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Abstract
At present, ecosystems are facing changes caused by global warming and anthropogenic impacts on geochemical cycles. 
Both temperature and nutrient availability affect litter decomposition; however, little is known about their simultaneous 
effect on litter decomposition in temperate forests, especially for nutrients such as Na and K. To address this perspective, 
we investigated how changes in N, P, Na and K supply and increased temperature affect litter decomposition measured as 
respiration. Moreover, the study determines what changes can be expected in the functioning of two forest types of dif-
ferent fertility (deciduous and coniferous). The respiration measurements were conducted in the laboratory in mesocosms 
filled with litter from deciduous (oak-hornbeam) and coniferous (mixed pine-oak) forests fertilized by N, P, K, and Na. The 
experiment was conducted at ambient (14 °C; oak-hornbeam and mixed pine-oak litter) and increased temperatures (22 °C; 
oak-hornbeam litter). The respiration of oak-hornbeam litter increased with increasing temperature, with  Q10 values ranging 
from 1.49 to 2.14. Our results showed different responses of respiration to nutrient addition between temperatures and litter 
types. In oak-hornbeam, at 14 °C, the addition of N, P and K decreased respiration, whereas at 22 °C, such an effect was 
noted only under N application, and P and Na addition increased respiration. In mixed pine-oak litter at 14 °C, respiration 
decreased after Na addition, and other nutrients had no effect. Together, our results suggest that forecasting the impact of 
nutrient deposition on ecosystem functioning should consider temperature rise as a factor altering ecosystem responses to 
fertilization in future research.
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Introduction

At present, ecosystems are facing global changes. The 
most important driver of these changes is increasing global 
temperature, but another critical factor is unprecedented 
increases in element inputs (Sistla et al. 2015). Growing 
human demand for food has led to agricultural intensifica-
tion, increasing mineral fertilizer use (Sutton and Bleeker 
2013). These changes also affect element deposition in 
nonagricultural environments and thus processes such as 
plant growth, litter production, and litter decomposition. 
Litter decomposition is the crucial process in ecosystem 

functioning in natural conditions, e.g., it covers most of 
the plant nutrient requirements (Schlesinger and Bernhardt 
2020). It depends mostly on vegetation type (Laskowski 
et al. 2003), temperature, moisture, soil pH, and the concen-
tration of nutrients (e.g., N, P, or K) (Berg and McClaugh-
erty 2020). The element cycles that are affected by human 
activity are nitrogen, phosphorus (Galloway et al. 2004; Gil-
bert 2009; Bobbink et al. 2010; Bennett et al. 2011; Wang 
et al. 2017), potassium (Sardans and Peñuelas 2015) and, to 
a lesser extent, sodium (Kaspari et al. 2014).

Nitrogen sources in ecosystems mainly involve three pro-
cesses: biological fixation, mineralization of dead organic 
matter, and deposition from the atmosphere (Bobbink et al. 
2010). Before the industrial revolution in the nineteenth cen-
tury (1850), the nitrogen cycle was affected principally by 
natural processes. However, by 2005, natural processes had 
decreased because of changes in land use (deforestation and 
increased agricultural area), and anthropogenic deposition of 
N had increased by more than 10 times, with further growth 
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predicted (Galloway et al. 2004; Bobbink et al. 2010; Wang 
et al. 2017). Data on phosphorus deposition changes over 
time are scarce. An approximately fourfold increase in P 
inputs to the biosphere was estimated as a result of the min-
ing of P compounds for fertilizers (Falkowski et al. 2000), 
and a 1.0- to 3.5-fold increase in P deposition was observed 
in a forest in 2010 compared to 1850 (Wang et al. 2017). 
The overlooked element is potassium, although it is a rela-
tively abundant element in plant tissues and plays a crucial 
role in water use efficiency (Sardans and Peñuelas 2015). 
Anthropogenic atmospheric K deposition originates from 
agriculture and industrial activity, and in some areas, human 
activities can contribute a higher proportion of K deposi-
tion than natural processes (Sardans and Peñuelas 2015). 
Sodium, the other element of interest, is less important 
for plants but is necessary for heterotrophs and can affect 
decomposer activity (Kaspari et al. 2014; Kaspari 2020). 
For instance, Yia et al. (2015) showed that Na limits detri-
tivore decomposers and that high levels of Na inhibit soil 
microbes in inland subtropical forests. The Na sources in 
the environment include oceanic aerosols, rock weathering, 
and anthropogenic effects, e.g., the common use of road salt 
(Kaspari et al. 2014).

