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Abstract
For the provision of various ecosystem services in steep terrain, such as protection against natural hazards, a forest must be 
managed, which often requires the use of cable yarders. The design of a cable road is a complex and demanding task that 
also includes the search for appropriate support and anchor trees. The aim of this study was to evaluate whether and with 
what reliability potential support trees for cable yarding can be detected using remote sensing data. The detection of potential 
support trees was tested using 48 method combinations on 10 test plots of the Experimental Forest Management project in 
cable yarder terrain in the Swiss Alps in the Canton of Grisons. The most suitable method combinations used a Gaussian 
filter and a local maxima algorithm. On average, they had an extraction rate of 108.9–124.5% (root mean square, RMS) and 
a mean commission error of 66.0–67.2% (RMS). The correctly detected trees deviated horizontally by an average of 1.8 to 
1.9 m from the position of the reference trees. The difference in tree heights was 1.1 to 1.6 m. However, for the application 
of single tree detection to support cable road planning in steep and complex terrain, too few potential support trees were 
detected. Nonetheless, the accuracy of the extracted tree parameters would already be sufficient for cable road planning.

Keywords Cable road design · Cable yarder · Ecosystem services · Forestry · Planning · Single tree detection · Support 
tree · Sustainable forestry

Introduction

Sustainable forest management includes not only the produc-
tion of the raw material wood, but also the promotion of bio-
diversity and the provision of multiple important ecosystem 
services, such as recreational and leisure space, protection 
against gravity-induced natural hazards, drinking water pro-
vision, and carbon storage to mitigate the effects of climate 
change. To meet all of these demands, forest management 
is required. Especially in steep terrain, where forests fulfill 
major protective functions, forest operations can be very 
labor intensive, and dangerous at the same time, and are 
mostly carried out by cable- and air-based extraction meth-
ods. In Switzerland, cable yarders are used for extraction 

on about a quarter of the forest area (Brändli et al. 2020). 
The design of a cable yarder operation has to meet safety, 
economic and environmental framework conditions and is 
therefore a complex and demanding task. To simplify this 
process, several tools have been developed, such as those 
introduced by Chung et al. (2004), Bont and Heinimann 
(2012) and Dupire (2014). Most of the tools calculate a 
cable road layout according to several input parameters and 
propose the location and height of intermediate supports 
(e.g., Bont et al. 2022a, b). However, the workflows lack 
information about whether suitable trees, so-called support 
trees, on which a saddle and pully can be fixed, are actually 
available at the calculated positions. The suitability of a sup-
port tree depends on several criteria (Litscher and Rigling 
1996): height, diameter at breast height (DBH), tree species, 
stability and vitality, orientation and inclination, anchoring 
characteristics, and position in the terrain. For gathering this 
missing information, remote sensing data might offer great 
potential.

Since the late 1980s, various approaches for the detec-
tion of individual trees from both orthophotos and airborne 
laser scanning (ALS) point clouds have been published. 
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Probably the best-known detection method is local maxi-
mum detection, in which pixels in a canopy height model 
are identified as tree tops if they have the maximum height 
value in a defined neighborhood. Once the location of the 
local maximum is determined, the height above ground can 
be calculated. The reference value for ground level can be 
determined by a digital terrain model from remote sensing 
data. This detection method has been adapted and refined in 
several studies and combined with various filtering methods 
(Koch et al. 2006; Kaartinen et al. 2012; Eysn et al. 2015; 
Schardt et al. 2015). Recently, research has been conducted 
on new methods, such as clustering algorithms for isolating 
individual trees from point clouds (Parkan 2019), which, 
however, require data with a much higher resolution (> 70 
points/m2) than needed with previous methods. In addition 
to tree position and tree height, various research studies 
have also been focused on other relevant parameters such 
as tree species (Holmgren and Persson 2004) and vitality 
(Hernández-Clemente et al. 2017).

