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Abstract
The study aimed to investigate the temporal changes of pH, sorption complex, and structure of soil organic matter through 
the forest soil profile under beech and spruce forests located in Jizera mountains (Czech Republic) and affected by natural 
and anthropogenic acidification. Soil samples were collected in four different years (2008, 2013, 2015, and 2020) in each 
horizon: fermented horizons (F), humified horizons (H), organo-mineral horizons (A), and subsurface mineral horizons (B) 
(cambic or spodic). The cation exchange capacity (CEC), base saturation (BS), exchangeable element contents, pH, and 
soil organic carbon content (SOC) were determined. The infrared soil spectra were used to calculate indices of potential 
wettability, aromaticity, and decomposition. Our results showed that most nutrients and aliphatic compounds were retained 
in the uppermost soil layers. The aromaticity of organic matter increased with depth, while polysaccharides, regarding the 
decomposition compound, disappeared through the soil horizons. In a long-term observation, SOC content had constantly 
increased under beech, while spruce remained stable in the organic horizons. Exchangeable element contents increased in 
each horizon, except for Al and Fe; their content quickly decreased in F horizons and slowly decreased in H horizon under 
both forest tree species, while the deeper horizons remained constant, but increased in A horizon under spruce. Continuously 
increasing base cations concentrations in sorption complex of both forest tree species during the study period revealed the 
effect of forest stand types on acid deposition reduction and mitigation. The temporal changes in CEC, BS, SOC, and soil 
wettability are more intensive in beech than in spruce forest floor.
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Introduction

Globally, climate change, soil degradation, and carbon load-
ing in the atmosphere have been concerned and have drawn 
attention from environmental research and policy agendas 
(FAO 2017). Forest disturbances including natural and 
anthropogenic disturbances (e.g., drought, deforestation, 

agriculture, and forest fire) are one of the most important 
in responding to global climate change (Sommerfeld et al. 
2018). Acid depositions are also included to affect the forests 
negatively. In the mid-nineteenth century, industrialization 
and coal mining were rapidly increased with poor regulation 
and lacked abatement technology; as a result, the nitrogen 
and sulfur contained in coal ranging from 1 to 15% had been 
combusted and emitted (Oulehle et al. 2007; Achilles et al. 
2021) and caused a large area of European forests and soils 
severely disturbed and damaged (Krug and Frink 1983; de 
Vries et al. 2014). Acid deposition adversely affects the soil 
chemistry and forest ecosystem by increasing the proton  H+ 
concentration, leaching of base cations, and mobilization of 
Al and other potential toxic elements into the soil (Likens 
et al. 1996; Johnson et al. 2018; Pavlů et al. 2021). Moreo-
ver, acid deposition has been reported as a driver dismissing 
the diversity in the terrestrial ecosystem (Duprè et al. 2010). 
Oulehle et al. (2007), who studied the long-term effect of 
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tree species on soil acidification in the Ore Mountains, 
found that depletion of base cations resulted in a low base 
saturation of 8% under spruce and 6.5% under beech forest. 
On the other hand, some other studies about the long-term 
recovery from acidification found that the forest soil has 
been improved in cation exchange capacity, base cations, 
and total carbon and declined Al concentration in the organic 
horizons. However, in some severely affected sites, the soils 
were slowly recovered and did not suddenly return to a good 
environmental condition, as previously seen (Hruška et al. 
2002; Oulehle et al. 2017; Hédl et al. 2011; Johnson et al. 
2018). Therefore, changes in disturbance dynamics and for-
est management need to be implemented and observed in 
order to sustain ecosystem diversity and mitigate climate 
change.

Beech (Fagus sylvatica L.) and spruce (Picea abies L.) 
are the most abundant forest tree species in Central Europe 
and have been studied for their various influences on long-
term changes in soil physical, biological, chemical proper-
ties after acidification (Berger and Berger 2012; Pavlů et al. 
2018; Tejnecký et al. 2013). Generally, forest tree species 
differ in the soil properties such as pH, exchangeable cations, 
nutrient cycle, soil fertility, and SOC stabilization due to 
their quality and quantity of litter, root exudation, nutrients 
uptake, and litter decomposition, depositional processes 
(interception of deposition such as throughfall, bulk depo-
sition, and stemflow) canopy uptake and leaching (Bradová 
et al. 2015; Habumugisha et al. 2018). For instance, forest 
litter such as leaves, branches, and roots from beech and 
spruce varies in its composition, quality, and quantity. It pro-
vides different nutrients with different availability for plants, 
and decomposition rate through soil microorganisms (Han 
et al. 2021). Many researchers pointed out that the spruce 
litters are decomposed more slowly than litters found in the 
beech forest because they contain a high amount of recal-
citrant substances (i.e., lignin, resin, waxes, and phenolic 
compounds) (Nacke et al. 2016; Richardson and Friedland 
2016). Slower decomposition leads to slow cycling of nutri-
ents but stabilizes SOC in the soil profile (Cremer and Pri-
etzel 2017). The SOC stabilization takes place according 
to the abiotic and biotic processes (Campbell and Paustian 
2015) and goes through these mechanisms: conservation 
due to recalcitrance, the interchange of elements, and inac-
cessibility to the decomposer community due to the occlu-
sion in the aggregate soil (Poirier et al. 2018). The content 
of nutrients such as nitrogen (N), calcium (Ca), potassium 
(K), and phosphorus (P) in the coniferous forest soils is also 
likely lower than in deciduous forest soils (Iwashima et al. 
2012) due to less decomposition and mineralization. It is 
also shown by Berger et al. (2006) that beech had higher Ca 
content than spruce due to the association with the effect 
of Ca-pump under beech resulting from transpiration of 
beech and uptake water from deeper soil horizons, in which 