Recent studies have yielded numerous papers on the 
impact of nutrient addition on forest ecosystems, but the 
most commonly used nutrients were N, N + P (Brais et al. 
2015; Li et al. 2015a; Mayor et al. 2015; Kang et al. 2016; 
Ratliff and Fisk 2016; Schuster 2016) and N, P, and K (Fay 
et al. 2015; La Pierre and Smith 2016), and only a few stud-
ies have provided results for other nutrients (Sardans et al. 
2012; Clay et al. 2015; Jia et al. 2015). A wide range of 
experiments have shown various litter respiration responses 
to fertilization in forest ecosystems, including increases 
(Brumme and Beese 1992; Gallardo and Schlesinger 1994; 
Cleveland and Townsend 2006), decreases (Lee and Jose 
2003; Bowden et al. 2004; Burton et al. 2004) and no change 
(Lee and Jose 2003; Allison et al. 2008; Kang et al. 2016). 
These variable responses can be attributed to several factors, 
such as forest composition and age (Lee and Jose 2003), the 
rate and duration of nutrient addition (Bowden et al. 2004; 
Mo et al. 2008), and different levels of site fertility (Kang 
et al. 2016). For example, Allison and Vitousek (2004) sug-
gested that in nutrient-poor systems, nutrient enrichment 
may preferentially stimulate C loss and thus accelerate litter 
decomposition.

The observed climatic changes (increase in air temper-
ature) may result in a faster litter decomposition rate, as 
temperature (in addition to water and other environmental 
parameters) is one of the main factors affecting litter respira-
tion (Reichstein et al. 2003; Klimek et al. 2020). Similarly, 
increased deposition of nutrients (Galloway et al. 2004, 
2008; Gilbert 2009; Bobbink et al. 2010; Bennett et al. 2011; 
Wang et al. 2017), whose availability is a limiting factor 

in terrestrial ecosystems, may speed litter decomposition 
because additional input may stimulate microbial activity. 
Increased temperature and deposition of nutrients may act 
simultaneously in changing world, which creates the neces-
sity to explore the response of respiration to fertilization 
in conjunction to the rise in temperature. However, to the 
best of our knowledge, it has rarely been studied in tem-
perate forests, especially for nutrients such as Na and K. 
Therefore, the present study aims to investigate how global 
changes (increased nutrient deposition and temperature) may 
affect litter respiration and what changes can be expected in 
the functioning of two forest types (deciduous and conif-
erous) with different fertility levels and decomposition 
rates (Laskowski et al. 2003). To address these questions, 
we measured respiration in deciduous (oak-hornbeam) and 
coniferous (mixed pine-oak) litter fertilized with N, P, Na 
and K (four treatments) and without fertilization (control) 
at ambient (14 °C) and increased temperatures (22 °C). 
We focused our study on heterotrophic respiration, which 
includes respiration by soil/litter microorganisms and fauna 
(Yan et al. 2010; Wang et al. 2017). We hypothesize that 
(i) nutrient (N, P, Na and K) addition will increase litter 
respiration (effect of changes in nutrient supply); (ii): an 
increase in temperature will cause a stronger positive effect 
of nutrient (N, P, Na and K) addition on respiration (effect 
of global warming + changes in nutrient supply); and (iii) a 
stronger positive effect of nutrient (N, P, Na and K) addition 
will be noted for less fertile coniferous pine-oak litter than 
for deciduous oak-hornbeam litter.