Most of the detection methods have been developed for 
inventory purposes. Work dedicated specifically to identify-
ing potential cable road support trees using remote sensing 
data is rare, because outside of Central Europe cable yarder 
use is geared toward clear-cutting operations. Thus, there are 
sufficient support trees in the usually even-aged stands and 
the logs can be dragged on the ground (Visser and Harril 
2017; Bont and Church 2018). In Switzerland, where there 
is a long tradition of continuous cover forest management in 
Alpine forests, but also increasingly in other regions in Cen-
tral Europe, stands are often smaller and more structured. 
In terms of climate change, foresters are further promoting 
structural diversity, similar to that found in the Swiss Alpine 
forests with mostly uneven-aged stands of mixed species. 
Therefore, it is more difficult to find stable support trees of 
the required strength and height. Dietsch et al. (2020) tested 
the use of drones for support tree detection. The results were 
promising, but obtaining drone data involves additional time 
and economic effort. Various remote sensing data sets, on 
the other hand, are open access and often cover a large area.

The aim of this study was to evaluate whether and to what 
degree of reliability potential support trees for cable-based 
forest operations can be detected using universal remote 
sensing data that cover a large area. The study focuses on 
three of the suitability criteria for support trees: position, 
height and strength (measured as DBH). For this purpose, 
the following research questions were formulated:

 (i) Which methods can be used to process remote sens-
ing data to detect potential support trees in cable-
based terrain?

 (ii) Which combinations of methods are best suited for 
the identification of potential support trees in terms 
of position, height and strength (DBH)?

 (iii) Is the accuracy of the extracted tree parameters suf-
ficient for application in practice?

Material and methods

Study area

To reach the objective, a case study was conducted in the 
Swiss canton of Grisons. This canton, which is located in 
the Alps, was well suited because most of the timber is 
extracted by cable yarders. Further, uniform and compre-
hensive remote sensing data are freely available.

Various single tree detection methods were tested on 10 
different test plots that belong to the Experimental Forest 
Management (EFM) project (Forrester et al. 2018). On these 
plots, the Swiss Federal Institute for Forest, Snow and Land-
scape Research (WSL) has been recording structure-relevant 
data, such as DBH and tree height, every 5–12 years for 
several decades, with some data collection occurring for the 
past 100 years. This seemed a useful data source to verify 
the results of the individual tree detection on the basis of the 
measured tree parameters.

All plots of the EFM project that were used in this study 
are located in the canton of Grisons, have a slope of at least 
20 degrees, and are therefore relevant for management by 
cable yarder (N = 20). Some plots had to be excluded (N = 8) 
due to silvicultural measures or natural disturbances. In 
addition, very young stands were excluded (N = 2) because 
they did not provide potential support trees. Thus, 10 suit-
able test plots remained on which the single tree detection 
methods were applied (Fig. 1, Appendix). The plots are 
located between 620 and 1760 m above sea level (m a.s.l.) 
and range in area size from 0.21 to 1.22 ha. Most of the 
plots are multistage coniferous stands, with a few deciduous 
trees mixed in. Only one plot has a noteworthy proportion 
of hardwoods (16%).

Data basis

Terrestrial data

During the data collection in the frame of the EFM pro-
ject, all trees with DBH > 8 cm were recorded on each plot 
(N = 1954) (Forrester et al. 2018). In addition, the 100 larg-
est trees in terms of DBH (indicated in the remaining man-
uscript as “largest trees (DBH)”) per hectare and 20% of 
all remaining trees were defined as sample trees (N = 453). 
With the exception of one beech tree (Fagus sylvatica), these 
were exclusively conifers, predominantly spruce (Picea 
abies). The heights of these trees were furthermore deter-
mined using a Vertex Laser GEO (Haglöfs, Sweden). The 
sample trees were measured using the horizontal distance 
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and azimuth from different fixpoints, i.e., clearly identifi-
able landmarks both in the field and on the aerial photo 
or national map, with known coordinates. Individual tree 
coordinates were calculated and transformed into coordi-
nates from the 1903 national survey (LV03, EPSG 21,781; 
Forrester et al. 2018). The horizontal precision of the dif-
ferential global positioning system (DGPS) measurements of 
the tree positions was reported to range from 0.6 m to 6.2 m 
(mean = 1.6 m, standard deviation = 0.9 m, median = 1.5 m), 
depending on the test plot (Nitzsche and Stillhard 2018). 
For test plots with repeated exposures, only the exposures 
closest to the time of the collection of the remote sensing 
data were used.

Remote sensing data

Normalized airborne laser scanning (ALS) data from 2003 
were available for the entire canton of Grisons (Artuso et al. 
2003). The ALS point clouds have a density of 1–3 points 
per square meter. From this data set, canopy height models 
(CHM) with a resolution of 0.3 m × 0.3 m were calculated 
with the LiDAR processing software LAStools (Rapidlasso 
GmbH, Gilching, Germany) in two different ways: (i) with-
out the pitfree algorithm of Khosravipour (2014) (CHM 
RawLi) and (ii) with the pitfree algorithm (CHM Pitfree). 

