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Abstract
Seeds produced by individual plants often vary substantially in size. Typically, larger seeds produce seedlings that have 
higher chances of establishment and survival relative to seedlings produced by smaller seeds. However, larger seeds are also 
preferred by granivores due to larger caloric content. While choosing the patch to forage, granivores might avoid the ones 
with smaller, less preferred seeds. We tested a novel hypothesis that the production of different size seeds by a plant may 
be a strategy to decrease predation by granivores. We conducted a 3-year seed removal experiment. We presented Quercus 
robur acorns in forests in three configurations: large acorns alone, medium acorns alone, and large acorns mixed with small 
ones. The impact of seed size on seed survival was inconsistent: in the first year of the study, survival probability for seeds 
in the mixed treatment was significantly higher than survival probability of large seeds alone, supporting our hypothesis. 
However, in the following years, results were non-significant, probably because of reduced granivore selectivity in poor 
seed crop years. Our study demonstrated that the impact of neighbourhood of different size seeds seed survival varied over 
time in Q. robur. This provides limited evidence that intraspecific variation in seed size could evolve to shift the interaction 
between trees and scatter hoarders away from predation and towards mutualism.

Keywords Acorns · Granivores · Seed predation · Intraspecific variation in seed size · Sessile oak · Plant–animal 
interactions

Introduction

Seed dispersal is a key process influencing plant demog-
raphy and recruitment (Herrera et al. 1994; Schupp and 
Fuentes 1995). Moving seeds away from parent plants can 
increase seed and seedling survival by decreasing distance- 
and density-dependent mortality (Schupp 1988; Comita 
et al. 2014; Schupp et al. 2019). By determining where 
seeds are deposited, dispersal impacts plant reproductive 
success (Wall 2002) and can impose selective pressures 

on seed morphology and phytochemistry (Herrera 2002). 
Many plant species, including major forest tree genera, rely 
on seed predators for dispersal of their seeds (Wall 1990; 
Gómez et al. 2019). Scatter-hoarding seed dispersers, such 
as rodents or corvids, consume seeds but also store them 
in shallow caches (Vander Wall 2010; Perea et al. 2011a; 
Pesendorfer et al. 2016). By storing seeds in a suitable envi-
ronment, scatter-hoarding rodents increase the probability 
of seedling establishment (Steele et al. 2007; Zwolak and 
Crone 2012). Thus, scatter-hoarders act both as seed preda-
tors and seed dispersers, and the decision whether to store 
or consume a handled seed is important for structuring plant 
communities (Schupp and Fuentes 1995; Pesendorfer et al. 
2018).

One major factor affecting the decision whether to 
store or predate seeds is seed traits (Lichti et al. 2017). A 
prominent trait affecting seed harvesting and fate is their 
size (Lichti et al. 2014). Larger seeds are a higher-quality 
resource (Theimer 2003) and thus have a higher removal 
chance (Wang and Ives 2017). In addition, larger and heavier 
seeds are more likely to be dispersed further (Moore et al. 
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2007; Perea et al. 2011a; Wang and Ives 2017), while smaller 
seeds are more likely to be consumed (Wang and Ives 2017). 
Granivores foraging is driven by maximization of benefits. 
Larger seed represents higher nutritional reward but also 
increased cost caused by longer handling time. Since many 
plant species depend on animals for seed dispersal, animal 
seed-size or fruit-size preferences, in relation to the body 
size of the animal itself can shape the evolution of seed size 
(Muñoz and Bonal 2008; Sobral et al. 2013).

Besides affecting scatter-hoarding decisions, larger seed 
size often increases fitness through higher probability of 
seed persistence in the soil and higher seedling establish-
ment (Seiwa 2000). Larger seeds have higher chances of 
establishment and survival as seedlings in the face of various 
hazards including competition from established vegetation 
(Leishman et al. 1995; Alcántara and Rey 2003). Large seeds 
are also able to survive predation even partial consumption 
(Perea et al. 2011b; Bartlow et al. 2018). Seedlings emerging 
from larger seeds tend to be better competitors (Landergott 
et al. 2012). Furthermore, plants originating from larger 
seeds can have higher fecundity (Larios et al. 2014).