the soil solution contains more Ca because of weathering 
supply of the bedrock. Oulehle and Hruška (2005) studied 
the effects of specific tree species (beech and spruce) in the 
long-term acidified forest and found that beech forest had 
a higher accumulation of Ca and K in the soil than spruce 
forest, but lower concentration of Al. Spruce is considered 
a strong acidifier and can deplete the base cations in the 
topsoil layer, whereas beech performs as the Ca-accumulator 
and increases Ca in organic horizons (Daněk et al. 2019). 
The high concentration of Ca in the soil relatively increased 
soil pH, nutrients, base saturation (BS), and biodiversity 
(Iwashima et al. 2012).

The study hypothesized that beech and spruce forests are 
able to recover effectively from anthropogenically enhanced 
acidification and promote soil organic matter and soil nutri-
ents in the forest ecosystem in the long term. The study 
mainly focused on: (1) evaluating the temporal changes of 
sorption complex, exchangeable elements and structure of 
SOM through the forest soil profile and (2) differentiating 
the chemical soil structures of SOM between beech and 
spruce forest affected by acidification. However, the infrared 
spectroscopy was used to evaluate the chemical soil struc-
tures of SOM, which were indicated by some indices.

Materials and methods

Site description and soil sampling

The study was carried out in the Jizera Mountains, in the 
northern part of the Czech Republic along the border with 
Poland. The region was heavily affected by acid deposition 
and is one of the most damaged areas in Czech Republic 
during the 1980–1990 period because of the nearby coal-
fired power plant (black triangle – Czech-German–Polish 
border) (Moldan and Schnoor 1992; Suchara and Sucha-
rová 2002; Sucharova et al. 2011). Mean annual deposition 
rates in recent years ranged between 2.6 and 8 g  NO3

−/m2 
and between 2.6 and 20 g  SO4

2−/m2, while before 1990 the 
deposition of these acidifiers reached levels higher than 5 g 
of sulfur and 3 g of nitrogen /m2 (CHMI 2023a, b). How-
ever, Kopáček and Veselý (2005) reported that S deposition 
declined linearly from 1990 to 2000, while N deposition 
declined rapidly during 1989–1994 and then slowly after-
ward. The composition of the forest tree species in Jizera 
Mountains in between 2012 and 2020 ranged from 7.7 to 
14.9% in beech forest and from 48.8 to 69.1% in spruce for-
est (Podrázský et al. 2014; Zemědělstvi 2021). The sampling 
locality is called Paličník (50.8683900N, 15.2527000E), 
where it has been monitored for a long time (Borůvka et al. 
2009; Bradová et al. 2015; Tejnecký et al. 2010, 2013); 
therefore, it was selected for this research as a long-term 
observation. The elevation of the sampling locality ranges 
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from 635 to 680 m a.s.l. The average annual precipitation is 
between 600 and 1200 mm, and the average temperature is 
roughly between 5 and 9 °C (Remrova and Císlerová 2010; 
Balcar et al. 2012). However, there was a dry climatic con-
dition in 2015 during the study period observed by Ionita 
et al. (2017) and shown in Fig. 1. The main vegetation is 
dominated by the European beech (Fagus sylvatica (L.)) 
within the natural ecosystem of the occurrence of peren-
nial grasses in ground vegetation (Calamagrostis arundina-
cea, Calamagrostis villosa), and spruce monoculture forest 
(Norway spruce: (Picea abies (L.) Karst.) along with peren-
nial grasses (Calamagrostis arundinacea, Calamagrostis vil-
losa). The average height of the forest stands is about 32.4 m 
in beech forest and 28.6 m in the spruce forest (Bradová 
et al. 2015). Additionally, the soils were characterized as 
Aluminic Cambisol under beech forest and Entic and Haplic 
Podzol under spruce (Tejnecký et al. 2010, 2013, 2014). 
Soil bedrock was determined as medium-grained porphy-
ritic biotite granite to granodiorite (Cháb et al. 2007). The 
thickness of the soil layers is very variable under both for-
est tree species due to slope and the randomly selected soil 
pits for sampling in each year (supplementary information, 
table S1).

The samples were taken in different years (2008, n = 24; 
2013, n = 24; 2015, n = 56; and 2020, n = 24). Three indi-
vidual soil pits (50×50 cm) were dug at each species sites 
(spruce and beech) in 2008, 2013, and 2020, but seven soil 
pits were dug in 2015. The soil samples were taken in differ-
ent soil horizons: fermented horizons (F), humified horizons 
(H), organo-mineral horizons (A), and subsurface mineral 
horizon (B) (cambic horizon under beech, spodic humusos-
esquioxidic horizon and cambic horizon enriched with iron 
oxides under spruce). The soil pits were randomly selected, 
and the distance of the pits was at least 15 m. The soil sam-
ples were air-dried and sieved to 2 mm particles. The soil 
samples for measurements with infrared spectroscopy were 

milled to fine fractions using Fritsch Analysette 3 Spartan 
Pulvensette miller, Idar-Oberstein, Germany.