Materials and methods

Site description and collection of material

Litter samples were collected in the Niepołomice For-
est, southern Poland (49°59′–50°07′ N, 20°13′–20°28′ E, 
184–212 m a.s.l., (Grodziński et al. 1984)). The forest is 
divided into two parts: southern, which is formed by mixed 
pine-oak forest (Pino-Quercetum) on podzols and cambi-
sols on sands with mor humus, and northern, dominated by 
deciduous forest, especially oak-hornbeam (Tilio-Carpine-
tum) on gleysols on clays with mull humus (Kapusta et al. 
2003). The dominant tree species in the studied oak-horn-
beam forest are oak (Quercus robur) and hornbeam (Carpi-
nus betulus) with an admixture of lime trees (Tilia cordata). 
The mixed pine-oak forest is characterized by a dominant 
tree species: pine (Pinus sylvestris) with an admixture of oak 
(Quercus robur). The oak-hornbeam litter is characterized 
by a lower C content (26.5%), N content (1.5%), and C/N 
ratio (17.2) and a slightly higher pH than the mixed pine-oak 
litter (C 77%, N 1.9%, C/N ratio 21.1) (Kapusta et al. 2003). 
The area is characterized by a moderate transient climate. 
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The mean annual temperature and precipitation for this 
region are 8.6 °C and 670 mm, respectively, and the grow-
ing season lasts from April until September with a mean 
temperature of 14 °C (Sensuła and Pazdur 2013; Ziernicka-
Wojtaszek et al. 2015).

Litter from the oak-hornbeam and mixed pine-oak forests 
was collected in March 2017 and October 2017, respectively. 
The collected material was sieved (10 mm mesh) to remove 
twigs and freshly fallen leaves and was transported to the 
laboratory (Laskowski et al. 2003).

Experimental design

The respiration measurements were conducted in meso-
cosms constructed from 12 L buckets filled with sand 
(1800 g) moistened with 200 g of distilled water (which is 
the maximal water capacity of the used sand) at the bottom 
and experimental litter above. The sand layer was separated 
from the litter with a white geotextile (17 g/m2). The meso-
cosm (bucket) was covered with geotextile to reduce litter 
surface desiccation and to allow air exchange. Before start-
ing the incubation, the dry weight of the collected litter was 
measured by drying five subsamples in an oven at 105 °C 
for 12 h, and the water content of the litter was estimated. 
The dry mass of litter used in the experiment (both mixed 
pine-oak and oak-hornbeam) was 450 g. The water holding 
capacity (WHC) of the collected fresh litter was measured 
(Ilstedt et al. 2000), which allowed us to calculate how much 
distilled water should be sprayed on the litter surface in the 
mesocosms to achieve 70% WHC. This level of WHC is 
considered favorable for microorganism activity (Ilstedt 
et al. 2000).

Litter (from the oak-hornbeam forest and mixed pine-oak 
forest) was incubated in climatic chambers without light. 
In the mesocosms, respiration was measured at two tem-
peratures, 14 °C (oak-hornbeam and mixed pine-oak) and 
22 °C (oak-hornbeam). The former corresponds to the mean 
air temperature of the growing season in southern Poland 
(Ziernicka-Wojtaszek et al. 2015). The latter represents 
approximately the maximal increase in global temperature 
estimated by models, which could be 7 °C by the end of the 
century (Li et al. 2015b). Respiration measurements of the 
mixed pine-oak litter at 22 °C were not considered because 
of climatic chamber failure during the experiment.

To investigate the effects of N, P, K and Na addition on 
litter respiration, the litter surface (0.053  m2) was sprayed 
with 100 ml of solutions of ammonium nitrate, phosphorus 
oxide V, potassium chloride, sodium chloride and distilled 
water (as a control) once after establishing the mesocosms. 
The amounts of individual elements in 100 ml of solu-
tion were calculated to obtain the following doses: nitro-
gen—10 g N  m−2 (1.71% ammonium nitrate solution), phos-
phorus—3 g P  m−2 (0.32% phosphorus oxide V solution), 

potassium—2.5 g K  m−2 (0.29% potassium chloride solu-
tion), and sodium—1.5 g Na  m−2 (0.23% sodium chloride 
solution), which exceeded two to three times the maximal 
bulk deposition measured in Poland and Europe (Walna and 
Kurzyca 2007; Fischer et al. 2010).

In the present experiment, heterotrophic respiration was 
measured, as the mesocosms contained only litter with the 
organisms living in it, and plants and roots were excluded. In 
the experiment, 75 mesocosms were used: 2 (litter type) × 5 
(nutrients: control, N, P, K, Na) × 5 repetitions (at 14 °C) + 1 
(litter type) × 5 (nutrients: control, N, P, K, Na) × 5 repeti-
tions (at 22 °C).

