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Abstract
In south-east Norway, in the hemiboreal vegetation zone, beech reaches its northern distribution limit and typically occupies 
the same type of sites as spruce. Under future climate change, this area is projected to fall within the temperate zone and 
beech to increase its distribution towards the north at the expense of spruce. However, such forecasts are based on very broad 
scale estimates and the knowledge of climatic adaptation and the competitive potential of the beech and spruce populations 
at these latitudes is scarce. Here, we use a dendrochronological approach to study the growth performance of neighbouring 
spruce and beech trees to climate variability over a period of 70 years. The two species responded quite similarly to varia-
tions in climate in the study area. Both showed increased incremental growth in response to high precipitation both in the 
previous and present year June, indicating that water is a limiting resource. In addition, beech showed a negative response 
to high temperatures in previous July and August, which is probably connected with growth reductions due to masting. 
Overall, spruce and beech in the hemiboreal zone show comparable responses to climatic variations as in the temperate 
zone. Due to the different drought-handling strategies of the two species, we suggest that the intensity of summer droughts 
and the variability between years are likely factors that would be decisive for which of them that will be more successful 
under future climatic conditions.
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Introduction

Climate change is a key driver of species range shifts 
towards higher latitudes and higher altitudes (Chen et al. 
2011; Steinbauer et al. 2018). Inevitably, such range shifts 
implicate competition among species that stand naïve when 
exposed to novel and previously unexperienced competi-
tive interactions. The outcome of these interactions is deter-
mined by a multitude of abiotic- and biotic factors, and a 
key question is to what extent different species’ growth 
and performance, and thereby their competitive ability, are 

being directly impacted by climate change. Here, we take the 
advantage of a dendrochronological approach to study the 
growth performance in two coexisting and competing late 
successional tree species in relation to climate variability 
over a period of 70 years. In our study area, European beech 
(Fagus sylvatica, hereafter “beech”) meets its northern dis-
tribution limit, while Norway spruce (Picea abies, hereafter 
“spruce”) is within its core area in Fennoscandia (Fig. 1). 
According to pollen records, both species established there 
in the 13–1400 s AD (Bjune et al. 2009 and 2013).

Recent projections of future climatic conditions in our 
study area predict temperature increases around 2.5 °C, 
increased winter precipitation, but also an increase in days 
with drought during the growing season (Hanssen-Bauer 
et al. 2015; Kausrud et al. 2022). In line with this, model-
ling of the future potential distribution of natural vegeta-
tion zones suggests a northward shift of the northern range 
limits of tree species by 300 to 500 km (Kramer et al. 2010; 
Saltré et al. 2015) and by the end of the century, our study 
area is expected to fall within the temperate vegetation zone 
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(Kausrud et al. 2022). Beech is thus expected to increase its 
future distribution significantly towards the north due to cli-
mate warming (Hickler et al. 2012). However, future projec-
tions for beech and other trees at their northern range limits 
are uncertain due to the fact that the climate requirements 
of trees are highly site- and species-specific (Kramer et al. 
2010). There are for instance large variations in dormancy 
release between provenances (e.g. Basler & Körner 2012) 
and the length of the wood formation period varies with 
latitudes (del Castillo et al. 2016). Further, the knowledge 
of how beech and spruce perform in coexistence under the 
current climate in northern Europe is scarce.

The growth of beech and spruce in relation to climate is 
well studied in central Europe, where beech has its core area 
and spruce is approaching its southern natural distribution 
limit. Increment growth of both species is negatively affected 
by drought, both in the growing season and the previous year 
(Gutiérrez 1988, Biondi 1993, Selås et al. 2002, Lebourgois 
et al. 2010, Andreassen et al. 2006, Piovesan et al. 2008). 
The negative correlation between tree growth and previous 
summer temperatures is often related to the allocation of 
resources between fruit set and vegetative growth. (Piovesan 
and Adams 2001, Drobyshev et al 2010; Selås et al. 2002). In 
a large dataset comparing the radial growth of the two spe-
cies along a gradient from southern Germany to alpine Aus-
tria, Zang et al. (2014) showed that spruce in general is more 
vulnerable to drought than beech, especially at the warm-dry 
end of the climate gradient. Under extreme drought years 
like 1976 or 2003, both species suffered, but spruce showed 
a stronger growth decrease than beech (Pretzsch 2005; 
Pretzsch et al. 2014). In alpine areas of Europe (Büntgen 
et al 2006) and southern Sweden (Grundmann et al. 2011), 
spruce increment growth has changed lately from show-
ing correlations with early summer precipitation to a larger 

sensitivity to late summer temperatures. This pattern was not 
detected in south-eastern Norway (Andreassen et al. 2006). 
Norway is at the cold–wet end of beech distribution, and it is 
thus unclear if spruce is more vulnerable to drought in rela-
tion to beech in these latitudes. Beech at higher altitudes in 
Europe responds differently to climatic variation than beech 
in the lowlands (Dittmar et al. 2003).