Soil characteristics analysis

The active pH  (pHH2O) was determined in a ratio of 1:4 
(soil:water, w:v) for organic horizons and 1:2 for mineral 
horizons. The suspension was shaken for 5 min and then 
measured using the pH-electrode SenTix 21 (Inolab pH 
level 21, WTW, Germany). The SOC content was deter-
mined by rapid dichromate oxidation  (K2Cr2O7) techniques 
following Tyurin´s method (Sparks 1996). The total cation 
exchange capacity (CEC) was determined according to the 
standard ICP Forest methods (Cools and De Vos 2016). The 
exchangeable cations were measured in 0.1 M  BaCl2 (2.5:30 
w/v ratio) extract of the soil using AAS (SpectrAA Varian 
280FS, Australia) and ICP-OES (iCAP 7000, Thermo Scien-
tific, USA). Exchangeable acidity (EA) was calculated from 
the sum of  Al3+,  Fe3+,  Mn2+, and  H+, and base cation (BC) 
was calculated from the sum of  Ca2+,  Mg2+,  Na+, and  K+. 
The cation exchange capacity was calculated by summing 
up all cations  (Ca2+,  Mg2+,  Na+,  K+,  Al3+,  Fe3+,  Mn2+, and 
 H+). The quality control and quality assurance of all labora-
tory procedures were done according to standard protocol.

Diffuse reflectance infrared Fourier transform 
spectroscopy

The milled soil samples were measured using an infrared 
spectrometer (Nicolet iS10) and OMNIC 9.2.41 software 
(Thermo Fisher Scientific Inc., USA). Due to the darkness of 
forest soil samples, the spectra were recorded by 120 scans 
in wavenumbers ranging from 4000 to 400  cm−1 at a resolu-
tion of 4  cm−1. The measured reflectance was converted to 
Kubelka–Munk units (KM), and the gold mirror was used as 
the background of the spectra (Thai et al. 2021).

Fig. 1  The average temperature 
(°C) and precipitation (mm) 
under beech and spruce from 
2008 to 2020 in the locality—
Hejnice meteorological station 
(CHMI 2023a, b)
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The potential wettability index (PWI), aromaticity index 
(iAR), and decomposition index (iDEC) were determined 
using DRIFT spectra. The adsorption bands ranging from 
2948 to 2920  cm−1 ascribed the asymmetric C–H stretch 
vibrations, and the adsorption bands ranging from 2864 to 
2849  cm−1 attributed to the symmetric stretch vibrations. 
The adsorption band at 1710  cm−1 ascribed C = O groups 
in ketones, carboxylic acids, and amides. The adsorption 
bands ranging from 1640 to 1600  cm−1 referred to carboxy-
late and aromatic groups (Gerzabek et al. 2006), and OH 
bending vibrations of water molecules in hydration layers 
of soil phyllosilicates (Leue et al. 2010). The potential wet-
tability index (PWI) was evaluated according to the adsorp-
tion band of the alky C–H groups – A (2948–2920  cm−1), 
indicating the relative hydrophobicity, and adsorption band 
of the C = O groups—B (1740–1698 and 1640–1600  cm−1), 
which is ascribed to hydrophilicity. PWI was calculated as 
a ratio by summing up the intensity of the C–H and C = O 
groups (PWI = A/B) (Ellerbrock et al. 2005). The higher 
index value indicated the lower wettability of the soil 
(Haas et al. 2018). Index of aromaticity (iAR) was calcu-
lated from the absorption band of aliphatic bands intensity 
– AL (3000–2800  cm−1) and aromatic bands intensity – AR 
(1520  cm−1), (iAR = AL/(AL + AR) (Cunha et al. 2009). The 
higher mean values of iAR expressed a lower proportion of 
aromatic compounds in the soil. The index of decomposition 
(iDEC) was based on the absorption band of carboxylate and 
aromatic groups – X (1640–1600  cm−1) and polysaccha-
rides—Y (1030  cm−1). The iDEC was calculated by sum-
ming up the intensities of the C = O group and polysaccha-
ride intensity and then performed as a ratio (iDEC = X/Y) 
(Artz et al. 2006). The high value of iDEC indicated finer 
particles and more decomposed organic matter because of 
the loss of intensity of polysaccharides (Preston et al. 1987; 
Haberhauser et al. 1998).

Data analysis

The temporal changes of pH, sorption complex, exchange-
able elements and structure of SOM during the study period 
and through the soil horizons were statistically assessed 
using analysis of variance (ANOVA) at error level of 0.05 
(confidence level of 95%). T test was used to differentiate 
the chemical compositions between the forest tree species 
(beech and spruce). The statistical differences among the 
soil horizons (F, H, A, B) and between forest types were 
presented in alphabetical letters using the Tukey test. To 
run the data correctly, the homogeneity of variances was 
applied to check its normality. These statistical analyses 
were evaluated using software IBM SPSS (version 26, New 
York, USA). Besides that, a correlation matrix and principal 
component analysis (PCA) were also performed to access 
co-variations and evaluate the relationships among the 

chemical compositions using the R studio program (Jollife 
and Cadima 2016; Girona-García et al. 2018).