Respiration measurements

After 6 days of incubation of the mesocosms in the climate 
chambers, respiration was measured using a carbon dioxide 
probe GMP343 (Vaisala, Helsinki, Finland). The mesocosm 
(bucket) was closed with a cover with the hole in the center 
where the probe was inserted. Every measurement lasted 
120 s, during which the amount of  CO2 evolved from the 
litter was measured. Measurements were taken once a week 
(every 6–8 days) for 4 weeks in each type of forest litter. 
(There was a lack of respiration measurements on the sixth 
day of the experiment for oak-hornbeam litter at increased 
temperature.) To maintain constant litter moisture, the water 
loss from the mesocosms was supplemented after respira-
tion measurements by spraying the surface of the litter with 
distilled water.

Litter properties: pH and organic matter content

To investigate whether nutrient addition affects litter prop-
erties, at the end of the whole experiment, 45 samples of 
litter were collected (15 for each treatment: 5 nutrient treat-
ments × 3 repetitions). The pH of the litter was determined 
in distilled water and a solution of potassium chloride using 
a calibrated pH meter (ELMETRON, Zabrze, Poland). The 
organic matter content in the litter was measured using the 
LOI (loss-on-ignition) method (De Vos et al. 2005). The 
litter samples were dried at 105 °C and then burned in an 
oven at 550 °C for 8 h.

Data analysis and statistics

The effects of temperature on litter respiration are described 
by Q10, which was calculated according to Eq. (1) (Balser 
and Wixon 2009):

(1)Q10 =

(

R2

R1

)10/(T2−T1)
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where R1 represents the respiration at lower temperature; 
R2 represents the respiration at higher temperature; T1 is the 
value of lower temperature; and T2 is the value of higher 
temperature.

The effects of nutrient additions on microbial respira-
tion were estimated using the ln-transformed response ratio 
(Zhou et al. 2017a). The response ratio (RR) allowed com-
parison between the temperatures and types of litter, as the 
collection and respiration measurements of oak-hornbeam 
and mixed pine-oak litter were carried out at different times. 
RR is defined as ln (Xt/Xc), where ln is the natural logarithm, 
Xt is the respiration of the nutrient treatment, and Xc is the 
respiration of the control. An RR higher than 0 shows an 
increase in microbial respiration due to nutrient addition, 
and a value less than 0 shows a decrease in microbial res-
piration. To determine the significance of nutrient addition, 
95% confidence intervals were calculated. When the 95% 
confidence intervals overlap with 0, the effects of nutrient 
addition are not significant (Zhou et al. 2017a). RR analy-
ses were performed using Microsoft Excel (Microsoft, Red-
mond, WA, USA).

The cumulative emissions of  CO2 from each mesocosm 
for the entire duration of the experiment were calculated by 
multiplying the average emissions by the number of hours 
between two consecutive sampling dates and summing the 
results (Chadwick 2005; Moral et al. 2012; Shah et al. 2016). 
The percentage change in  CO2 release from the litter as a 
result of increased temperature for each nutrient treatment 
was calculated with the following equation:

where  CE1 is the cumulative emission at lower temperature 
and  CE2 is the cumulative emission at higher temperature.

The statistical analysis was performed using R 4.0.3 soft-
ware (R Core Team 2020) with the lme4 (Bates et al. 2015), 
lmerTest (Kuznetsova et al. 2017), car (Fox and Weisberg 
2019) and rstatix (Kassambara 2021) packages. To test 
differences in litter respiration between different nutrient 
treatments and between temperatures, a set of general linear 
mixed models (GLMMs) was used. In the GLMM for mixed 
pine-oak litter, the mesocosm was a random effect, and nutri-
ent treatment was a fixed effect. The model also included the 
day of measurement (we measured respiration 5 times) as 
a continuous variable. The GLMM for oak-hornbeam litter 
additionally included the temperature as a fixed effect and 
the nutrient treatment × temperature interaction. To test the 
differences between treatments in litter pH value, organic 
matter content and cumulative  CO2 emission, a set of general 
linear models (GLMs) was used. In the GLMs, nutrient treat-
ment and temperature (in the case of oak-hornbeam litter) 
were fixed effects. The GLM for cumulative  CO2 emissions 

(2)%CCO2
=
CE2 − CE1

CE1

× 100%

additionally included the nutrient treatment × temperature 
interaction. Graphics were prepared in Microsoft Office 
Excel (Microsoft, Redmond, WA, USA) and R with ggplot2 
(Wickham 2016) and emmeans (Lenth 2020) packages and 
edited using InkScape 0.92.4 (Harrington et al. 2004-2005 ).