Given these manifold consequences of seed size, it is 
not surprising that interspecific differences in seed size are 
widely studied (Westoby et al. 1992; Moles et al. 2007; Yi 
et al. 2019). However, variation in seed size can be large 
even within one individual (Sork et al. 1993; Herrera and 
Jovani 2010). Mechanisms driving the intraspecific vari-
ation in seed size are diverse. Plant modular construction 
can cause variability in the characteristics of copies of the 
same organ (leaves, flowers, fruits, seeds) produced in dif-
ferent modules of the same individual (Herrera 2017). For 
example, distribution of water within an individual depends 
on its height, where leaves on the lower position of a tree 
crown get more water than leaves located in the upper part 
of the crown (Menéndez and Concepción 1997). Similarly, 
photosynthetic performance varies depending on position 
and orientation of leaves in the crown (Escribano-Rocafort 
et al. 2016). Moreover, foliar damage can lead to failure in 
seed development (Strauss et al. 2015; Canelo et al. 2018). 
However, differences in seed size can originate not only 
from environmental factors, but can also be driven by natu-
ral selection if the variation in seed size maximizes seed 
survival and dispersal.

Here, we investigated how variation in sizes of seeds 
affects animal foraging decisions. Specifically, we asked 
whether the presence of smaller (less preferred) seeds can 
increase the persistence of larger ones in the environment 
through indirect interactions. Since variation in seed size can 
induce different decisions by shared predators, indirect inter-
actions can arise between these seeds (Chase et al. 2002; 
Lichti et al. 2014; Bogdziewicz et al. 2019). Indirect inter-
actions occur when the presence of one prey type alters the 
behaviour of shared a predator towards a second prey type 

(Strauss 1991). The presence of less attractive seeds may 
increase survival or abundance of both seed species (appar-
ent mutualism). Alternatively, the presence of a favoured 
seed type may attract predators to the patch and increase 
predation upon less attractive seeds (apparent competition) 
(Holt and Lawton 1994).

We performed an experiment where we presented seeds 
of different sizes in three configurations: only large seeds, 
mix of small and large seeds, and only medium seeds. Small 
seeds are less attractive due to their lower per capita ener-
getic value and thus can decrease visitation rates to the patch 
(Lichti et al. 2017; Wang and Ives 2017; Dylewski et al. 
2020). Thus, we hypothesized that the production of seeds of 
different sizes by a plant is a strategy to decrease predation 
by granivores. Food resources are aggregated in patches of 
varying quality, so a key component of successful foraging 
is the selection of a favourable patch by consumers (Shimada 
et al. 2015). We hypothesized that granivores will preferen-
tially forage in patches with larger seeds, relative to patches 
where large seeds are mixed with small seeds (H1). We also 
hypothesized that post-removal fate of large seeds in “large” 
treatment and in “mixed” treatment will vary. Specifically, 
we predict that large seeds from “mixed” treatment will be 
cached more frequently compared to seeds from “large” 
treatment (H2). In “mixed” treatment, granivores should 
choose small seeds for consumption first and then disperse 
large seeds, while in “large” treatment, some portion of large 
seeds will be eaten before dispersal.

Methods

Study site

We conducted experiments in two closely located forests: 
in Morasko Nature Reserve (52.4 N, 16.8 E) and in Puszcza 
Zielonka Landscape Park (52.6 N, 16.9 E), located in the 
Greater Poland Voivodeship in Poland. This region is char-
acterized by cool, moist temperate climate. The average 
temperature in August is 21.7 °C and − 2.6 °C in February. 
The average yearly precipitation is 373 mm with the high-
est precipitation in July (81 mm) and lowest in February 
(4 mm). We established 10 study plots: one in protected for-
est surrounding the Morasko Meteorite Reserve, and nine in 
managed forest of Puszcza Zielonka Landscape Park. Every 
plot was dominated by ~ 70-year-old oaks. In the Morasko 
Meteorite Reserve, other species included black cherry (Pru-
nus serotina), silver birch (Betula pendula) and the Scotch 
pine (Pinus sylvestris). In Puszcza Zielonka Landscape Park, 
oaks were mixed with European beech (Fagus sylvatica) 
and common hornbeam (Carpinus betulus). All the study 
sites had similar microsite with relatively low shrub cover. 
In our study plot, yellow-necked mouse was the main seed 
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disperser with population of 59 individuals/plot per month 
summer 2019 and 49 individuals/plot per month in summer 
2020. Monitoring of dishes by camera traps indicated that 
only wood mice were responsive for seed removal.