Results and discussion

Soil pH

The forest soils were found to be more acidic in the organic 
horizons than in the subsurface mineral horizons (F, H, 
A, < B) under both forest tree species. The result showed 
same pattern as the study by Borůvka et al. (2009). How-
ever, more acidic nature in the organic horizons and with 
time in Fig. 2 resulted from litter decomposition and acid 
deposition (Hedl et al. 2011; Yang et al. 2015). The SOM 
decomposition was considered to lower soil pH due to the 
interaction and exchange with Al (Cremer and Prietzel 2017) 
and increased amount of  H+ resulted in more acidic soil in 
the uppermost layer (Zaidey et al. 2010). As a comparison 
between the forest tree species, the soil pH found no signifi-
cant difference, but the pH value in spruce soil was found 
to be lower than under beech forest soil in all years and 
horizons (Fig. 2) which is in accordance with findings of 
Daněk et al. (2019).

The cation exchange capacity and exchangeable 
elements

The cation exchange capacity statistically decreased with 
depth (F > H > A > B) in all years under beech and spruce 
(Fig. 2). The decrease in CEC revealed that less cations were 
retained in lower horizons than in the uppermost soil lay-
ers and relatively corresponded with high organic material 
inputs and SOC content during litterfall. Soil organic carbon, 
generally, plays a vital role in CEC in cation binding and 
soil sorption complex in the organic and mineral horizons 
(Ciarkowska and Miechówka 2019; Cremer and Prietzel 
2017). Our results (Fig. 5) confirmed that CEC was strongly 
correlated (r = 0.83, P < 0.001) with SOC, indicating that 
CEC increased with increased SOC concentration. Besides 
that, during the plant uptake, it brings more nutrients to 
accumulate in the uppermost horizons because of the high 
proportion of nutrients absorbed in the roots and recycled 
nutrients through litterfall, stemflow, and throughfall (James 
et al. 2016; Johnson et al. 2018; Langenbruch et al. 2012; 
Oulehle et al. 2007).

Regarding the time changes, the CEC increased signifi-
cantly from 21.6 ± 3.5 to 33.7 ± 3.6 cmol +  kg−1 in F horizon, 
13.9 ± 2.8 to 15.2 ± 0.8 cmol +  kg−1 in H horizon, 7.6 ± 2.8 
to 11.3 ± 0.8 cmol +  kg−1 in A horizon, and 4.1 ± 1.9 to 
7.2 ± 1.1 cmol +  kg−1 in B horizon under beech. Remarkably, 
the CEC in 2015 was observed to have the lowest values in 
F and H horizons under beech. It was similar to the CEC in 
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spruce forest, which showed no specific pattern in F and H. 
The CEC decreased from 2008 to 2015 but recovered slowly 
in 2020, while A and B showed increasing CEC with time 
(Fig. 2). The lowest CEC in 2015 in F and H horizons in 
beech forest was associated also with the decrease of BS. 
However, the dry climatic conditions (high temperature 
and low precipitation) in 2015, which is observed in Fig. 1 
and by Ionita et al. (2017), decreased nutrients and their 
recycling due to less adsorption with the organic matter and 
the decrease decomposition of forest litter (Mondal 2021; 
Gelybó et al. 2018). For comparison between forest tree 
species, significant differences in the CEC were observed 
(P = 0.004) in F horizon in 2020 (beech > spruce). This 
result was consistent with the same finding of Mareschal 
et al. (2010). Tree species compositions affected the soil in 
various ways (Cremer and Prietzel 2017). Beech forest was 
considered to have large foliage nutrients and lower foli-
age lignin content than spruce forest that accelerated litter 
decomposition and bioturbation and enhance organic layers 

with high base cations (Berger and Berger 2012). This cor-
responds to our results from soil spectra as indices (Fig. 4) 
and our results in supplementary information (Table S2) that 
show nutrients under beech such as  Ca2+ and  Mg2+ increased 
significantly from 2008 to 2020 in all horizons, while spruce 
was relatively constant (no significance) in F and H horizons 
(Table S2). However, it indicated that spruce used the nutri-
ent stock efficiently, while beech was more likely to hold, 
cycle, and stock nutrients in the forest floor (Bublinec and 
Machava 2015; Bagherzadeh et al. 2008). It was in agree-
ment with the research of Matschonat and Falkengren-Gre-
rup (2000), who found  Ca2+ and  Mg2+ increased tendency 
in beech forest after recovering from acid deposition. High 
acidity and poor decomposition of litters under spruce in 
the locality contributed to higher  Al3+ concentration and 
more mobilization in the forest, leading to depleting the base 
cations and indicating a slow recovery of nutrients in sorp-
tion complex in spruce forest (Oulehle and Hruška 2005; 
Collignon et al. 2011; Daněk et al. 2019).

Fig. 2  The distribution and temporal changes of soil chemical char-
acteristics in fermented horizon (F), humified horizon (H), organo-
mineral horizon (A), and subsurface mineral horizon (B – spodic 
or cambic) of the soil profile dug under beech and spruce at Jizera 