The missing respiration data for oak-hornbeam litter were 
extrapolated using prediction of the GLMM and used in cal-
culation of means,  Q10 values and response ratio.

Results

Effect of temperature on litter respiration

Respiration decreased with time in both the oak-hornbeam 
(χ2 = 200.18, p < 0.0001, Fig. 1a) and mixed pine-oak litter 
(χ2 = 6.94, p = 0.008, Fig. 1b). For the oak-hornbeam litter, 
the GLMM showed that respiration was higher at 22 °C 
than at 14 °C (χ2 = 11.56, p < 0.001, Table 1; note that this 
table shows the means calculated from raw data and from 
the predictions of GLMM for oak-hornbeam in the case of 
missing data). This result is also reflected in the amount of 
 CO2 released from the litter during the 28 days of measure-
ments (cumulative emission) (F = 82.86, p < 0.001, Fig. 2a), 
which was approximately 34% higher for the control and N 
treatments, 85% higher for P, and 57% higher for Na and K 
at 22 °C than at 14 °C. The mean temperature coefficient 
(Q10) in the oak-hornbeam forest ranged between 1.49 and 
2.14 (Table 1).

Effect of nutrient addition on litter respiration

GLMMs showed that nutrient addition had no effect on res-
piration either in oak-hornbeam litter (χ2 = 2.01, p = 0.734) 
or in mixed pine-oak litter (χ2 = 4.48, p = 0.345). Similarly, 
the GLMs showed no effect of nutrient addition on cumula-
tive  CO2 emissions (F = 1.54, p = 0.211 for oak-hornbeam 
litter; F = 1.47, p = 0.248 for mixed pine-oak litter). Statisti-
cal models for oak-hornbeam litter did not reveal a signifi-
cant interaction between nutrient treatment and temperature 
for either respiration (χ2 = 8.13, p = 0.087) or cumulative 
 CO2 emissions (F = 2.14, p = 0.095). However, based on 
the RR results, for oak-hornbeam litter incubated at 14 °C, 
the addition of N, P, and K decreased respiration, and the 
addition of Na had no effect (Fig. 3a). At 22 °C, N addi-
tion decreased respiration, and P and Na addition increased 
respiration with no effect of K fertilization (Fig. 3b). The 
only effect detected for mixed pine-oak litter incubated at 
14 °C was decreased respiration due to Na addition (Fig. 3c). 
For oak-hornbeam litter at 14 °C, the highest amounts of 
 CO2 were released from the control and Na treatments, and 
the lowest amounts were released from the P and K treat-
ments (Fig. 2a). In contrast, at 22 °C, the highest cumulative 
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emission was observed in the P-treated litter, and the lowest 
was observed for the N-treated litter (Fig. 2a). For mixed 
pine-oak litter, the highest cumulative emission was noted 
for the K treatment and the lowest for the Na treatment 
(Fig. 2b).

Litter properties at the end of the experiment

The mean (± SE) organic matter content at the end of the 
experiment was 64.4 ± 1.6% in the oak-hornbeam litter and 
81.5 ± 0.8% in the mixed pine-oak litter. No differences 
were found in the organic matter content between tempera-
tures (F = 3.82, p = 0.062) or between nutrients (F = 1.03, 
p = 0.410) in oak-hornbeam litter. In mixed pine-oak lit-
ter, nutrient treatments differed in organic matter content 

(F = 4.23, p = 0.029), with N, Na and K treatments having 
approximately 6% higher organic matter content than the 
control.

In the oak-hornbeam litter, the pH values were higher at 
22 °C than at 14 °C (F = 44.61, p < 0.001 for pH(H2O) and 
F = 103.37, p < 0.001 for pH(KCl)). Moreover, in general, 
nutrients caused a decrease in pH (F = 5.83, p = 0.002 for 
pH(H2O) and F = 4.95, p = 0.005 for pH(KCl), Table 2; note 
that this table shows the means calculated from raw data), 
with significant results between all nutrient treatments (N, 
P, Na, K) and the control for the pH measured in  H2O and 
between all nutrients, except N and the control for the pH 
measured in KCl. For the mixed pine-oak litter, all nutri-
ent treatments were characterized by a similar pH [F = 0.45, 
p = 0.771 for pH(H2O) and F = 2.91, p = 0.078 for pH(KCl)].