The pitfree algorithm attempts to remove pits in the canopy 
(Khosravipour 2014). These occur when laser signals do not 
hit the highest point of the vegetation, but penetrate deep 
into the vegetation before being reflected by a surface for 
the first time (Khosravipour 2014). Thus, two ALS-CHMs 
from 2003 in the coordinate system LV95 (EPSG 2056) were 
available as input data for the further investigations. The 
height accuracy of the ALS data has been given as ± 0.5 m 
(Artuso et al. 2003).

Detection of potential support trees

Selection of single tree detection methods

The method for extracting potential support trees had to 
be applicable to the forest structures in the Alpine region 
(Vauhkonen et  al. 2011). In addition, it needed to be 
designed for the appropriate tree species mixtures, as well 
as for slope gradients greater than 20 degrees (Wauer and 
Hamberger 2010). For support trees in yarding operations, 
the co- and especially predominant stable trees are of inter-
est. Smaller trees and trees in the lower canopy layer, on 
the other hand, do not need to be detected. Accordingly, the 
method should detect the co- and predominant trees as accu-
rately as possible. To ensure that the method can be easily 

Fig. 1  Geographical location of the 10 test plots in the Swiss canton of Grisons © swisstopo 2021. Coordinate System EPSG 21,781
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applied in practice, it should be suitable for data available 
over large areas and require a practicable computation time. 
Last but not least, the method should be able to be further 
developed so that it can be adapted to the presumably rapidly 
changing technical advances.

To identify suitable methods for processing remote sens-
ing data, single tree detection was divided into the three 
processing steps: (1) deriving CHMs from ALS data (data 
basis), (2) filtering the CHMs (filtering method), and (3) 
detecting the single trees (detection method). The literature 

search for these three processing steps led to an extensive 
collection of methods and findings. For the data process-
ing steps, seven filtering and three detection methods were 
selected that meet the above-mentioned requirements for 
cable road design. Together with the two data processing 
variants (Sect. 2.2.2), this resulted in 48 possible combi-
nations (Fig. 2). They were named according to the pro-
cessing steps: detection method, filtering method and data 
basis. Their abbreviations are listed in Fig. 2 and described 
in Tables 1 and 2.

Fig. 2  The selected processing 
steps from the areas of data 
basis, filtering method and 
detection method. A total of 
48 combinations of methods is 
possible
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Programming of selected methods and DBH calculation

The individual processing steps were programmed separately 
in Python 3.7 (Python Software Foundation 2018) to allow 
automated testing of different combinations of the meth-
ods. The CHMs were smoothed by means of filters. Based 
on the smoothed CHMs, individual trees were detected and 
tree heights were determined. The basic assumption of all 
detection methods is that the top of a single tree shows up 
as a local maximum in the CHM and the value of the CHM 
in the detected grid cell corresponds to the tree height. The 
respective python scripts have been released under the GNU 
General Public License v3.0 and can be downloaded freely 
from github (Ramstein 2021).

The DBH of the trees was determined using an allomet-
ric function. The parameters of the function were estimated 
from the terrestrial measurements using linear regression in 
R v3.5.1 (R Core Team 2017). Thus, only the conifer data 
were used. The best model was obtained using a logarithm 
transformation (Eq. 1 and Appendix). To prevent overfitting, 
the models were also evaluated using leave-one-out cross-
validation and PRESS statistics (Allen 1974). The estimated 
parameters had values of a = 8.7965 ×  10–1, b = 0.2056 × 
 10–4, and c = 3.0306. The response variable was transformed 

during model building. To avoid biased estimates of the 
mean value (“back transformation bias”), we applied a cor-
rection according to Flewelling and Pienaar (1981). There-
fore, the parameter c is composed of the intercept and the 
mean square error/2 of the log-transformed model.

DBH: diameter at breast height in mm, H: tree height in m.

Suitability of the different combinations of methods

In order to determine which data processing method is most 
suitable for the detection of potential support trees, the sin-
gle tree detection on the 10 test plots was performed using 
different combinations of methods. Each combination of 
methods included all three processing steps (data prepara-
tion, filtering method and detection method; see Fig. 2). 
All 48 technically possible combinations of methods were 
implemented. The results of all combinations of methods 
were then compared with the field data.

