm, dr, �m,�k ≥ 0, for all m, k and r.
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and tree richness ( y4 ), and one undesirable output, carbon 
emitted in the case of harvest ( w1 ). We also considered one 
input as site productivity ( x1 ). In addition to plot-specific 
input and outputs, we have also considered the following 
five contextual variables ─ age, damage, ownership, pre-
cipitation, and temperature ─ which are denoted by z1-z5, 
respectively. With the exception of the climatic variables, all 
input, outputs, and contextual variables were obtained from 
the FIA program. We used historical records of precipitation 
and temperatures in each forest plot and obtained from the 
WASSI model (Caldwell et al. 2019). Tables 1 and 2 show 
the descriptive variable of the dataset set. All units were 
taken to the hectare level, when applicable.

Results

Environmental efficiency analysis

First, the assessment of environmental efficiency in the US 
forest plots is initially conducted through the utilization 
of the conventional DEA model under weak disposability 
assumption (Model 1). The objective of this evaluation is to 
promote enhanced levels of desirable output. The outcomes 
of this approach are depicted in Table 3.

This analysis reveals that approximately 38% (34 out 
0f 89) of forest plots are fully determined efficient (See 
Table 8 in Appendix A). This signifies that these fully effi-
cient DMUs have optimized their desirable outputs while 
slightly reducing their input activity levels and keeping a 
constant undesirable output level, thereby attaining high 
efficiency and productivity (environmental efficiency = 1). 

Table 1   The statistical description of the inputs and outputs data

Indicator x
1
 Site productivity 

(m3/ha/yr)
y
1
 Timber produc-

tion (m3/ha)
y
2
 Carbon sequestra-

tion (ton/ha/yr)
y
3
 Water produc-

tion (ton/ha)
y
4
 Tree richness w

1
 CO2 emis-

sions (ton/ha)

Min 0.5000 0.3952 0.0292 851.5867 1.0000 0.0011
Max 7.0500 283.3104 65.0599 9895.3650 9.0000 12.2137
Mean 1.4213 51.6868 7.7535 4054.9068 4.3258 1.2931
Std 1.3380 46.3529 10.9577 1475.4262 2.1835 2.2201
Median 0.5000 39.2249 3.7884 3909.1083 4.0000 0.3852

Table 2   The statistical description of the contextual variables

*A forest plot is considered as damage if it displayed a tree mortality of 25% caused by biotic or abiotic agents (Burril et al. 2021)

Indicator z
1
 Age (Years) z

2
 Damage* (1 = damage; 

0 = no damage)
z
3
 Ownership (1 = pri-

vate; 0 = public)
z
4
 Precipitation mm z

5
 Temperature °C

Min 3 0 0 737.2 12.958
Max 100 1 1 1762.2 17.358
Mean 56.7191 – – 1164.0843 15.6970
Std 22.3322 – – 196.6429 0.8519
Median 63 – – 1160.6 15.642
Mode – 1 1 – –

Table 3   The statistical 
description of the EE and 
optimal inputs and outputs from 
model 1

*Environmental Efficiency score

Indicator EE* x
1

y
1

y
2

y
3

y
4

w
1

Min 1.0000 0.5000 0.3952 0.0292 851.5867 1.0000 0.0011
Max 3.8227 7.0500 283.3104 65.0599 9895.3650 9.0000 12.2137
Mean 1.3348 1.2288 65.1210 13.9515 5183.3285 5.5234 1.2931
Std 0.5192 1.1279 46.1214 12.6651 1482.3487 2.0524 2.2201
Median 1.0824 0.5000 62.5482 10.7932 4984.3600 6.0000 0.3852
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Conversely, the remaining DMUs with inefficiency scores 
greater than one should improve their efficiency by follow-
ing the improved input and output values determined by the 
efficient US forest sectors. In details, the statistical descrip-
tion of the projection points corresponding to inputs and out-
puts showed that the single input (Site productivity) needs 
to be reduced by 14%. Moreover, the outputs sawtimber and 
pulpwood productions, carbon sequestration, water produc-
tion, and tree richness must be increased by 26, 79, 28, and 
28%, respectively. However, as we should expect, the level 
of undesirable outputs, CO2 emissions, remained unchanged. 
As we can see, the main source of inefficiency is related to 
carbon sequestration.