Discussion

Our results showed that a temperature increase of 8 °C 
(over the control at 14 °C) increased respiration and thus 
the release of  CO2 from decomposing oak-hornbeam lit-
ter, which is in agreement with common knowledge. The 
calculated  Q10 values between 1.49 and 2.14 are close to 
the values presented by Guo et al. (2017) and Chen et al. 
(2019) and lower than those reported by Sun et al. (2014). 
The lower  Q10 values noted for the control and N-fertilized 
litter and higher values for the treatments with P, Na, and K 
suggest a faster decomposition rate of forest litter fertilized 
with P, Na, and K under global warming than under current 
climatic conditions.
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Fig. 1  Respiration in a oak-hornbeam litter at ambient and higher 
temperatures and b mixed pine-oak litter at ambient temperature in 
the control, nitrogen (N), phosphorus (P), sodium (Na), and potas-
sium (K) treatments estimated by GLMMs. Note that the litter of each 

forest type was collected at different times. In general, respiration 
was higher with increased temperature in oak-hornbeam litter and 
decreased with time in both litter types. The graphs show means esti-
mated from GLMMs

Table 1  Mean (± SE) litter respiration (g  CO2  m−2  h−1) and  Q10 val-
ues

The values were calculated for the entire duration of the experiment 
from raw and extrapolated data (in the case of missing measurements) 
predicted from the GLMM for oak-hornbeam. Note that the litter of 
each forest type was collected at different times

Nutrient Oak-hornbeam litter Q10 Mixed pine-oak litter

14 °C 22 °C 14 °C 22 °C

Control 0.216 ± 0.015 0.300 ± 0.019 1.50 0.321 ± 0.018 –
N 0.199 ± 0.014 0.274 ± 0.019 1.49 0.310 ± 0.014 –
P 0.192 ± 0.011 0.353 ± 0.020 2.14 0.304 ± 0.018 –
Na 0.209 ± 0.013 0.335 ± 0.017 1.80 0.294 ± 0.015 –
K 0.187 ± 0.010 0.310 ± 0.013 1.87 0.339 ± 0.018 –
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In our experiment, for both litter types, oak-hornbeam and 
mixed pine-oak, respiration did not differ between nutrient 
treatments (control, N, P, K and Na). However, when we 
related the respiration of the litter fertilized with nutrients 
to the control, as shown by the RR index, we observed that 
nutrient addition influenced litter respiration. This index 
also allowed us to compare responses to nutrient addition 
between the oak-hornbeam and mixed pine-oak litter despite 
different litter collection times, although different seasonal 
changes in litter characteristics could have affected respira-
tion. Thus, in the next part of the discussion, we will address 
the results obtained from this measure.

Contrary to our expectation (hypothesis i), we did not 
find positive effects of nutrient addition on litter respiration 
at ambient temperature (at 14 °C) in either oak-hornbeam 
or mixed pine-oak litter. Moreover, we expected a stronger 
positive effect of nutrient addition in the mixed pine-oak for-
est with mor/moder-type humus (hypothesis iii) because of 
the high content of slowly decomposing pine needles and a 
higher C:N ratio than in oak-hornbeam litter (Kapusta et al. 
2003). Respiration in the oak-hornbeam litter was nega-
tively affected by N, P, and K addition, with no effect of 
Na addition. A reverse pattern was observed in the mixed 
pine-oak litter, in which only Na decreased litter respiration, 
and the addition of other nutrients had no effect. Therefore, 
our results only partially agree with hypothesis iii, as for 
mixed pine-oak litter, a less limiting effect of nutrient addi-
tion on respiration was observed. The difference in response 
between oak-hornbeam and mixed pine-oak litter may result 
from the differences in the microbial (fungal) community 
composition. The decomposition of more fertile decidu-
ous litter is driven by a bacterial-based energy channel, 
whereas that of less fertile coniferous litter is driven by a 

fungal-based energy channel (Wardle et al. 2004), which 
may affect the response to nutrient addition. For example, 
nitrogen supply can reduce fungal-specific PLFAs and 
lower fungi-to-bacteria ratios (Forstner et al. 2019), as well 
as reduce lignin-degrading enzyme activity and relative 
abundances of Gram-negative and Gram-positive bacteria 
(Hobbie et al. 2012). Therefore, alterations in the microbial 
community may change enzyme production and decomposer 
efficiency, reducing respiration (Moorhead and Sinsabaugh 
2006).