Acorn preparation

Each year (2017, 2019, 2020) we bought common oak 
(Quercus robur) acorns from State Forests. We selected 
source locations that were possibly the closest to our study 
plots. We chose the common oak because it is widespread 
in Poland, is readily dispersed by scatter-hoarders (Jensen 
and Nielsen 1986; Smallwood et al. 2001; Bogdziewicz et al. 
2017), and displays considerable variation in seed size (Lan-
dergott et al. 2012). We determined seed size by measuring 
seed length. Each year we measured all the seeds from the 
sample of 25 kg (c.a. 6000 acorns) and we picked seeds of 
the largest, the smallest and medium length, based on the 
distribution generated by measuring the sample of ~ 6000 
acorns. In our study, the size of common oak acorns varied 
in length from 16.61 to 41.95 mm. The acorns were floated 
and then additionally examined to exclude non-viable seeds, 
i.e. mouldy, broken or infested by, e.g. Curculio sp. larvae. 
We divided acorns into three size categories: large and small 
in 2017 and large, medium, and small in 2019 and 2020 
(Table 1).

Removal experiment

Each year (2017, 2019, 2020) we performed a seed removal 
experiment using experimental acorns presented on Petri 
dishes. On each Petri dish, we presented 8 acorns in dif-
ferent configurations: only large acorns (“large” treatment), 
4 large acorns with 4 small ones (“mixed” treatment), and 
only medium acorns (“medium” treatment). In 2020, we 
modified the experiment by displaying 6 large acorns in 
the “large” treatment instead of 8 acorns to equalize acorn 
mass between “large” and “mixed” treatment. In 2017, we 
monitored acorns for 30 days, and in 2019 and 2020 for 
15 days (first 5 days, then on day 10 and 15) (Table 2). We 
shortened monitoring time in 2019 and 2020 due to much 
higher removal rates than in 2017 (see “Results” section).

In 2019 and 2020, we additionally tracked the fates of 
removed seeds. We prepared seeds for tracking by tag-
ging them with plastic labels before presenting on Petri 
dishes. We pierced a 1-mm diameter hole through the husk 
at the basal end of each acorn without damaging the coty-
ledon and the embryo. Then, we inserted and tied a steel 
wire (100-mm length, 0.2-mm diameter) to the acorn and 
attached a red plastic tag (20 × 40 mm) to the opposite end 
of the wire (Xiao et al. 2006; Yi et al. 2008). The set com-
prised of wire and tag weighed ~ 0.14 g. Each acorn was 
weighed (± 0.01 g), and its tag was individually numbered. 
When monitoring acorns, we recorded their fate (IS—left 
in situ, EIS—eaten in situ, EAR—eaten after removal, RS—
removed and left on surface, CAR—cached after removal, 
M—missing), and removal distance (for those that were car-
ried away from the dishes). Recaching was not monitored. 
Since the proportion of cached seeds is a key variable that 
influences plant benefits in interactions with scatter-hoarders 
(Zwolak and Crone 2012), we focussed the analysis on the 
percentage of cached seeds.

Table 1  Length of acorns (mm) used for experiment in different treat-
ments in 2017, 2019, and 2020

Seed size 2017 2019 2020
Mean + SD Mean + SD Mean + SD

“Large” 31.06 ± 1.54 34.49 ± 3.00 33.5 ± 0.94 
“Medium” – 26.97 ± 0.49 27.38 ± 0.92
“Small” 22.50 ± 1.25 21.39 ± 1.41 22.45 ± 1.67

Table 2  Summary of experimental design in 2017, 2019, and 2020

2017 2019 2020

Location Morasko Nature Reserve Puszcza Zielonka Landscape Park Puszcza Zielonka Landscape Park
Removal experiment Removal experiment + seed fate Removal experiment + seed fate

Sample size 240 acorns 480 acorns 440 acorns
Stations 30 60 60
Treatments Large (8 large acorns)

Mixed (4 large + 4 small acorns)
Large (8 large acorns)
Mixed (4 large + 4 small acorns)
Medium (8 medium acorns)

Large (6 large acorns)
Mixed (4 large + 4 small acorns)
Medium (8 medium acorns)

Plot 5 transects 250 m away from each other; sta-
tions spaced 30 m apart in each transect

One plot; stations spaced 30 m 
apart and arranged in 6 × 10 grid

Four plots; stations spaced 30 m apart and 
arranged in 4 × 4 grids on three plots and 
in 4 × 3 grid on one plot

Duration of 
acorn moni-
toring

30 days (8 days in a row, then every fourth 
day)

15 days (5 days in a row, then on 
10th day and 15th day)

15 days (5 days in a row, then on 10th day 
and 15th day)
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Statistical analysis

To test the effect of experimental treatments on the survival 
probability of seeds, we analysed the data with the mixed 
effects Cox models using ‘survival’ package (Therneau 
2020) in R environment (R Development Core Team 2015). 
In the analysis, we defined survival probability as a probabil-
ity of not being removed from the Petri dish. We tested the 
survival probability of different-sized seeds in three treat-
ments, with station included as random intercept effect. To 
compare probability of survival of large seeds in “Large” 
and in “Mixed” treatment, we tested only large seeds in two 
treatments, with station included as random intercept effect.