The assignment procedure according to Eysn et al. (2015) 
was used to assess whether the local maxima correspond to 
the sample trees. All sample trees above a certain tree height 

(1)DBH = ea∗log(H)+b∗H2+c

Table 1  Description of the seven filtering categories, consisting of one control and six filtering methods

The output raster files of the filtering methods are shown in Appendix

Filtering Short description Source

F0-Control Control without filter
F1-Gaussian filter Gaussian filter, sigma depends on resolution Menk et al. (2017)
F2-Correction of CHM 

artefacts
Multi-stage filtering: artefacts are replaced with interpolated values Jakubowski et al. (2013)

F3-LM + Filtering Two-stage filtering: removal of holes and artefacts, smoothing with low-pass filter Eysn et al. (2015)
F4-Opening Removal of small structures Burger & Burge (2006)
F5-Closing Removal of holes Burger & Burge (2006)
F6-FGI_LOCM Gaussian filter without watershed transformation, procedure slightly adapted Kaartinen et al. (2012)
F7-Metla Holes and artefacts are defined based on their neighborhood and interpolated Kaartinen et al. (2012)

Table 2  Description of the detection methods used

Detec-
tion 
method

Short description

LM1 The peak_local_max function of skimage.feature detects the identity maxima with the maximum_filter of scipy.ndimage. The mini-
mum height chosen for a local maximum is 10 m (Van der Walt et al. 2014)

LM2 The function local_maxima of skimage.morphology defines local maxima as neighboring pixels with the same gray values that are 
higher than all their neighboring pixels using a flood-fill algorithm (Van der Walt et al. 2014)

LM3 The detection method is a local maxima algorithm that has recently been developed at WSL. With the help of a moving window, each 
pixel value is compared with the values of its neighboring pixels. If its value is greater than or equal to the pixel values belonging to 
the neighborhood, the pixel is detected as a local maximum. The neighborhood is defined with a maximum distance of 3 m from the 
central pixel
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were included in the analysis (hereafter referred to as refer-
ence trees). The threshold for tree height varied between 
20 and 29 m depending on the site, as only the 100 largest 
trees (DBH) per hectare were measured (Appendix). A total 
of N = 369 reference trees were included in the validation. 
Similar to Eysn (2015), detected trees were assigned to the 
reference trees according to two criteria: (1) a maximum 
horizontal distance of 3 m (between the detected tree and the 
reference tree) and (2) a maximum tree height difference of 
5 m. If multiple trees met these two criteria, the closest tree 
in horizontal distance was assigned. A correctly detected 
tree was thus a maximum of 3 m away (horizontal distance) 
from the associated reference tree (hereafter referred to as 
assigned reference tree) and was a maximum of 5 m shorter 
or taller than the assigned reference tree (Appendix).

To compare the 48 combinations of methods, the same 
metrics were calculated as in Eysn et al. (2015) (Table 3 
and Appendix). The average value (AVG) of all 10 test plots 
was assessed for each method combination. In addition, the 
standard deviation (STD) and root mean square (RMS, For-
mula 2) of each metric were calculated to assess the disper-
sion of the values and to ensure comparability with results 
from other studies.

xi: metric value (e.g., ER, MR, OE, CE) on test plot i, n: 
number of test plots.

The evaluation of the combinations of methods was 
based on the two metrics extraction rate and commis-
sion error. The extraction rate should be as close to 100% 
(RMS) as possible. A lower extraction rate means that 
many potential support trees were not captured. A higher 
extraction rate means that many additional but nonex-
istent trees would have been detected. The second met-
ric assessed was the commission error (Table 3), which 
should be as low as possible. Since the proportion of 
unfeasible cable roads should be reduced as much as pos-
sible, a small commission error is more important than 
a small omission error (Table 3), i.e., it is better if the 
method detects no trees instead of false trees.

(2)RMS =

�

∑n

i=1
x2
i

n

Accuracy of extracted tree parameters

In order to assess the accuracy of the extracted tree param-
eters of the most appropriate combinations of methods, the 
parameters tree height difference and distance between the 
positions of the correctly detected trees and their assigned 
reference trees were calculated (Appendix). To evaluate the 
results, the uncertainties associated with the data basis were 
estimated and the practicality of the results was discussed 
with forest practitioners.