Mountains (Czech Republic). (Mean and standard deviation; 2008, 
n = 24; 2013, n = 24; 2015, n = 56; and 2020, n = 24). Base saturation 
(BS—%), cation exchange capacity (CEC—cmol +  kg−1), soil organic 
carbon (SOC—%)
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Notably, it was observed that the number of exchange-
able elements decreased significantly with depths in all years 
except for  Al3+ (Table S2). Aluminum content decreased 
significantly with depths (F, H > A, B) in 2008. This sug-
gested that, in 2008, Al concentration remained more mobi-
lized in the organic horizons due to the atmospheric acid 
deposition that occurred during 1980–1990. On the contrary, 
in 2013, 2015, and 2020,  Al3+ concentration was observed 
to be accumulated more in H and A horizons under both 
forest tree species, which resulted from increases in organic 
acids from the decomposition in the soil and the initial stage 
of weathering of minerals in mineral phases (Akbar et al. 
2010; Iwashima et al. 2012). On the other hand, Dijkstra 
and Fitzhugh (2003) reported that it may have originated 
from Al release after SOM decomposition and also from the 
increased Al dissolution induced by low soil pH. Regard-
ing the long-term study in beech, the  Ca2+,  Mg2+,  K+, 
 Na+, and  Mn2+ were statistically changed by their increas-
ing concentrations (2020 > 2015, 2013, and 2008), while 
 Fe3+ decreased in F horizon with a range from 1.2 ± 0.3 to 
0.25 ± 0.09 cmol +  kg−1 but increased in H and A horizon 
ranging from 0.8 ± 0.3 to 1.1 ± 0.1 cmol +  kg−1 and 0.4 ± 0.1 
to 1.0 ± 0.3 cmol +  kg−1. Despite that,  Al3+ concentration 
quickly decreased from 12.4 ± 1.9 to 1.6 ± 0.5 cmol +  kg−1 
in F horizon and slowly decreased from 11.1 ± 2.0 to 
7.6 ± 1.3 cmol +  kg−1 in H horizon, while A and B horizons 
remained stable (no significance) under beech. There was 
similar tendency in spruce, the concentration of  Al3+ signifi-
cantly decreased from 9.8 ± 2.8 to 3.9 ± 1.7 cmol +  kg−1 in 
F horizon and from 11.3 ± 0.9 to 8.3 ± 1.3 cmol +  kg−1 in H 
horizons but increased in A horizon ranging from 6.5 ± 0.7 
to 7.2 ± 0.3 cmol +  kg−1. This suggested that a larger part 
of  Al3+ was bound in the organic complexes that had been 
leached from the soil or might be sorbed on soil mineral 
phases (Borůvka et al. 2009). The higher amount of SOM 
in the organic horizons (Fig. 2) also indicated that the soil 
sorption sites were mainly by organic matter that suppressed 
Al toxicity by decreasing dissolved  Al3+ activities in surface 
soils (Berthrong et al. 2009; Borůvka et al. 2009; Dijkstra 
and Fitzhugh 2003). The mechanism of SOM contributes to 
the variations of  Al3+ and  Fe3+ by exchanging the polyvalent 
cation-bridging between negative charges of organic mat-
ter (Mueller et al. 2012). Likewise, the low concentration 
of  Al3+ and  Fe3+ in F horizon and decreases with time in 
organic horizons resulted from the direct interaction with 
atmospheric conditions (temperature and precipitation) 
(Bradová et al. 2015) and also revealed the effects of forest 
tree species in long-term soil acidification, less acidic depo-
sition from the atmosphere in the study area, and the pod-
solization process in spruce forest (Altman et al. 2017; Krug 
and Frink 1983; James et al. 2016). An increase of  Al3+ in 
A horizons with time under spruce resulted from the high 
acidity in the organic soil solution due to the aluminosilicate 

weathering (Oulehle and Hruška 2005). Additionally, con-
tinuously increasing nutrients in both forest tree species dur-
ing the study period revealed the effect of forest tree species 
on acidity deposition reduction and mitigation.

Soil organic carbon, indices of soil wettability, 
aromaticity, and decomposition

In both beech and spruce forests, the content of SOC 
decreased through soil horizons (F > H > A > B) in each year. 
Generally, the effect of forest on SOC led to more accumula-
tion in the topsoil layers (F and H) compared to deeper soil 
profiles. This resulted from the living and dead plant matter 
accumulating in the uppermost layers (Habumugisha et al. 
2018; Langenbruch et al. 2012; Galka et al. 2014).

After a decade of observation, beech and spruce had no 
significant changes in SOC in the F, H, and B horizons, 
but A horizons showed a significant increase from 4.5 ± 4.0 
to 7.7 ± 2.8% in beech and from 5.2 ± 0.1 to 10.7 ± 2.7% 
in spruce. Remarkably, beech forest showed SOC content 
increased constantly in average values with time ranging 
from 24.0 ± 2.7 to 32.0 ± 1.5% in F horizon, from 14.7 ± 4.1 
to 18.0 ± 2.6% in H horizon, and from 2.8 ± 1.9 to 4.5 ± 1.5% 
in B horizon, while spruce remained relatively stable in 
most horizons (Fig. 2). Besides that, there was a statisti-
cal increase of SOC in beech (P = 0.041), once all values 
were combined from soil horizons. It was opposite to spruce, 
where no significant difference was observed (P = 0.441). 
As a comparison between beech and spruce using a T test, 
there were significant observed differences (P = 0.032) in 
F horizon in 2020, where beech had markedly higher SOC 
content than spruce (Fig. 2). A lower concentration of SOC 
under spruce than in beech was not usually found. Numerous 
studies confirmed that spruce promoted more organic carbon 
and higher thickness layer of organic horizons in a long-
term observation due to the higher recalcitrant substances 
(e.g., lignin, resin, waxes, and phenolic compounds), which 
were difficult to be decomposed by microorganisms (Andi-
via et al. 2016; Grüneberg et al. 2019). It was in contrast 
to our findings. This resulted from the local environmental 
condition and different forest stands such as age, density, and 
canopy forest (Yuan et al. 2013). Bradová et al. (2015), who 
studied the same locality, reported that the beech forest was 
older than spruce, by approximately 80 years, and had larger 
canopy closure (87%) than spruce (40%). The higher density 
and age of the forest stands in the research area had typically 
larger basal area of trees, in which it enhanced SOC in the 
forest soil (Menyailo et al. 2022). It was consistent with the 
finding of Yuan et al. (2013) who found that SOC was stored 
higher under the old-growth forest trees. The larger canopy 
of the beech forest stands, however, reduced the decomposi-
tion rate, while an open canopy led to SOC loss due to more 
favorable soil microclimates, higher exposure to throughfall 
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and to the warmer condition, which accelerated the decom-
position, leaching, and soil respiration by microorganism 
(Zech et al. 1989; Merabtene et al. 2021; Hanakova-Bec-
varova et al. 2022; Jandl et al. 2022). It was also documented 
by Fang et al. (2005) regarding the variation of SOC level 
with the temperature and by Andivia et al. (2016) about the 
relationship between SOC and canopy.