To estimate whether the treatment had an impact on 
rodent seed choice, we analysed seed fate using general-
ized linear mixed models (GLMMs) implemented via ‘glm-
mTMB’ package (Brooks et al. 2017). To analyse the effects 
of treatment on seed dispersal, we constructed three bino-
mial mixed models, each with treatment as fixed effect, and 
seed station included as random intercept. The responses 
were as follows: (1) seed was either removed or not; (2) 
when removed, seed was either eaten or not; and (3) when 
removed and not eaten, seed was either cached or left on 
the surface.

Finally, we analysed the distance of dispersal of acorns 
in different treatments. We used Gaussian-family general-
ized linear mixed models (GLMMs) implemented via ‘glm-
mTMB’ package (Brooks et al. 2017), with log-transformed 
dispersal distance as the response variable and station as the 
random intercept effect. We tested for statistical significance 
of fixed factors with Wald type II chi‐square tests.

Results

Survival of seeds from different treatments

In 2017, the survival probability (i.e. probability of not being 
removed from the Petri dish) for seeds in the “mixed” treat-
ment was significantly higher (p < 0.001) than the survival 
probability of seeds in the “large” treatment (Fig. 1). After 
35 days, 43% of seeds in the “mixed” treatment survived, 
while only 6% survived in the “large” treatment. Moreover, 
the survival rate of large seeds was substantially higher in 
the “mixed” treatment compared to the “large” treatment 
(p < 0.001). This result supports our hypothesis that grani-
vores prefer to forage in patches with large seeds, relative to 
patches with seeds of mixed sizes (H1). However, in 2019 
and 2020, there was no significant difference in the probabil-
ity of survival of seeds from different treatments. In 2019, 
after 15 days, 6.25% of acorns from the “mixed” treatment 
survived, 6.9% from the “large” treatment and no acorns sur-
vived from the “medium” treatment. Moreover, the survival 

rates of large seeds in both “large” and “mixed” treatment 
were the same (p = 0.18 in 2019). In 2020, no acorns sur-
vived after 15 days.

Indirect interactions between seed of different sizes

In 2019, the distance of dispersal was marginally different 
across treatments (p = 0.053, df = 2, X2 = 5.86). Seeds from 
the “large” treatment were dispersed on average 3.7 m fur-
ther compared to the “mixed” treatment (p = 0.03, β = 5.9, 
SE = 2.64) and on average 1.4 m further compared to the 
“medium” treatment (p = 0.08, β = 4.61, SE = 2.59; Table 3), 
supporting our hypothesis stating that apparent mutualism 
would occur between large and small acorns in mixed treat-
ment H2. Distance of dispersal was also associated with the 
final fate of the seeds (p < 0.001, df = 2, X2 = 44.03). Cached 
seeds (p < 0.001, β = 16.74, SE = 2.53) and eaten seeds 
(p < 0.001, β = 14.55, SE = 3.16) were transported further 
than seeds left on the ground surface. Moreover, treatment 
affected the final seed fate (p = 0.02, df = 2, X2 = 8.22). In 
contrast to our prediction, seeds from the “medium” treat-
ment had a higher probability of being cached compared to 
the “large” (95% vs. 74%; p = 0.02, β = 2.07, SE = 0.88) and 
the “mixed” treatment (60%: p = 0.004, β = 2.62, SE = 0.92). 
In 2019, 26% of all presented seeds were cached.

Moreover, to investigate whether there were any indi-
rect interactions between different size seeds, we analysed 
the fate of large acorns in both the “large” and the “mixed” 
treatment. The distance of dispersal for large seeds in 
both “large” and “mixed” treatment was similar (Table 3; 
p = 0.12, df = 1, X2 = 2.36). Also, large seeds in both treat-
ments were eaten (4.6% in the “Large” and 4.6% in the 
“Mixed treatment; p = 0.37, df = 1, X2 = 0.8) and cached 
(17% in the “Large” and 7.5% in the “Mixed” treatment; 
p = 0.56, df = 1, X2 = 0.35) at a similar rate. This result sug-
gests a lack of apparent mutualism between large and small 
acorns in the “mixed” treatment.