Our main aim was to provide insight into the growth of 
spruce and beech under variations in climate at their north-
western coexistence range limit, using tree-ring data. Such 
knowledge is a crucial for forecasting future performance 
under climate change and, as such, also for forest manage-
ment strategies. Since both species are shown to be drought 
sensitive in central Europe, we hypothesize that both would 
be positively influenced by high levels of summer precipi-
tation. Further, since our study area represents the north-
ern distribution limit for beech, we hypothesize that beech 
should perform better than spruce in warm years.

Materials and methods

Study area

Our study area is located in the southern boreal vegetation 
zone (Moen 1999) and belongs to the Oslo Rift geological 
formation in SE Norway (Fig. 1). Here, the forest landscape 
consists of mixed and monospecific stands of coniferous and 
broad-leaved deciduous tree species, among which European 
beech and Norway spruce are most common. Two forest 
reserves with beech and spruce trees of about 100 years old 
(Table 2) were selected as study sites: Brånakollane Nature 
Reserve (N 59.19° E 10.05°, c.200 m a.s.l., 39.2 ha) and 
Dalaåsen Nature Reserve (N 59.30°, E 10.03°, c. 250 m 

Fig. 1   a Natural distribution 
of European beech F. sylvatica 
(green areas) and Norway 
spruce P. abies (striped areas) in 
western Europe. The red circle 
shows the location of the study 
area at the northern distribution 
limit for native beech forests 
in SE Norway. The distribu-
tion maps are adopted from 
the European Forest Genetics 
Programme http://​eufor​gen.​org. 
b pair of F. sylvatica (left) and 
P. abies (right)

http://euforgen.org
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a.s.l., 97.4 ha). The distance between the two sites is about 
10 km, and both are characterized by rugged terrain, rather 
thin soils, and natural forest stand structures due to low log-
ging activity. See Asplund et al. 2015; Ellingsen et al. 2017; 
Ohlson et al. 2017 for further information about vegetation 
conditions and forest disturbance history.

Data collection

Beech and spruce trees were sampled in close pairs to secure 
that the trees were exposed to similar growing conditions. 
The distance between trees in pairs did not exceed 8 m. Only 
dominant or co-dominant trees of comparable size were 
selected to minimize the influence of tree size-mediated 
competition (Fig. 1b and Table 2). We sampled 42 tree pairs 
in Brånakollane, and 39 pairs in Dalaåsen, resulting in a total 
of 162 sampled trees. All samples were collected during the 
growing season in 2014.

To test the comparability of the trees in pairs and among 
pairs, several environmental variables were measured: The 
stand density surrounding each tree in a pair was measured 
using a standard relascope (l = 60 cm, f = 1; Haglöf AB, 
Sweden). The diameter at breast height (DBH, 1.3 m above 
the ground) of each tree was measured with a standard calli-
per (Haglöf AB, Sweden). For each tree, two samples of the 
organic soil (excluding the litter layer) were extracted near 
the trunk, on opposite sides of the tree. The pH value of the 
standard prepared soil samples was measured with a SenTix 
81 pH electrode connected to an inoLab pH 720 benchtop 
metre (WTW GmbH, Germany).

Tree‑ring samples

The trees were cored at breast height with a standard ø 5 mm 
increment borer (Haglöf AB, Sweden). The samples were 
stored in labelled paper straws and air-dried for ca. 14 days. 
The dried samples were mounted on wooden boards and 
polished with sandpaper. The tree-ring width was measured 
with a LINTAB 6 tree-ring measurement station (Rinn-
tech e.K., Germany) and a Leica M50 microscope (Leica 
Microsystems GmbH, Germany) at a precision of 1/100 mm. 
Tree-ring series were visually and statistically cross-dated 
using standard procedures (Stokes & Smiley 1996, Fritts 

2001, p. 1–23, Speer 2011, p. 96–109.). The statistical cross-
dating was performed using TSAP-Win software (ver. 4.69 h, 
incl. modules math and graphics; Rinntech e.K., Germany).