Besides that, the constant increases in average values 
of SOC content in each horizon in beech forest during the 
study period revealed the larger forest productivities (lit-
terfall) and more SOC inputs that were expected from the 
compensation from soil acidification by beech forest. The 
primary sources of organic carbon are not only from the 
litterfall but also from soil microorganisms, root exudates, 
and root litters (Andivia et al. 2016; Li et al. 2015; Nickels 
and Prescott 2021). Roots system is one of the main fac-
tors in the distribution of SOC under forest tree species 
(Tefs and Gleixner 2012). Beech stands, in fact, had a larger 
and deeper anchored root system, which provided higher 
belowground biomass and caused SOC to be more distrib-
uted into the soil horizons (Laganière et al. 2010; Hansson 
et al. 2011). Ohno et al. (2014), who observed the molecu-
lar composition and biodegradability of soil organic matter, 
found that deciduous forests had higher root dead mass and 
root mortality than coniferous forests, and thus enhanced 

higher aliphatic content in the forest soil. Together with the 
root exudate, it improved long-term soil organic carbon stor-
age by adsorption onto the mineral surface under deciduous 
forests.

On the other hand, the behavior of SOC and other ele-
ments is associated with soil wettability, aromaticity, and 
decomposition, and vice versa (Artz et al. 2006; Cunha et al. 
2009; Ellerbrock et al. 2005; Ellerbrock and Gerke 2013). 
Therefore, our study extended further information about the 
relationship among the chemical components using DRIFT 
spectroscopy. The spectra in Fig. 3 clearly showed the dif-
ferences in the chemical compositions through soil profile 
under both forest tree species.

The potential wettability index (PWI) declined statisti-
cally through the soil profile (F > H > A > B) from each year 
under both forest tree species. This means that organic hori-
zons had lower wettability (F and H horizons) than the min-
eral horizons (A and B horizons). A similar result was found 
by Woche et al. (2017) and Atanassova et al. (2018). The dif-
ferent PWI through the soil profile indicated the importance 
of SOM inputs in the soil through their vertical transporting 
processes (root growth and SOM distribution) (Leue et al. 
2010). The high PWI in the organic horizon was confirmed 
by a high SOC content with high hydrophobicity, which low-
ered soil wettability and reduced the infiltration rate (Goebel 

29
48

-2
92

0

17
40

-1
69

8
16

40
-1

60
0

15
20

10
30

29
48

-2
92

0

17
40

-1
69

8
16

40
-1

60
0

15
20

10
30

K
ub

el
ka

 -
M

un
k

Aliphatic CH 
stretching C=O stretching 

in carboxylic 
group

Carboxylates, 
amides, aromatic 

C=O

Aromatic C=C 
stretching, and 

NH group

C-O stretching, 
polysaccharides Aliphatic CH 

stretching
C=O stretching 
in carboxylic 

group

Carboxylates, 
amides, aromatic 

C=O

Aromatic C=C 
stretching, and 

NH group

C-O stretching, 
polysaccharides

Fig. 3  The representative of average DRIFT spectra of soil in beech and spruce under different soil horizons (Fermented horizons (F), humified 
horizons (H), organo-mineral horizons (A), subsurface mineral horizons (B—spodic or cambic); n = 24) in 2020



890 European Journal of Forest Research (2023) 142:883–897

1 3

et al. 2005). The process of SOC in soil wettability had few 
mechanisms. The hydrophobicity decreased wettability by 
reducing the surface free energy of the soil, restricting the 
soil from wetting (Turski et al. 2022) and decreasing the 
rehydration rate (Eynard et al. 2004). However, the SOC 
improved the soil porosity by holding soil particles together 
against external disturbances (Eynard et al. 2004). The varia-
tion of PWI through the soil profile was also associated with 
the abundant root system, and high Ca content in the organic 
horizons that enhanced soil rhizosphere and indicates strong 
incorporation between Ca and OM, which possibly stabi-
lizes aliphatic contents that further increased PWI (Leue 
et al. 2010; Ohno et al. 2014; Turski et al. 2022). A strong 
correlation was highlighted between Ca and PWI (r = 0.58, 
P < 0.001) in Fig. 5.