At the higher temperature (22 °C), a negative effect of 
nutrient addition was found only for N, whereas the addi-
tion of other nutrients caused a positive effect (significant 
for P and Na), which is in agreement with our hypothesis i. 
The additive effect of nutrient application on litter respira-
tion at higher temperature was shown as the amount of  CO2 
released over 28 days. Whereas respiration in the control and 
N increased by approximately 34% over those at ambient 
temperature, in the case of other elements, the values were 
much higher: 57% (K and Na) or even 85% (P). The latter 
results agree with our expectations that at increased tem-
perature, there will be a stronger positive effect of nutrient 
addition (hypothesis ii).

The most commonly studied elements are nitrogen and 
phosphorus. In our research, the impact of these two ele-
ments on the respiration of the oak-hornbeam litter differed. 
Nitrogen addition decreased respiration at both temperatures 
(ambient and higher), and this result agrees with observa-
tions in other studies. Meta-analyses of the impact of N fer-
tilization on litter respiration showed a 15% (Janssens et al. 
2010) and 10% decrease in  CO2 release (Zhou et al. 2017b), 
whereas an increase in litter respiration was observed in only 
6 of 36 experiments (Janssens et al. 2010). Nitrogen ferti-
lization decreases microbial biomass and diversity (espe-
cially for fungi) as well as the ratio of fungi to bacteria (Jian 
et al. 2016; Yue et al. 2016; Zhou et al. 2017b; Forstner 
et al. 2019), which in turn drives reductions in soil respira-
tion and decomposition (Riggs and Hobbie 2016). Carbon 
stabilization into more slowly decomposing fractions may 
occur because of N inhibition of oxidative enzyme activity 
(Hobbie et al. 2012). For instance, nitrogen addition stimu-
lates hydrolase activities but inhibits the activities of phe-
nol oxidase and peroxidase (Zhou et al. 2017b). Nitrogen 
addition lowers the pH of deciduous litter, which can affect 
microbial activity and therefore C storage (Lu et al. 2011). 
Note that this agrees with our results showing that N addi-
tion decreased pH and respiration in oak-hornbeam litter.

While N lowered respiration at both temperatures, P addi-
tion lowered respiration at ambient temperature but accel-
erated respiration at increased temperature. The former 
observation is contrary to our expectation but is consistent 
with the data of Thirukkumaran and Parkinson (2000), who 
observed a negative effect of P addition on the microbial 

Table 2  Mean pH values (± SE) of two litter types, oak-hornbeam 
and mixed pine-oak, measured at the end of the experiment

The values calculated from raw data. Note that the litter of each forest 
type was collected at different times

Treatment pH Oak-hornbeam litter Mixed pine-oak 
litter

14 °C 22 °C 14 °C 22 °C

Control pH(H2O) 4.85 ± 0.08 5.14 ± 0.12 4.72 ± 0.12 –
pH(KCl) 4.36 ± 0.09 4.74 ± 0.03 3.78 ± 0.05 –

N pH(H2O) 4.65 ± 0.03 4.97 ± 0.01 4.76 ± 0.05 –
pH(KCl) 4.25 ± 0.05 4.72 ± 0.09 3.98 ± 0.03 –

P pH(H2O) 4.65 ± 0.04 4.89 ± 0.04 4.69 ± 0.05 –
pH(KCl) 3.99 ± 0.08 4.61 ± 0.07 3.82 ± 0.10 –

Na pH(H2O) 4.65 ± 0.06 4.82 ± 0.08 4.66 ± 0.08 –
pH(KCl) 4.17 ± 0.05 4.57 ± 0.02 3.76 ± 0.01 –