Calculating the impact of contextual variables

In the second step of our analysis, we first calculated the 
Pearson’s correlation test to examine the relationship 
between the environmental efficiency of the forest plots and 
the contextual variables employed in this study. Specifically, 
we paired the logarithm of the environmental efficiency with 
each of the contextual variables to measure their correlation. 
The results are listed in Table 4. Prior to accounting for 
the influence of other contextual variables, we observed 
a positive correlation between the Log(�) (Logarithm of 
environmental efficiency) and the contextual variables, 
including age, ownership, precipitation, and temperature. 
However, it is worth noting that the correlation becomes 
negative when considering the variable damage. The 
analysis revealed that the highest correlation value for 
Log(�) is associated with precipitation. On the other hand, 
the lowest correlation is observed for the variable damage. 
This implies that while various types of damages (such as 
insect, disease, human, animal, fire, and weather-related 
damages) negatively impact plot efficiencies; however, none 
of the examined contextual variables showed statistically 
significant effects, according to the analysis conducted.

Now, the impact of contextual factors on the efficiency 
state of a plot is being measured. Our goal is to identify and 
minimize their impact so that we can calculate more accurate 
efficiency scores that are specific to each plot. Toward this 
end, we apply the regression model (2) during second phase 
and present the corresponding findings in Table 5. As the 

results show, ownership and temperature are statistically sig-
nificant. Moreover, the temperature has inverse relationship 
with environmental efficiency, while ownership has direct 
relationship with efficiency.

The findings presented in Table 5 indicate that while 
there seems to be a correlation between the logarithm of 
environmental efficiency scores and variables such as 
age, damage, and precipitation, these relationships are 
not statistically significance. However, there is a direct 
significant relationship between ownership and the 
logarithm of environmental efficiency, indicating a notable 
association. More specifically, this finding suggests that 
private ownership has a favorable positive influence on 
environmental efficiency. Through our observations, 
we noted a negative significant relationship between 
the logarithm of environmental efficiency scores and 
temperature. This discovery indicates that as the temperature 
increases, there is a minor decline in efficiency levels across 
various plots. It should be noted that the R square value 
stands at approximately 0.26, indicating that the regression 
model encompasses over 26% of the observed data. Finally, 
after adjusting for contextual variables, we found that the 
average environmental efficiency of the plots is calculated 
to be 1.2428.

An inverse DEA analysis

In the last step, we apply our proposed IDEA model (5) 
on forest plots data. We design two scenarios to reduce 
the studied undesirable output: we first assume that we 
are interested in reducing the level of undesirable output 
(CO2 emissions) by 5%. The optimal values of inputs and 
desirable outputs are calculated by model (5). The statistical 
description of the results is given in Table 6.

Our results indicated that if we want to reduce the level 
of undesirable outputs by 5%, we should reduce the levels of 
sawtimber and pulpwood production, carbon sequestration, 
water production, and tree richness by 2, 5, 0.3, and 7%, 
respectively. In this case, the site productivity should be 
reduced by 21%.

In the second scenario, aiming to reduce undesirable 
outputs by 10%, the findings from model (5) in Table 7 
indicate that the levels of sawtimber and pulpwood, carbon 

Table 4   Pearson correlation 
coefficients

Log(�) Age Damage Ownership Precipitation Temperature

Log(�) 0.2049 − 0.0227 0.1162 0.4474 0.2221
Age − 0.0349 0.0377 0.0937 − 0.0402
Damage − 0.1477 − 0.0270 − 0.1183
Ownership 0.0713 0.0897
Precipitation 0.5651
Temperature
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sequestration, water production, and tree richness must be 
reduced by 3, 8, 0.5, and 8%, respectively. Additionally, site 
productivity needs to be reduced by 22%.