Results

Detection of potential support trees

The most suitable combinations of methods were derived 
based on the average extraction rates and commission errors 
(averaged over all plots). Combinations with higher extrac-
tion rates tended to have higher commission errors and vice 
versa (Fig. 3). The combinations of methods with an extrac-
tion rate (RMS) close to 100% all included the detection 
method LM1 (Fig. 3C). They did not have the lowest com-
mission error (RMS), but values were not more than 5–10% 
higher than the lowest values. The lowest commission errors 
(RMS) resulted from combinations of methods with a very 
low extraction rate (RMS) of around 30%. These results lead 
to the conclusion that the following four combinations of 
methods (referred to hereafter as “selected best method com-
binations”) are best suited for the identification of potential 
support trees:

• Pitfree – F3 – LM1
• RawLi – F3 – LM1
• Pitfree – F1 – LM1
• RawLi – F1 – LM1

Using the combinations of the above-listed methods, an 
extraction rate (RMS) of 108.9–124.6% was achieved, which 
means that more trees were detected than exist in reality 
(Table 4). The commission error (RMS) was around 65%. 

Table 3  Descriptions and formulas of the two most important metrics used for the evaluation. Other calculated metrics are described in Appen-
dix

Metric Description Formula

Extraction Rate ER [%] Ratio of the number of detected trees B
D
 to the number of reference trees B

Ref
 , times 100 ER = 100 ∗

B
D

B
Ref

Commission Error CE [%] Detected trees that were not assigned to a reference tree (false positive, Type I error), 
expressed as a percentage

CE = 100∗
B
D
−B

Z

B
D
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Hence, about 65% of the detected trees were not assigned to 
a reference tree in all four of the above-listed combinations.

Other combinations of methods led to significantly worse 
extraction rates of < 34% (RMS) and > 142% (RMS), with 
the most extreme values resulting from the filtering meth-
ods F5 and F7. In combination with the data basis RawLi 
and the detection method LM2, these two filtering methods 
achieved the highest extraction rates and commission errors 
(extraction rate 1819.8% (RMS) for F5 and 1947.3% (RMS) 
for F7, commission error 93.6% (RMS) for F5 and 94.2% 
(RMS) for F7; Table 4).

Accuracy of extracted tree parameters

The positions of the correctly detected trees deviated, on 
average over all plots and methods, by 1.7 m from the posi-
tions of the assigned reference trees (Fig. 4). The tree height 
differences were, on average over all plots and methods, 
1–1.5 m and thus mostly positive, i.e., the heights of the 
assigned reference trees tended to be underestimated by the 
CHM or overestimated by the terrestrial measurements. This 
shows the same effect as the comparison of the tree heights 
derived from the CHM and the sample trees (Appendix). 

Fig. 3  Each point shows the 
extraction rate and the commis-
sion error of one combination of 
methods averaged over all test 
plots once evaluated according 
to the data basis (A), the filter-
ing method (B), the detection 
method (C), and the selection 
of the best method combina-
tions (D)

Table 4  The four selected best 
method combinations all have 
similar match rates, commission 
errors and omission errors (10 
data sets each)

The extraction rates vary the most. The method combination Pitfree-F3-LM1 performs best, with a low 
commission error and the extraction rate closest to 100%. More detailed results can be found in Appendix

Combination of methods Extraction Rate 
[%]

Match Rate [%] Commission 
Error [%]

Omission Error 
[%]

RMS STD RMS STD RMS STD RMS STD

RawLi F3 LM1 108.9 27.4 40.2 17.0 66.8 12.2 65.1 17.0
Lidar F3 LM1 108.8 25.7 39.9 16.6 67.2 12.4 65.3 16.6
RawLi F1 LM1 116.5 32.6 41.0 15.4 66.0 11.6 63.4 15.4
Lidar F1 LM1 124.6 31.2 42.3 15.3 67.2 12.0 62.0 15.3
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The DBH differences were also predominantly positive 
and the mean value of the differences varied between − 14 
and + 7 cm (Fig. 4). The results of the different detection 
methods show a similar scattering of positional accuracy, 
tree height difference and DBH difference.