Climate data

Monthly mean temperature data were obtained from Færder 
meteorological station (Stnr.: 27,500; N 59.0272, E 10.5242; 
6 m a.s.l.; eklima.met.no) approximately 33 and 43 km from 
Brånakollane and Dalaåsen, respectively. Precipitation data 
consisted of the monthly mean values of stations in the 
area defined by the Norwegian Meteorological institute as 
“Østlandet” which is a larger part of south-east Norway sur-
rounding the study site. Standardized Precipitation-Evap-
otranspiration Index (SPEI) was extracted from a global 
1-degrees gridded SPEI database (https://​spei.​csic.​es/).

Statistical analyses

Tree-ring series were detrended using a smoothing spline to 
remove long-term trends related to ageing and disturbances 
(Cook and Kairiukstis 1990). We used a spline with a 50% 
frequency cut-off at a frequency equal to two-thirds of each 
tree-ring series length. This is the default settings for method 
“spline” in the package dplR in R (Bunn et al. 2020; R core 
team 2020). Mean autocorrelation was calculated for raw 
and detrended tree-ring series (Table 1). First-order autocor-
relation was identified in the detrended tree rings by visu-
ally inspection of PACF plots constructed in R. Standard 
and residual chronologies for spruce and beech were then 
constructed using the function “chron” in the package dplR 
(Bunn et al 2020).

The relationships between the yearly increment of each 
tree species and climate data were analysed by using the 
package “treeclim” in R (Zang and Biondi 2015). For each 
of the three climate variables precipitation, temperature and 
SPEI, we included monthly values for the previous year’s 
June to October and the current year’s April to September. 
The function “dcc” in “treeclim” is designed to address the 
problem of many correlated predictors in the analyses. We 
used the “dcc” function to analyse the relationships between 
yearly increments (residual and standard chronologies) and 
monthly climate conditions. Climate growth relationships were 

Table 1   Mean first-order autocorrelation (AR1) of the tree-ring series, and mean series intercorrelation

There were 79 tree-ring series of each tree species. The series were 63 years long (1950–2012)

Beech, raw tree rings Beech, detrended and 
standardized tree rings

Spruce, raw tree rings Spruce, detrended and 
standardized tree rings

Mean (Std dev) of AR1 (Autoregressive 
Model of Order 1)

0.57 (0.15) 0.40 (0.11) 0.71 (0.12) 0.51 (0.12)

Mean (Std dev) series intercorrelation 0.56 (0.22) 0.58 (0.22) 0.51 (0.17) 0.53 (0.17)

https://spei.csic.es/
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assessed for the period between 1950 and 2012 to avoid pos-
sible effects of logging, which took place in the period prior 
to 1950. The standard and the residual chronologies did not 
differ in the analyses, and we thus continued with the stand-
ard chronology in the climate analyses. We also performed 
separate analyses on chronologies from the two different study 
sites, but the results were the same in terms of statistical sig-
nificance and correlation strength. We thus continued with the 
analyses based on one chronology for spruce and one for beech 
encompassing trees from both study sites. Differences in tree 
age, DBH, growth, tree basal area and soil pH between trees 
in the sampled pairs were tested with Wilcoxon signed rank 
test. Trends in summer (June, July and August) precipitation 
and mean temperature during the study period were analysed 
with a Mann–Kendall test and decadal change rates were cal-
culating with nonparametric Sen´s slopes using the R package 
“wql”. We calculated resistance, recovery and resilience sensu 

Lloret et al. (2011) on raw tree width data of each tree using 
the R package pointRes with 4 years pre- and post-disturbance. 
We used linear mixed effects models to test how these indices 
varied between spruce and beech on the drought years (1955, 
1959, 1975, 1976, 1983 and 2006) with tree pair nested within 
site as random effects. Response variables were natural log-
transformed in order to comply with model assumptions of 
normality and homoscedasticity of residuals.