Discussion

This study explored the applicability of DEA-based 
approaches to estimate environmental efficiency for the 
US forest plots, incorporating both undesirable output 
(CO2 emissions) and contextual variables. Toward this 
end, an output-oriented DEA model was first implemented 
using weak disposability assumption to calculate plot-wise 
environmental efficiency scores. The results indicated that 
only 34 of forest plots were operating at high-efficiency 
levels while their total average environmental efficiency 
was quite high (0.75 out of 1) (Table 3 and Appendix A). 
However, the inherent characteristic of the implemented 
environmental DEA model results in the consistent preser-
vation of the level of undesirable output (CO2 emissions) 
for all inefficient forest plots. This is attributable to the 
implementation of a weak disposability strategy in which 
the model aims to proportionally adjust both desirable and 
undesirable output levels simultaneously based on envi-
ronmental regulations. (Färe et al. 2007; Long et al. 2015). 
In practice, the process of mitigating undesirable outcomes 
like CO2 emissions in forest logging activities involves 
incurring expenses related to proportional reduction or 
increased output. Consequently, operational costs emerge 

Table 5   Regression results

Regression statistics

Multiple R 0.510613

R square 0.260725
Adjusted R square 0.216191
Standard error 0.119157
Observations 89

ANOVA

Df SS MS F Significance F

Regression 5 0.415618 0.083124 5.854446 0.000111
Residual 83 1.178464 0.014198
Total 88 1.594082

Coefficients Standard error t Stat P value

Intercept − 0.4737 0.2539 − 1.8656 0.0656
Age 0.0011 0.0006 1.9786 0.0512
Damage 0.0008 0.0344 0.0220 0.9825
Ownership 0.0360 0.0425 0.8463 0.3998
Precipitation 0.0003 0.0001 3.9947 0.0001
Temperature − 0.0060 0.0184 − 0.3243 0.7466

Table 6   The statistical description of the optimal inputs and outputs

Indicator x
1

y
1

y
2

y
3

y
4

Min 0.5000 0.3754 0.0292 851.5867 0.7997
Max 6.7519 277.0955 63.0635 9585.8630 8.7553
Mean 1.1274 50.6851 7.3643 4045.4254 4.0361
Std 1.0670 45.5918 10.5710 1459.9453 2.0820
Median 0.5000 38.2966 3.5477 3908.9563 3.8464

Table 7   The statistical description of the optimal inputs and outputs

Indicator x
1

y
1

y
2

y
3

y
4

Min 0.5000 0.3557 0.0292 851.5867 0.7980
Max 6.4539 270.8807 61.0672 9276.3610 8.5105
Mean 1.1084 50.0663 7.1656 4036.4464 3.9677
Std 1.0196 44.8709 10.1951 1445.2303 2.0242
Median 0.5000 38.2966 3.5221 3908.7777 3.8057
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as a significant factor in this strategy (Palmer et al. 1995; 
Sueyoshi and Goto 2012). These costs impact the total 
operation costs or average operation cost by decreasing 
or increasing them, respectively, owing to reduced CO2 
emissions (Zadmirzaei et al. 2023). The outcomes also 
indicate the necessity of a 79% increase in carbon seques-
tration to offset the damages caused by CO2 emissions, 
and there might be some exogenous/contextual factors 
which can easily impact on the levels of both desirable 
and undesirable outputs. Hence, the log of environmen-
tal efficiency ( Log(�∗

o
) ) was calculated in the second step 

in order to mitigate the effect of contextual factors on 
the previous obtained results. The findings of the OLS 
regression test showed that the logarithm of environmental 
efficiency exhibited a direct significant relationship with 
ownership and a negative significant relationship with 
temperature (Table 5). These findings are in line with 
some related research in the forest sector (Gutiérrez and 
Lozano 2022; Amirteimoori et al. 2023). Moreover, the 
residuals of the Log ( �∗