In contrast to 2019, in 2020, treatment did not impact the 
distance of dispersal (p = 0.53, df = 2, X2 = 1.48) (Table 3). 
However, the distance of dispersal was associated with 
the final fate of seeds (p < 0.001, df = 2, X2 = 27.99) with 
cached seeds dispersed further than eaten seeds (p = 0.001, 
β = 10.34, SE = 2.71) or seeds that were left on the surface 
(p < 0.001, β = 16.44, SE = 3.42). Treatment did not affect 
scatter-hoarders’ decision whether to eat or to cache encoun-
tered seeds, so our hypothesis H1 and H2 were not sup-
ported at this stage. In 2020, 9% of all dispersed acorns were 
cached.

When we analysed the fate of large seeds in “large” and 
“mixed” treatment, we found that the treatment had a signifi-
cant influence on the distance of dispersal (p = 0.04, df = 1, 
X2 = 4.10). Large seeds from “large” treatment were car-
ried over greater distances than large seeds from “mixed” 
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treatment (8.6 m vs. 7.2 m; p = 0.04, β = 10.47, SE = 5.20). 
However, similarly to the results from 2019, the treatment 
had no impact on the foragers decision whether to consume 
or to cache a seed.

Direct effects of seed size

In 2019, we investigated the impact of acorn size (regardless 
of treatment) on the fate of acorns. We found that acorn size 

Fig. 1  Survival probability of 
acorns, for different treatments 
in 2017 (total of 240 acorns), 
2019 (total of 480 acorns) and 
2020 (total of 460 acorns). 
Treatment with large-size 
acorns is represented by blue 
line, treatment with medium-
size acorns by green line and 
treatment with mixed-size 
acorns by red line. Shaded 
area indicates 95% confidence 
intervals
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had substantial impact on distance of dispersal (p = 0.01, 
df = 2, X2 = 9.05). Small seeds were dispersed closer to 
the station than large (p = 0.004, β = 8.9, SE = 3.04) and 
closer than medium seeds (p = 0.02, β = 8.99, SE = 3.76) 
(see Table 3). Moreover, while the size of an acorn had 
no impact on the decision whether to consume the seed 
(p = 0.06, df = 2, X2 = 5.52), it did have an impact on the 
decision to cache (p = 0.008, df = 2, X2 = 9.748). Medium-
size acorns were cached more frequently than both large 
(p = 0.01, β = − 2.10, SE = 0.86) and small acorns (p = 0.002, 
β = − 3.24, SE = 1.04).

In 2020, seed size had no impact on the distance of dis-
persal. However, we detected a significant effect of seed size 
on foragers decision whether to consume encountered seeds 
(p = 0.04, df = 2, X2 = 6.59). Small seeds were eaten more 
frequently than large seeds (p = 0.02, β = 1.22, SE = 0.53) 
and more frequently than medium seeds (p = 0.03, β = 1.32, 
SE = 0.60). The impact of seed size on caching decision was 
not significant.

Discussion

Indirect interactions among seeds of different sizes appeared 
context-dependent, as evidenced by inconsistent results 
obtained in different years of our investigation. Small acorns 
protected large acorns from removal by granivores only in 
the first year of study. Similarly, treatment had varying 
effects on the distance of dispersal and on acorn fate over 
the years. Thus, while our results remain inconclusive, pro-
duction of different size seeds might be the mechanism to 
decrease predation by granivores.

The outcomes of many interactions between species are 
not static and are influenced by biotic and abiotic factors 
(Bronstein 1998). While interactions like obligate mutual-
ism remain relatively constant, other interactions are prone 
to substantial increase or decrease in the magnitude of the 
effect due to context dependency (Chamberlein et al. 2014). 
For example, benefits may increase as mutualist populations 
grow, but then may shift downwards at very large population 
size (Bronstein 1994). Studies of longer duration tend to 
show greater variation in observed phenomena (Chamber-
lein et al. 2014). Single-year studies can overestimate effects, 
or miss detection at all (Nosek et al. 2012). Therefore, long-
term observations are required to understand many studied 
phenomena. Our study lasted 3 years and showed varying 
impact of offering together seeds of different sizes on their 
dispersal. The reason for this inconsistency might be the 
varying conditions across study years caused by the two 
mast events, and following changes in mice population size.