The four selected best method combinations (Table 4) 
did not have the best tree height and position accuracies 
compared with the other combinations of methods. They 
detected the trees with an average positional accuracy of 
1.8–1.9 m and an average difference from the assigned ref-
erence tree heights of 1.1 m to 1.6 m (Table 5). The devia-
tion of the calculated DBH was, on average, between 3.1 cm 
and 4.0 cm (Table 5). The standard deviations hardly dif-
fered among the four best combinations of methods: 2 m 

for tree height difference, 0.7 m for positional accuracy, and 
8.9–9.5 cm for DBH difference.

Discussion

Detection of potential support trees

To enhance the comparability of the results, the assignment 
process was based on the conditions of the study by Eysn 
et al. (2015). A correctly detected tree is < 3 m away (hori-
zontal distance) from the assigned reference tree and < 5 m 
taller or shorter than the assigned reference tree. These 
assignment conditions have a great influence on whether 
a detected tree is assigned to a reference tree and judged 

Fig. 4  (top panel) Each 
point represents the differ-
ence between the terrestrially 
measured tree height or position 
and the tree height or position 
derived from the canopy height 
model (CHM). The tree height 
differences and the distances 
between the detected trees and 
their assigned reference trees 
have been averaged over all 
test plots per combination of 
methods. (bottom panel) Each 
point represents the difference 
between the terrestrially meas-
ured tree height or DBH and the 
tree height or calculated DBH 
derived from the CHM. The dif-
ferences between the measured 
and calculated tree heights, as 
well as between the measured 
and calculated DBH, are mostly 
positive

Table 5  The four selected best 
method combinations all have 
similar accuracies in terms of 
the extracted tree metrics (10 
plots each)

The mean value and standard deviation (STD) are calculated for every method combination over all plots. 
The plot-specific values are mean values of all trees on one plot

Combination of methods Difference in tree 
height [m]

Difference in tree posi-
tion [m]

Difference in DBH 
[cm]

Mean STD Mean STD Mean STD

RawLi F3 LM1 1.2 2.0 1.8 0.7 3.4 8.9
Lidar F3 LM1 1.1 2.0 1.9 0.7 3.1 9.1
RawLi F1 LM1 1.5 2.0 1.9 0.7 3.8 9.5
Lidar F1 LM1 1.6 2.0 1.9 0.7 4.0 9.3
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as correctly detected or not. Inaccuracies in the terrestrial 
measurements and remote sensing data (Appendix), as well 
as variability in the terrain conditions, can further compli-
cate the assignment, e.g., effects of the terrain slope or het-
erogenous forest structures.

The slope, which is usually at least 20 degrees in cable 
yarder terrain, can influence the assignment of the detected 
trees to the reference trees. Depending on the slope and the 
crown shape of the tree, the tree top may be shifted in rela-
tion to the trunk position (Khosravipour et al. 2015). ALS 
points that are slightly upslope or downslope from the tree 
top are height-normalized with a digital elevation model 
pixel value that may be significantly higher or lower than 
the base of the trunk. Therefore, Khosravipour et al. (2015) 
suggested performing single tree detection with a digital sur-
face model (DSM) and then reading the tree heights from the 
CHM. This displacement between the base of the trunk and 
the top of the tree may occur as a result of factors other than 
terrain slope and crown shape. Sloping trees are not uncom-
mon in steep, mountainous terrain. When located at the edge 
of a test plot, the base of the trunk can be inside and the 
top of the tree outside the plot, or vice versa. It is therefore 
possible that a reference tree with the base of its trunk just 
inside the test plot (but the top outside) is not assigned to a 
detected tree, although it would actually have been detected 
correctly. The opposite situation leads to a correctly detected 
tree not being assigned to a reference tree. Furthermore, 
the stand structure of alpine forests with groups of trees is 
difficult to capture: if tree tops are intergrown, they can-
not be clearly distinguished in the CHM and thus cannot be 
detected by means of the algorithm.

Due to the influencing factors mentioned above, it is very 
likely that some correctly detected trees were not assigned 
to a reference tree in our study. Applying a larger tolerance 
range, such as increasing the maximum horizontal dis-
tance to 5 m, led to better results. Thus, the four most suit-
able combinations of methods with a maximum horizontal 
distance of 5 m showed a slightly higher extraction rate 
(113.7–130.0% (RMS); Appendix) and a significantly lower 
commission error (49.2–53.0% (RMS); Appendix). A larger 
tolerance range, however, increases the chance that incor-
rectly detected trees are assigned to a different reference 
tree with a randomly similar tree height. For an improved 
assignment, the assignment process must be refined or a 
verification in the field must be carried out.