o
 ) refer to the differences between 

the observed values and the predicted values based on the 
estimated regression model which provide a good meas-
ure of the studied DMUs’ managerial ability (Banker and 
Park 2020). For instance, the coefficient of 0.0360 for 
the ownership variable demonstrates the significant and 
direct impact of private forest ownership on enhancing 
the environmental efficiency within this particular produc-
tion system. Indeed, when forest plots are managed by 
private ownership, the environmental efficiency of forest 
management practices can vary depending on the indi-
vidual goals and strategies of the private owners, leading 
to potential trade-offs between economic profitability and 
environmental sustainability (Feliciano et al. 2017). The 
temperature variable, characterized by a negative coeffi-
cient of − 0.0060, holds significance in our analysis. This 
indicates that a unitary increase in temperature is associ-
ated with a 100

(

e−0.006 − 1
)

= %0.6 decrease in the average 
environmental efficiency. Therefore, after adjusting these 
exogenous/contextual factors, the overall average environ-
mental efficiency score significantly increases to 0.8 (on 
a scale of 1).

Lastly, to reduce/control the studied undesirable output 
(CO2 emissions), an inverse DEA model was applied. The 
model incorporates two distinct scenarios, namely a 5% 
and 10% reduction in CO2 emissions, to effectively analyze 
and determine optimal strategies. Although both scenarios 
exhibit a comparable pattern in reducing undesirable 
outputs, it is worth noting that the reduction of desired 
outputs and studied input was marginally more satisfactory 
in the scenario aiming to reduce CO2 emissions to a level of 

10% (Tables 6 and 7). In details, to achieve a 10% reduction 
in undesirable outputs, the research findings indicated that 
certain measures need to be taken. The study recommends 
decreasing the levels of sawtimber and pulpwood by 3 
and 8%, respectively. Additionally, carbon sequestration 
should be reduced by 0.5%, while water production and 
tree richness should be decreased by 8%. Moreover, site 
productivity needs to be lowered by 22% to meet the desired 
target. While these practices may seem counterintuitive in 
terms of generating economic revenues, actions such as tree 
harvesting and the use of fertilization (as a means to increase 
site productivity) are expected to elevate carbon emissions. 
In light of achieving specific environmental standards, 
forest landowners/managers might consider reducing tree 
harvesting levels and minimizing the use of fertilizers to 
lower their carbon footprint. The use of fertilizers can also 
contribute to increased tree richness, and by managing tree 
richness, carbon emissions may be reduced. Furthermore, 
the quantity of water is inversely associated with the level 
of tree density (number of trees per hectare). Keeping trees 
unharvested can decrease water quantity but simultaneously 
reduce carbon emissions. These findings align with the 
recommended forest management strategies across various 
silvicultural practices as discussed in a recent study (Ameray 
et al. 2021). Therefore, the latest research findings provide 
compelling evidence that IDEA has the capacity to conduct 
sensitivity analysis, addressing the significant limitations 
of DEA models. In addition, the IDEA approach offers 
enhanced flexibility when compared to traditional DEA 
models. Given its proven effectiveness as an optimization 
technique, it presents an intriguing opportunity for 
further exploration and application in various production 
and service organizations, particularly in the realm of 
environmental efficiency measurement (Orisaremi et al. 
2021). To elaborate further, the utilization of IDEA allows 
for the examination of how changes in inputs and outputs 
impact the efficiency scores obtained from the model. This 
sensitivity analysis is vital for understanding the robustness 
and reliability of the IDEA results, especially in complex and 
dynamic environments where nonlinear relationships exist 
between inputs and outputs, as well as where sustainable 
management of forest operations involves embracing a 
broader perspective that integrates carbon emissions, tree 
biodiversity, and a multitude of other vital parameters. By 
doing so, we can strive toward a holistic and harmonious 
approach that supports the ecological, social, and economic 
dimensions of sustainable forest management (Cooper 
and MacFarlane (2023); Latterini et al. (2023a and b), and 
Bowditch et al. (2023)). By incorporating this capability, 
IDEA addresses a key limitation of conventional DEA 
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methods that often assume linearity, enabling researchers 
and practitioners to gain deeper insights into the underlying 
factors affecting efficiency (Emrouznejad 2023).