Results

The 1950 to 2012 mean (± SE) summer (June–August) 
precipitation and temperature were 278 ± 13  mm and 
16.2 ± 0.12 °C, respectively. The driest summer was in 1976 
with only 48 mm precipitation, while 1988 was the wet-
test summer with 597 mm precipitation (Fig. 2a). In our 

Fig. 2   Variation in a total summer precipitation and b mean summer temperature from 1950 to 2012

Table 2   Variables (mean ± S.E.) 
describing the beech–spruce 
pairs of the sampled trees and 
the immediate surroundings

V and P values are derived from Wilcoxon signed rank test. Statistically significant variables in bold

Variable Beech Spruce V (P)

Tree age (years) 108 ± 3.2 109 ± 2.6 1332.5 (0.769)
Diameter at breast height (cm) 36.9 ± 0.90 41.4 ± 0.91 509.5 (< 0.001)
Growth 1950–2012 (mean annual tree ring, 1/100 mm) 171 ± 5.9 155 ± 7.4 1932.5 (0.015)
Tree basal area around sampled trees (m2 ha−1) 28 ± 0.72 28 ± 0.70 -
Soil pH 4.1 ± 0.38 4.0 ± 0.35 1861 (< 0.001)
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study period, 1997 was the warmest summer, with a mean 
temperature of 18.7 °C and the 1987 summer was the cold-
est (14.1 °C; Fig. 2b). Mean summer temperature increased 
with 0.15 °C per decade during the study period (S = 398, 
P = 0.018, Mann–Kendall), while precipitation showed no 
trend (S = − 29, P = 0.868, Mann–Kendall).

The wilcoxon signed rank test showed that the chosen tree 
pairs were comparable in terms of tree age (Table 2). Spruce 
trees were on average larger than beech trees, but there was 
no difference in tree age. The soil was more acidic below 
the spruce trees than below the beech trees (Table 2), even 
though the trees were growing just a few metres apart.

Beech and spruce increment growth were positively influ-
enced by June precipitation and SPEI in the previous year 
and the growing season. (Figs. 3 and 4). The beech tree-ring 
width correlated negatively with summer temperatures of 
July and August of the previous year.

Based on climate data (Fig. 2) and the standardized tree 
chronologies (Fig. 4), we looked closer at the responses of 
spruce and beech to six significant drought years, 1955, 
1959, 1975, 1976, 1983 and 2006. Beech had a higher 
recovery (i.e. growth increase after four year relative to the 
minimum growth during the dry episode) than spruce from 
the droughts in 1959, 1975, 1976 and 1983, while spruce 

Fig. 3   Climatic variables influ-
encing yearly tree-ring growth 
of Fagus sylvatica and Picea 
abies. Monthly values of total 
precipitation, mean temperature 
and the Standardized Precipita-
tion-Evapotranspiration Index 
(SPEI) for June to October of 
the previous year and April to 
September of the current year 
were included. Thick solid 
confidence intervals denote 
significant responses
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had a higher recovery after the 1955 drought (Fig. 5a, Sup-
plementary Table 1). Resistance, defined as growth in the 
drought year relative to pre-drought (4 years) levels, was 
higher for beech in 1955 and 2006 but higher for spruce in 
1975 and 1983 (Fig. 5b, Supplementary Table 1). Resilience, 
the capacity to reach pre-drought growth levels (i.e. growth 
four years prior to the event divided with four years after 
the event), was higher for beach in 1959, 1975, 1976 and 
2006, but slightly higher for spruce in 1983 (Fig. 5c, Sup-
plementary Table 1).

Discussion

Spruce and beech are both late successional species, with 
their main distributions in different bioclimatic zones. The 
growth and interaction between the two have been widely 
studied in the temperate zone, where beech has its main 
domain and spruce is its margin. However, we know much 
less about their performance in areas where beech reaches its 
northern range limit, like in the hemiboreal zone in southern 
Norway. This study explores unique data from near-natural 
forests in this area.

Responses to climatic variations between years may be 
harbingers of what can be expected under future climatic 
conditions. Soil moisture influences the water flux through 
the tree and thereby the carbon assimilation and transport 
of nutrients (Breda et al. 2006, Backes and Leuschner 2000, 
Pretzch et al. 2014). Tree growth is thus highly dependent 
on soil water content, and the positive impact of precipi-
tation on spruce and beech increment is thoroughly docu-
mented in central Europe (Lebourgeois et al. 2010, Mund 

et al. 2010). In line with this, the tree-ring data supported 
our first hypothesis that high levels of summer precipitation 
would increase incremental growth. Both species reacted 
positively to precipitation in June in the present and previ-
ous years. Present year June has also been shown to be the 
most important month in terms of increment growth for both 
species at higher altitudes in central Europe (Kraus et al. 
2016). Further, stored carbohydrates contribute to growth in 
spring (Skomarkova et al. 2006; Sohn et al. 2012) and thus 
the climate of the previous season influences the formation 
of early wood (Rossi et al. 2008).