Regarding a long-term observation, PWI increased sig-
nificantly from 0.17 ± 0.02 to 0.24 ± 0.01 in F horizon and 
0.13 ± 0.02 to 0.20 ± 0.02 in H horizons under beech, while 
spruce relatively remained stable (no significance) in all 
horizons. The increases of PWI with time revealed a lower 
soil wettability and enhanced SOC and aggregate stability 
(Woche et al. 2017). It can be said that SOM improved PWI 
(lowering wettability) and high PWI prevented SOC from 
microbial decomposition (Atanassova et al. 2018). In a com-
parison between forest tree species, there were significant 
differences observed in F and H horizons in 2015, where 
spruce had a higher index, but in 2020, beech had a higher 
PWI in F horizon. This was consistent with the increase in 
SOC content in 2020 (Fig. 2). Beech produced more residues 
and had deeper root system compared to spruce; therefore, it 
enhanced organic carbon better and sequestrated faster into 
the soil profile. With this, it significantly affected the PWI 
(Eynard et al. 2004; Ilek et al. 2015). On the other hand, it 
was observed that there was a strong correlation between 
PWI and SOC (r = 0.89, P < 0.001) (Fig. 5). Hence, the 
variation of PWI was explained according to the tendency 
of SOC. This was also supported by Ellerbrock and Gerke 
(2013) who explained that the SOM compositions regulated 
the soil wettability and sorption and transfer properties of 
the flow pathway.

The aromaticity index decreased dramatically with 
increasing soil profile depths (F > H > A > B), which means 
the aromatic content increased with depths. A similar result 
was found by Zech et al. (1989) and Silva et al. (2022), 
showing that the content of aromaticity increased from L 
to B horizons. It was contrast to the finding of Ohno et al. 
(2014) where the abundance of condensed aromaticity of 
SOM was much lower in subsoil under coniferous and decid-
uous forests due to the adsorption of aromatic compounds 
to the minerals present in the soil profiles. The decrease 
or increase of the iAR through the soil profile, generally, 
depends on the association of plant residue compositions, 
climate conditions, and microorganism present in the soil 

(Koutika et al. 2020; Thai et al. 2022). The lower aromatic-
ity in the uppermost soil layer than in the deeper soil profile 
under both forest tree species, however, was indicated by 
the less humified and decomposed organic matter due to 
the chemical and physical interaction mechanisms (Chen 
et al. 2013; Corvasce et al. 2006). Ussiri and Johnson (2003) 
found that the decomposition of forest residues relatively 
affected the aromaticity index changes through the soil hori-
zons. Nonetheless, the aromaticity in the soil profile had 
been shown to increase with degrees of decomposition and 
maturity of OM (Chefetz et al. 1998; Margenot et al. 2015; 
Veum et al. 2014). Aromatic compounds were less suscep-
tible to become mobile; therefore, they are likely retained in 
the mineral soil horizon (Bi et al. 2013). Zech et al. (1989) 
reported that the aromatic compounds in the spodic soil 
profile were increased due to the leaching of phenolic sub-
stances during the podsolization.

After a decade of observation, the iAR changed signifi-
cantly by increasing from 0.29 ± 0.04 to 0.36 ± 0.01 in F 
horizon under beech, while spruce had no statistical changes 
in all horizons. To compare between the two forest tree spe-
cies, there were significant differences observed in F, H, and 
A horizons in 2015, where spruce had a higher index than 
beech, but in the F horizon in 2020, beech had a higher iAR. 
The changes of iAR by increasing with time in F horizon 
under beech indicated the degree of SOM decomposition and 
more aliphatic compounds that dominated in this soil hori-
zon (Pizzeghello et al. 2017). It is also shown in Fig. 5 that 
iAR was correlated with SOC (r = 0.89, P < 0.001) regarding 
iAR increase with increasing SOC content. The remaining 
constant iAR under spruce and in subsoil was due to the 
preferential retention of condensed and substituted aromatic 
molecules, which are recalcitrant to mineralization processes 
(Corvasce et al. 2006; Gangloff et al. 2014). Furthermore, 
aromatic compounds were more likely adsorbed onto the 
soil particles than mobile in the soil solution through the soil 
profile (Thai et al. 2022; Ohno et al. 2017). Besides that, the 
high inputs of root lignin and cool climate in the study sites 
were considered as a cause of stability in the aromaticity 
content in the soil under spruce and in the subsoil horizons 
(Zech et al. 1989; Silva et al. 2022).

The index of decomposition displayed no significant dif-
ference through the soil horizons in 2008 and 2013 in beech 
and spruce in 2008 (P > 0.05). Contrary to 2015 and 2020, 
the iDEC significantly changed by increasing with depth 
under both forest tree species. Similar results were shown by 
Prasad et al. (2000) that the iDEC increased with depth. The 
increases of the iDEC through the soil profile indicated that 
the intensities peak of polysaccharides (1030  cm−1), which 
indicated one of the primary energy sources contained in 
the plant residues, were dramatically declined from F to 
B horizons by various moieties of forest litter substances 
(Haberhauer et al. 2000). This result was agreed with Nuzzo 
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et al. (2020) who found that that the intensity of polysac-
charides spectral band decreased with depth. On the other 
hand, the carboxylic and aromatic compounds, which were 
relatively linked with the lignin structures, were less vulner-
able and resistant to microbial attack, while polysaccharides 
were decomposed easily by microorganisms in the organic 
horizons (F and H horizons) (Tseng et al. 1996; Artz et al. 
2006). Additionally, Fig. 5 shows that there was a negative 
correlation (r = − 0.63, P < 0.001) between iDEC and iAR. 
In long-term observation during the study period, the iDEC 
significantly increased from 1.3 ± 0.3 to 1.9 ± 0.2 in B hori-
zon under beech and from 1.4 ± 0.1 to 1.7 ± 0.2 in A horizon 
under spruce. This resulted from a high amount of inorganic 
substances in A and B horizons that caused the changes in 
the intensity peaks of organic matter, which affected the 
decomposition index (Prasad et al. 2000; Haberhauer et al. 
1998). In comparison between the forest stands, there were 
no significant differences between forest tree species in most 
of the soil horizons in each year except for F and H horizon 

in 2008 and B horizon in 2015, which showed a significant 
difference (P = 0.05, 0.014, and 0.018, respectively) between 
forest tree species (beech > spruce). The higher iDEC found 
in beech than spruce revealed that beech had more decom-
posable materials than spruce and provided more variable 
nutrients in the forest soil.