In this study, available remote sensing data were used as 
input for the detection measurements. Most areas of Swit-
zerland have ALS data of varying quality. With the software 
LAStools, ALS-based CHMs could be created with differ-
ent processing variants. The results based on the two ALS 
CHMs (without pitfree/with pitfree) differ only slightly, i.e., 
they are suitable for single tree detection to a similar extent. 
One possible reason for this is the filtering of the CHM 

before the single tree detection, which reduces the effect of 
the pitfree algorithm.

The best combinations of methods were achieved with the 
filtering methods F1 and F3, which smooth the CHM with 
a Gaussian filter dependent on the image resolution (Menk 
et al. 2017) and a closing filter with subsequent Gaussian 
filtering (Eysn et al. 2015). On the other hand, the filtering 
methods F5 and F7 performed poorly. The filtering method 
F5 smoothed the CHM with a closing filter without a subse-
quent Gaussian filter. The morphological filter creates pla-
teaus of pixels with equal height values, which means that a 
tree is defined by a plateau with maximum values. Since the 
detection method LM2 finds all pixels with maximum height 
values, many neighboring pixels are defined as local maxima 
for each tree. This problem can be addressed either with an 
additional filtering stage comparable to filtering method F3 
or with crown segmentation. In the latter method, individual 
crowns are first identified, e.g., with morphological opera-
tions, and then the local maxima are searched for within the 
crown polygons. Filtering method F7 (Kaartinen et al. 2012), 
which also uses a Gaussian filter, may have performed worse 
in our case because the associated detection method was 
replaced in this study with the three detection methods LM1, 
LM2 and LM3.

The results indicate that a filter is necessary for a mean-
ingful detection result. At least for the remote sensing data 
and resolutions used here, the combinations of methods 
without filtering achieved significantly worse values than the 
best combination of methods (extraction rate 108.8 to 124.6 
(RMS) with filter and 146.6 to 162.8 (RMS) without filter; 
Appendix). This is in line with the results from Menk et al. 
(2017), who showed that CHMs with a resolution higher 
than 1 m × 1 m achieved the best results with filtering (in 
our study we used only one resolution of 0.3 m × 0.3 m). In 
the pursuit of increasingly detailed data, this effect should 
be taken into account and the choice of method adapted. 
Classical single tree detection methods developed for lower 
resolutions give poorer results for input data with higher 
resolutions, as the higher resolution increases local heteroge-
neity (Jakubowski et al. 2013). Greater heterogeneity further 
complicates the problem of choosing the window size for the 
maxima search, an issue that is well known in the literature. 
Jakubowski et al. (2013) therefore proposed a change from 
pixel-based to object-based image analysis. Besides apply-
ing a filtering method adapted to the resolution of the input 
file, using the right combination of filtering and detection 
methods is certainly crucial for successful detection.

The statistical values of the combinations of methods 
evaluated in our study are similar to the values reported by 
Eysn et al. (2015). For all methods considered, the study 
by Eysn et al. (2015) gave an average match rate of 47% 
(RMSE), an average extraction rate of 95% (RMS), an 
average commission error of 60% (RMS), and an average 
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omission error of 57% (RMS). Eysn et al. (2015) reported 
mean accuracies of 1.7 m (RMS) for tree position and 1.0 m 
for tree height. In the study by Eysn et al. (2015), as in the 
present study, the detection and allocation of trees was made 
challenging by steep slopes and heterogenous forest struc-
tures. Nevertheless, it must be noted that the values are, in 
our opinion, not yet sufficient for accurate cable road design 
in practice. On average, the methods detected < 50% of the 
reference trees. This means that in practice, too many poten-
tial support trees would be ignored or – even more unfa-
vorable – trees that are too small or too thin to be suitable as 
support trees could be indicated as potential support trees.

In addition, the suitability of a tree as a support tree 
depends on factors other than position, DBH and tree height. 
Some of the other safety features defined by the Swiss 
National Accident Insurance Fund (Litscher and Rigling 
1996), such as tree species, vitality, orientation and inclina-
tion, could also be read from remote sensing data. In fur-
ther research, the code used in the present study could be 
refined and extended with methods for, e.g., tree species 
detection. This would further restrict the possible suitable 
support trees. Nevertheless, analyses from remote sensing 
data can never replace in-field inspection for deciding if a 
tree is stable enough for use as a support tree.