Overall, the two species seemed to respond quite similarly 
to variations in climate in the study area, as demonstrated 
by the rather small and non-consistent species differences 
in resistance to drought. On the other hand, beech showed 
higher recovery and resilience to drought than spruce in 
most of the serious drought years. This is supported by sev-
eral other dendrochronological studies (Löw et al 2006; Van 
der Werf et al 2007; Pflug et al 2018). However, Pretzch 
et al. (2013) found beech to recover slower than spruce from 
the 1976 drought in southern Germany.

Strategies to cope with drought are known to differ 
between the species. For example, the isohydric spruce 
closes its stomata in periods of drought and may risk carbon 
starvation, whereas the anisohydric species beech keeps its 
stomata open and may risk xylem embolism (Pretzch et al. 
2014). Although beech experiences a risk of hydraulic fail-
ure due to cavitation, its gas exchange and photosynthesis 
remain active under drought conditions (McDowell et al. 
2008; Klein 2014). Spruce, on the other hand, is known to be 
susceptible to insect and fungal attacks after stress episodes 
like a serious drought (Breda et al. 2006). This is likely a 
consequence of a weakened defence capacity resulting from 

Fig. 4   Standardized tree-ring chronologies and standardized deviation, from the 1960–1991 normal, in summer precipitation and temperature 
(climate data from eklima.no, summer months: June–August)
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carbon starvation when photosynthesis stops. Following the 
drought summers of the seventies there were several sum-
mers with large bark beetle populations in Norway that killed 
many spruce trees (Bakke 1983). Moreover, studies from 
mixed forests in Germany (Nikolova et al. 2020) showed that 
also belowground strategies could be part of the explanation 
for contrasting responses of the two species after a severe 
drought event: beech produced thin, non-mycorrhizal fine 
roots enabling effective resource exploitation, while spruce 
increased root suberization instead of growth.

In the temperate zone, the temperature is thought to 
be secondary to soil water, as high temperatures mainly 
increase the negative effects of low levels of soil water 
(Breda et al. 2006) but have less impact if there is sufficient 
soil water. However, being in the colder parts of its distribu-
tion, we hypothesized that beech would benefit more from 
warm years than spruce in our study area, similarly to the 
improved growth of beech found at high elevations in cen-
tral Europe (Pretzch et al. 2020). In contrast, we found no 
effects of temperature on increment in the present growing 
season for either of the species, indicating that temperature 
is less important when there is enough precipitation, also at 
higher latitudes. Instead, there was a negative effect of the 
previous year’s July–August temperature on beech tree-ring 
growth. Beech starts bud set in July and high temperatures in 
July–August have been related to the allocation of resources 
to the fruit set (Drobyshev et al. 2010; Müller-Haubold et al. 
2013). The negative relationship between late summer tem-
perature and beech increment might thus be related to mast-
ing, but unfortunately, there are no records of this from the 
study area. Spruce also shows masting behaviour, with posi-
tive relationships between previous summer temperatures 
and fruit set (Selås et al. 2002) and negative correlations 
between seed production and tree-ring growth (Koening and 
Knops 1998). However, the negative effect of temperature 
in the previous year on increment growth was barely not 
statistically significant in our data set. At high altitudes in 
both Germany and Czech Republic, spruce seems to benefit 
from high summer temperatures (Obladen et al. 2021; Alt-
man et al. 2017).

In conclusion, precipitation seems to limit the growth of 
both spruce and beech also at the northern range limit of 

Fig. 5   Violin plots of a recovery, b resistance and c resilience of 
beech (blue) and spruce (red) for six drought years. The filled areas 
represent the distribution of values measured per tree, and the black 
dots are the estimated marginal means (± SE; back-transformed from 
the log scale). Dotted lines are at value 1. For recovery this means 
that growth four years after the event is equal to the growth level dur-
ing the event. Trees with resistance value 1 grew equally fast during 
the event as they did four years prior to it. For resilience it means that 
post-event growth levels equal the pre-event levels. Asterisks denote 
significant differences between the two tree species at * P < 0.05, ** 
P < 0.01 and *** P < 0.0001

▸
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their coexistence. For forest management, this implies that 
other species should be chosen where there is a risk of sum-
mer drought or thinning from above could be an option in 
younger stands. Although the two species show the same 
level of resistance to drought, beech seems to have some-
what higher recovery and resilience, but this varied between 
drought years. Due to the different strategies of the two spe-
cies, both above and belowground, the intensity of summer 
droughts and the variability between years are likely factors 
that would be decisive for which of them would be more 
suitable under the climatic conditions expected in the dec-
ades to come.
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