Concluding remarks

Mechanized forest logging operations have emerged as a 
significant source of air pollution, contributing to increased 
emissions of CO2 and other greenhouse gases (GHGs) per 
unit of timber harvested. This poses challenges for imple-
menting sustainable and economically viable practices, mak-
ing it complex to strike a balance between efficient timber 
harvesting and minimizing carbon footprints in the pursuit 
of environmentally sustainable forest management. Con-
sequently, incorporating considerations for environmental 
efficiency problems becomes essential as it encompasses 
enhancing efficiency and minimizing undesirable out-
puts. This serves as a valuable managerial tool in promot-
ing environmentally sustainable harvesting practices that 
simultaneously enhance overall productivity and mitigate 
CO2 emissions. Hence, the primary focus of this research 
lies in the formulation of DEA-based methodologies to 
evaluate the environmental efficiency of forest plots in the 
USA. These methodologies incorporate not only the meas-
urement of undesirable outputs such as CO2 emissions but 
also account for contextual variables, thereby providing a 
comprehensive assessment of environmental efficiency. To 
this end, the study implemented a two-stage DEA model 
to calculate plot-wise environmental efficiency scores. The 
average environmental efficiency was high (075), and the 
logarithm of environmental efficiency was used to account 
for contextual factors in the second stage. Ownership had a 
positive relationship with environmental efficiency, while tem-
perature had a negative relationship. Adjusting for these factors 
increased the overall average environmental efficiency score 
(0.8). Finally, an Inverse DEA model was used to analyze strate-
gies for controlling CO2 emissions. It was found that reducing 
undesirable outputs required reducing other inputs and outputs, 
because naturally, to reduce the level of undesirable outputs 
under the weak disposability assumption, some influencing fac-
tors of production capacity must inevitably be reduced. These 

recommendations aimed to balance minimizing undesirable 
outputs with ecological functions. The specific magnitudes 
of reductions should be determined based on local conditions, 
ecological considerations, and sustainability goals.

This aspect is particularly noteworthy in cases where 
certain outputs, once produced, come at the expense of oth-
ers. For instance, management practices that lead to higher 
rates of carbon sequestration and timber production, such 
as increased tree planting or regeneration, may potentially 
lead to a decrease in water yield. Examples of such prac-
tices include afforestation with fast-growing species and 
moderately intensive mechanical soil preparation. How-
ever, it is essential to acknowledge that certain policies in 
the USA, such as the conservation reserve program (CRP), 
have sought ways to promote carbon sequestration while also 
improving water yield. One approach employed by the CRP 
is the planting of softwood species (USDA 2015). Balancing 
these trade-offs between various ecosystem services remains 
a significant challenge for sustainable land management. 
Policy initiatives like the CRP provide valuable insights into 
potential solutions to address these trade-offs and advance 
more sustainable practices that optimize multiple environ-
mental benefits.

In conclusion, the emergence of IDEA as a powerful tool 
for sensitivity analysis and its flexible nature present exciting 
opportunities for research and practical applications. Explor-
ing the potential of this approach in various production and 
service organizations, particularly within the context of 
environmental efficiency measurement, holds promise for 
advancing our understanding of efficiency dynamics and 
informing decision-making processes. Continued inves-
tigation into the capabilities and limitations of IDEA will 
undoubtedly contribute to the advancement of performance 
evaluation methodologies and enhance organizational sus-
tainability in an ever-changing world.