K pH(H2O) 4.71 ± 0.03 4.91 ± 0.05 4.78 ± 0.02 –
pH(KCl) 4.17 ± 0.03 4.48 ± 0.09 3.81 ± 0.03 –
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biomass and respiration rate of pine litter, and DeForest 
(2019), who demonstrated that chronic P addition inhib-
ited litter decomposition in Quercus spp. temperate for-
est. DeForest (2019) suggests that the “microbial mining” 
hypothesis may explain the suppressive effect of P on forest 
litter respiration. This hypothesis states that if any nutrient 
is the most limiting factor, then increases in the availabil-
ity of that nutrient will inhibit decay because of decreased 
“mining” of litter by microbes (DeForest 2019). In other 
words, if P is a limiting factor, microbes decompose more 
litter to meet the demand for this element, whereas supply-
ing litter with P results in lower “mining” for this element 
and therefore a slower decomposition rate. A reversed pat-
tern (consistent with hypothesis i) was observed at increased 
temperature, in which P addition accelerated the respira-
tion rate. This could result from an increased metabolism 
of microorganisms and therefore a higher demand for both 
energy (C) and P. Supply with P increased respiration more 
than increase caused by the effect of temperature. Consist-
ent with our results, the data from tropical forests, where P 
in soil is scarce, showed that the addition of this element at 
33 °C resulted in higher microbial activity (Hui et al. 2020).

Elements that are less studied or neglected in the litera-
ture related to nutrient cycles are K and Na (Kaspari et al. 
2008; Sardans and Peñuelas 2015; Kaspari 2020). Our 
results showed a negative response of respiration to K addi-
tion in the oak-hornbeam litter at ambient temperature but no 
effects at higher temperature. Despite the fact that potassium 
plays an important role in fungal osmoregulation (Camen-
zind et al. 2019), evidence has shown that fungal abundance 
is not affected by K addition (Camenzind et al. 2018). More-
over, Moro et al., (2014) demonstrated that microorganisms 
are not limited by K, even in soils with low K availability.

Sodium addition in our research had no effect on res-
piration in oak-hornbeam litter at ambient temperature but 
increased respiration at higher temperature. Literature data 
from tropical and subtropical regions showed that sodium 
addition did not affect fungal growth or respiration (Kaspari 
et al. 2014; Camenzind et al. 2018). However, respiration 
may differ between various fungal strains (Camenzind et al. 
2018). Data on microbial decomposers demonstrated a nega-
tive impact of high doses of Na on microbial activity (Jia 
et al. 2015; Ji et al. 2020) but a parallel increase in microbial 
biomass and activity at low doses (Jia et al. 2015).

The input of nutrients into the environment changes not 
only the concentration of a given element in the litter but 
also the stoichiometric ratio between this and other ele-
ments and therefore may affect microbial activity and com-
position (Sterner and Elser 2002; Sinsabaugh et al. 2008, 
2009). For example, a change in the input of N or P into the 
environment results in changes in the stoichiometric ratio 
between both elements. A low N:P ratio promotes bacte-
ria, and a high N:P ratio promotes fungi, which may impact 

nutrient dynamics and litter decomposition (Güsewell and 
Gessner 2009). The addition of elements in our experiment 
could alter the natural stoichiometry in the studied litter. 
Moreover, a change in temperature causes a change in the 
metabolic rate of microbes and thus also their demands for 
elements, which can become limiting because of disturbed 
ratios between elements. In addition to the differences in 
the microbial community caused by different thermal 
optima of organisms and forest types (Allison et al. 2010; 
Schindlbacher et al. 2011), this could explain the different 
responses of respiration to the addition of elements at each 
temperature.

Conclusions

Overall, our research showed that both an increase in tem-
perature and nutrient deposition affected litter respiration 
and therefore possibly the carbon sink. Our results suggest 
that an increase in nutrient deposition under present climatic 
conditions in oak-hornbeam forests in the temperate climatic 
zone may increase the carbon sink in the forest floor. In 
contrast, in mixed pine-oak forests, the additional deposition 
of N, P, and K fertilizers should not affect carbon depos-
its in litter under the present climatic conditions, and the 
addition of Na fertilizer may increase the carbon sink in the 
forest floor. Under global warming, an increase in N depo-
sition in oak-hornbeam forests in temperate climatic zones 
may increase the carbon sink in the forest floor, whereas 
P and Na fertilization may strengthen the amount of  CO2 
released from litter. However, as we measured only hetero-
trophic respiration, these interpretations should be taken 
with caution because an increase in plant production due 
to the influx of nutrients (N, P, K) results in an increased 
inflow of dead organic matter to the forest floor (Wang et al. 
2017). Increased production of litter with simultaneous inhi-
bition of its decomposition can increase carbon deposits in 
the ecosystem. Together, our results suggest that forecasting 
the impacts of nutrient deposition on ecosystem functioning 
should consider temperature rise as a factor altering ecosys-
tem responses to fertilization in future research.
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