Correlation matrix and principal components 
analysis (PCA) among the soil properties

Figures 4 and 5 show the correlation matrix and PCA results 
among the soil properties. The length of the vectors indi-
cated the strength of their contribution to each PC. Vectors 
pointing to similar directions were positively correlated; vec-
tor directions contrary to each other were negatively corre-
lated; directions of vectors at 90° angle were not correlated. 
The PCA was grouped by year with four different colors for 
each year. Markers on the same side described a high con-
tribution on the variable dataset with 95% confidence ellipse 

Fig. 4  The distribution and temporal change of the potential wetta-
bility index (PWI), index of aromaticity (iAR), and index of decom-
position (iDEC) in fermented horizons (F), humified horizons (H), 
organo-mineral horizons (A), subsurface mineral horizons (B—spo-

dic or cambic) of the soil profile dug under beech and spruce at Jizera 
Mountains (Czech Republic). (Mean and standard deviation; 2008, 
n = 24; 2013, n = 24; 2015, n = 56; and 2020, n = 24)
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(Escobar-Flores et al. 2019). There were eleven principal 
components with eigenvalue > 1. The principal component 
analysis, which selected the main soil properties, showed 
the first two PCs as 79.8%. The first axis of PC1 was 57.8%, 
and the second axis of PC2 was 22.0% of the total vari-
ance (Fig. 6). Most of the soil properties such as SOC, PWI, 
iAR, CEC, BS, BC, and  Ca2+ positively contributed to PC1 
and PC2, whereas the  pH(H2O) and iDEC were negatively 
associated. The correlation matrix, however, showed that 
PWI, SOC, BS, CEC, iDEC, and iAR were closely corre-
lated with each other. A similar correlation among these 
properties was described by Ellerbrock and Gerke (2013) 
and Solly et al. (2020) and further discussion was in our 
results mentioned above. Surprisingly, the ellipse of the year 
2008 (Fig. 6) showed the same direction of EA and  Al3+ and 
then gradually moved their directions toward  Ca2+, BC, BS, 
CEC, SOC, PWI, and iAR in 2013, 2015, and 2020. This 
indicated that soil in 2008 maintained high concentration 

and mobilization of  Al3+ and  Fe3+ and was also proved the 
influences of the forest tree species on the recovery and miti-
gation of the soil properties from acidification in a long-term 
observation.

Conclusion

The study agreed with the hypothesis that beech and 
spruce forests are able to recover effectively from anthro-
pogenically enhanced acidification and promote soil 
organic matter and soil nutrients in the forest ecosystem 
in the long term after massive decline of atmospheric acids 
deposit during the 1990s. The cation exchange capacity 
and soil organic carbon content under both forest tree spe-
cies were higher in the organic horizons than the mineral 
horizons. After a decade of observation, it was proven that 
some soil horizons, especially in F and H horizons, were 

Fig. 5  Correlation matrix plot of all data among the soil properties 
under forest tree species. (Note: *, **, *** correlation significant 
at 0.05, 0.01, and 0.001, respectively). (2008, n = 24; 2013, n = 24; 
2015, n = 56; and 2020, n = 24). Ions concentration in sorption com-
plex—(Ca2+,  Al3+, exchangeable acidity—EA, and base cation—BC 

(cmol +  kg−1)), base saturation (BS (%)), cation exchange capacity 
(CEC (cmol +  kg−1)), soil organic carbon content (SOC (%)), poten-
tial wettability index (PWI (-)), index of aromaticity (iAR (-)), and 
index of decomposition (iDEC (-))
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more pronounced in changing the soil chemical proper-
ties under both forest stand types. The exchangeable base 
cations  (Ca2+,  Mg2+,  Na+, and  K+) which were depleted 
from acidification have been significantly increased with 
time under both forest stands. Moreover, it was observed 
that the nutrients were more variable under beech forest 
in all horizons than in spruce stands due to more decom-
posable materials, larger canopy and productivity of lit-
ter, and less acidity in the soil. However, the drought in 
2015 was considered to lower the exchangeable elements 
in the organic horizons (F and H horizons). Addition-
ally, Al and Fe content quickly decreased in F horizons 
and slowly decreased in H horizon under both forest tree 
species. This indicated that Al and Fe were bound in the 
organic complexes that had been leached from the soil or 
might be sorbed on soil in mineral horizons. It was also 
observed that SOC content increased constantly in values 
under beech, while spruce remained stable. Nonetheless, 
the soil wettability decreased in F and H and aromaticity 
index increased in F horizon with time under beech, which 
signified that SOC improved and aliphatic group propor-
tion increased in organic horizons. As a result, we assumed 
that beech forest was better in reducing and mitigating of 
the soil acidification than spruce one. Moreover, beech 
stand improved soil to more favorable conditions for future 
plant growth.
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