Appendix A

See Table 8.
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Table 8   Environmental 
efficiency and optimal inputs 
and outputs

Forest plot 
number

EE x
1

y
1

y
2

y
3

y
4

w
1

1 1 7.05 283.3104 18.6973 3973.142 9 8.2322
2 1.1156 2.05 130.1963 26.5806 4639.845 7.8091 3.2102
3 1.1185 1.6093 127.11 45.4682 4018.322 7.3116 3.5008
4 1 2.05 107.0759 4.1282 4820.603 8 1.9178
5 1 2.05 104.9498 28.27 851.5867 4 0.2412
6 1.0098 1.9247 100.3151 15.1108 4808.695 7.0689 0.4815
7 1 4.55 115.1426 1.7806 4097.833 7 12.2137
8 1.0473 0.5 95.7833 48.4574 4020.32 6.2838 2.9605
9 1 2.05 187.8212 1.3787 4342.512 5 1.4557
10 1.0824 2.05 90.4669 8.7082 5283.304 7.5767 1.0386
11 1 0.5 130.1425 54.0094 3078.912 8 1.4876
12 1.1548 2.05 88.8756 18.2603 4343.998 8.0839 0.9593
13 1 0.5 41.8059 11.7459 2490.615 3 0.0226
14 1.1683 2.05 85.7374 21.3456 4832.1 6.1394 6.8261
15 1 0.5 124.5342 28.0641 5600.75 4 0.9961
16 1.4946 0.5 94.822 38.8313 4233.285 7.4728 1.8823
17 1 2.05 99.697 0.0292 4854.765 3 0.3182
18 1.4997 1.6667 149.7103 11.205 5580.455 4.9627 1.5587
19 1.0139 0.5 60.6895 18.1693 7468.699 6.0836 0.8038
20 1.1562 2.05 107.6277 27.8042 4507.376 8.0934 3.7108
21 1.0264 2.05 139.7203 38.2647 3403.801 7.8433 4.6773
22 1.1732 1.0656 42.0396 8.1908 4739.961 7.0393 0.0522
23 1.4386 0.8144 63.0744 22.8092 7377.12 5.8434 1.5914
24 1.3513 0.7293 45.1796 22.9298 5688.558 4.1249 0.1668
25 1 0.5 98.2163 5.6982 3957.308 3 0.349
26 1.2503 0.5 37.0425 4.776 6180.011 6.2515 0.0911
27 1 4.55 75.8436 2.6645 6265.22 8 9.3987
28 1.2742 1.0846 40.8548 3.2792 6374.137 7.645 1.0005
29 1.4793 0.5 76.3369 5.3107 5897.932 3.6612 0.2661
30 1.055 0.5 77.792 12.4165 4813.071 3.548 0.3028
31 2.014 2.3306 85.4357 16.4357 4199.845 8.0561 0.5674
32 1.1297 2.05 86.8139 14.0826 4495.396 7.9076 0.7091
33 1.2948 0.5 75.4336 10.3937 6457.174 5.1792 0.4215
34 1.311 0.544 64.5809 21.6706 6802.536 6.5549 0.7245
35 1 0.5 14.4182 1.4365 5975.688 8 0.344
36 1 0.5 32.2003 19.6684 6662.855 4 0.0592
37 1 4.55 1.3306 0.2837 5525.678 6 0.0036
38 1 2.05 15.1442 3.7884 4984.36 7 0.0286
39 1 2.05 2.1744 2.2998 5639.238 1 0.0059
40 1 2.05 84.1166 8.2841 7481.955 6 0.2277
41 1.3346 1.2432 60.7838 15.7496 6266.281 6.6731 0.2275
42 1.3143 0.5 27.7898 1.8335 7437.361 6.5714 1.062
43 1 0.5 3.6015 4.719 3809.363 2 0.0034
44 1 0.5 109.8831 6.314 3277.748 5 0.5216
45 1 2.05 11.3682 24.4096 3476.872 1 0.031
46 2.4811 2.05 96.5939 11.4168 6765.373 5.5835 4.0701
47 1.7749 0.5 69.6204 10.6185 6908.923 5.3247 1.9817
48 1.3707 0.5 28.4946 14.8448 4713.201 2.7414 0.035
49 1.0691 0.5 19.9467 11.3527 3664.292 1.4314 0.0163
50 2.5222 0.5 69.6097 4.9475 4622.972 5.0444 0.2254
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Table 8   (continued) Forest plot 
number