We suggest possible explanations for the reported varia-
tion in results among years. The higher survival rate of the 
“mixed” versus “large” treatment in 2017 could be a false 
positive result. However, the environmental conditions in 
each year of study differed significantly. The populations of 
rodents were low in 2017, rendering per capita food avail-
ability for rodents relatively high. In contrast, the two mast 
years that occurred in the fall of 2018, (of European beech, 
F. sylvatica) and in 2019 (of common oak, Quercus robur) 
(personal observation), likely allowed mice population to 
grow substantially (Wolff 1996; Selva et al. 2012; Zwolak 
et al. 2016). The increase in population size likely resulted 
in higher competition for resources between individuals (Eva 
et al. 2016). Consequently, rodents can become less selective 
(Soininen et al. 2013), choosing also less preferred food. 
Thus, selection of different size seeds might occur only in 
years with low granivore population size relative to acorn 
abundance, when granivore population is satiated (Vander 
Wall 2010; Greenberg and Zarnoch 2018). This specula-
tion is supported by dramatically different survival rates of 
acorns among years. In 2017, when we detected the treat-
ment effects, 42.1% of all acorns survived after two weeks 
of study compared to 4.8% in 2019 and 0% survival in 2020.

Moreover, contrary to our prediction, the post-removal 
fate of large seeds in “Large” and “Mixed” treatment was 
not significantly different. Also, medium-sized seeds were 
cached more frequently across all treatments. The reason 
for preferences for medium-sized seeds may be that for a 
small granivore the largest acorns might be inconvenient to 
handle or simply too large to carry due to gape limitation 
(Muñoz and Bonal 2008; Rehling et al. 2021). Moreover, 
granivores face a trade-off between energetic benefits and 
handling time that rises with seed size (Muñoz and Bonal 
2008; Stephens and Krebs 2019), which may lead to pref-
erence for harvesting and caching of medium-sized seeds 

Table 3  Mean distance of dispersal of seeds from different treat-
ments, of seeds of different sizes and of different fates of seeds in 
2019 and 2020

2019 2020
Mean ± SD Mean + SD

Treatment (m)
“Large” 10.5 ± 7.6 10.6 ± 10.3
“Mixed” 6.7 ± 6.6 7.7 ± 9.6
“Medium” 9.1 ± 7.5 9.4 ± 11.6
Seed size (m)
Large 9.9 ± 7.4 8.6 ± 8.5
Small 4.9 ± 5.9 8.5 ± 11.4
Medium 9.1 ± 7.5 9.4 ± 11.6
Seed fate
Eaten 5.9 ± 7.8 6.4 ± 10.2
Cached 9.4 ± 6.6 12.8 ± 10.8
Left on ground surface 2.6 ± 3.5 2.9 ± 30.3
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rather than large and small ones (Wang et al. 2013). On the 
other hand, large seeds that require longer handling time but 
contain more energy are carried away over greater distances 
to reduce probability of pilferage (Jansen et al. 2004; Wang 
et al. 2013). Small, less valuable seeds are usually eaten 
in situ more frequently (Vander Wall 2003). Thus, when for-
aging, decisions of granivores strongly depend on seed size, 
and the choice granivores make may decrease foraging on 
large seeds in the presence of small seeds through apparent 
predation (Lichti et al. 2014). However, the choice whether 
to harvest a seed also depends on environmental conditions 
and per capita food availability, which affects selectivity of 
rodents, and may decrease the magnitude of indirect interac-
tion between different size seeds.

In summary (Table 4), our study demonstrated that the 
impact of neighbourhoods of different size seeds of com-
mon oak on seed survival varied over time. Since grani-
vores display preferences towards different size seeds and 
towards higher-quality patches for foraging, we proposed a 
hypothesis that the production of different-sized seeds by a 
plant may be a strategy to decrease predation by granivores. 
During the first year of our study, the result supported our 
hypothesis, but in the following years, we did not detect an 
impact of seed mixing on seed survival. The lack of clear 
patterns in rodent seed preferences may result from vary-
ing environmental conditions and fluctuations in population 
density of small mammals. It suggests that the selection is 
intermittent, occurring only in years of low rodent abun-
dance relative to acorn abundance. That could be impor-
tant given that most of the population-level oak recruitment 
occurs in years when the rodents are satiated (Crawley and 
Long 1995). Our study provides evidence that intraspecific 
variation in seed size may have evolved to shift the interac-
tion between trees and scatter hoarders away from predation 
and towards mutualism.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10342- 022- 01508-x.
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