EE x
1

y
1

y
2

y
3

y
4

w
1

51 2.4323 0.5 44.8402 22.473 5864.394 4.8647 0.2395
52 1.7905 0.5 52.4664 24.9591 5132.588 7.162 2.1173
53 1.6896 0.5 67.334 24.3544 5873.685 5.5359 3.0112
54 1.0023 2.05 74.4284 15.4962 4309.046 8.0184 0.2679
55 1.304 0.5 72.3642 11.147 4533.225 6.5202 0.393
56 1 0.5 32.0822 5.5935 3770.133 7 0.0221
57 1.5797 0.5 74.6042 5.6588 6175.318 4.7392 0.3161
58 1.1938 0.5 8.684 1.6748 4481.193 2.9241 0.01
59 1.8798 2.05 91.8261 8.6463 6975.428 5.8293 0.3083
60 1 0.5 0.3952 2.0869 3527.362 1 0.0011
61 1.5987 0.5 46.644 14.2908 7066.951 6.3947 0.3852
62 1 2.05 73.6688 16.3012 4213.327 8 0.1116
63 1.2989 0.5 43.5315 10.7932 7378.971 6.4945 0.5115
64 1 0.5 43.4669 1.2005 7376.2 6 2.712
65 1 0.5 28.8972 3.3126 9895.365 5 0.0573
66 1 2.05 27.9137 18.2765 5674.48 1 0.0225
67 1 0.5 62.5482 65.0599 3260.412 6 5.3439
68 1 0.5 69.6502 4.5608 2957.727 7 0.2391
69 2.1381 0.5 48.6389 10.2119 6843.127 6.4143 0.3215
70 1.8712 0.5 87.069 21.8633 6178.367 5.6135 0.6888
71 1.0795 1.5972 125.3219 20.4114 5052.871 6.4768 0.9251
72 1 0.5 0.6193 0.2111 4074.198 1 0.0034
73 1 2.05 1.5095 0.3112 4056.812 4 7.744
74 1.0335 2.05 13.3871 2.9082 5017.375 4.134 0.0076
75 1.5791 0.8019 35.4803 10.0655 5644.306 3.4311 0.0362
76 2.1476 0.5 52.6179 17.8503 6650.015 6.4429 0.4609
77 1.4913 0.5 66.1441 5.7166 4550.475 4.4738 0.194
78 1 0.5 21.4553 2.0206 5897.482 8 0.2222
79 1.3249 0.5 32.1502 7.6436 5245.588 6.6247 0.1098
80 2.7019 0.5 33.3372 8.6541 8696.209 5.4038 0.9494
81 1 2.05 15.3311 3.688 5187.212 4 0.0084
82 3.8227 0.5 59.2616 29.2126 4585.359 7.6454 1.5893
83 2.5006 0.5 59.9248 10.878 8089.004 5.0011 0.8488
84 1 0.5 17.8888 9.9562 3160.72 1 0.0091
85 1 0.5 10.9116 0.2076 3694.667 4 0.0051
86 1.1429 0.5 53.3703 19.1323 5000.649 8 0.7289
87 1.0399 0.5 25.768 6.4066 3413.701 3.275 0.0155
88 2.6252 0.5 115.4716 32.0888 5303.912 5.2504 1.1438
89 2.0002 1.6038 23.5106 7.4254 4797.041 6.0005 0.0248
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