Accuracy of extracted tree parameters

In addition to the influencing factors discussed in the previ-
ous sections, the accuracy of the various derived param-
eters is crucial for cable road design. For the most suitable 
combinations of methods, the parameter tree position has, 
in relation to the cable yarder technique, a reasonable accu-
racy, with a mean deviation of 1.8–1.9 m (± 0.7 m). Accord-
ing to various forestry experts, a support tree that is 2–3 m 
away from the cable road can still be used as a support tree 
(Ken Flury and Fritz Frutig, personal communication, 27 
Nov 2019 and 05 Dec 2019). The error in terrestrially meas-
ured tree positions is in a similar range and could explain 
the observed differences (Sect. 2.2.1). The parameter tree 
height is relevant for cable road design because tree height 
can be used for DBH estimation. The correlation between 
tree height and DBH depends on many factors, such as spe-
cies, tree vitality and silvicultural measures, and the derived 
DBH can therefore only be used as a rough estimate. The 
inaccuracy in DBH estimation due to a 1 to 2 m inaccuracy 
in height measurement is, in our opinion, smaller than that 
caused by the inaccuracy of the allometric function. If, as in 
Pestal (1961) for example, one assumes an increase in DBH 
of one cm per one meter of additional tree height, then the 
error is 1 to 2 cm. More recent research (e.g., Sharma and 

Breidenbach 2015; Sharma et al. 2019; Ciceu et al. 2020) 
approximately confirms the assumption made by Pestal, but 
also points out that stem shape diameter varies more than 
the error caused by inaccurate height measurement. Height 
deviations in the range of 1 to 2 m could also have been 
caused by inaccuracies in the terrestrial tree height measure-
ment. For example, the direction of the measurement and 
the view of the tree top influence the accuracy. Hirschmugl 
(2008) therefore suggested using devices for terrestrial tree 
height measurements with a tolerance of 5% for spruce trees 
and 10% for pine and deciduous trees. The accuracy of the 
derived DBH is also sufficient for cable road design. The 
diameter at the desired support saddle height (also some-
times referred to as jack or cable shoe height), which should 
be at least 30 cm according to Pestal (1961), is estimated 
based on the DBH using a rule of thumb widely used in 
forestry (minus 1 cm diameter per meter tree height; Pestal 
1961). Deviations of about 3 cm in the DBH would thus 
correspond to a difference in saddle height of about 3 m.

Inaccuracies in the DBH are caused by the different allo-
metric relationships of the various tree species. A prior tree 
species classification of the detected trees would make it 
possible to use a DBH formula adapted to the species of each 
individual tree. A second possibility to improve the DBH 
prediction accuracy could be to use tailored taper equa-
tions of a tree species in a certain area, such as described 
in Brassel and Lischke (2001). A third option could be the 
direct calculation of DBH via stem detection from 3D point 
clouds. Various algorithms can already isolate individual 
trees and tree trunks from point clouds, provided the ALS 
data have a sufficiently high point density (Lamprecht et al. 
2015; Parkan 2019). This allows tree trunks to be abstracted 
in 3D based on the isolated point clouds. The accuracy of 
the extracted tree parameters thus meets the requirements 
of cable road design.

Conclusion

Single tree detection is used for a wide range of forestry 
problems in science and practice. In this study, we evaluated 
whether and to what extent selected methods for the detec-
tion of single trees from remote sensing data can support 
the cable road design process. Specifically, we investigated 
whether potential support trees, used for multi-span cable-
yarding configurations, could be identified. This would 
support the whole design process, though notably cannot 
replace in-field inspections to assess trees visually.

Our study shows that the selected method combinations 
using a Gaussian filter and detecting the local maxima, or 
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tree tops, were most suitable to detect potential support 
trees on the alpine test plots. The accuracy of these method 
combinations in extracting tree parameters is considered suf-
ficient for application in cable road design. However, too 
few potential support trees were detected with the methods 
analyzed here.

In future research projects, the combinations of methods 
analyzed here could be further refined by developing models 
for different forest types. The forest types could differ, for 
example, in terms of elevation, slope, proportion of decidu-
ous trees, and structure. Parameters that can be derived from 
remote sensing data and transferred to a model could be con-
sidered. Another possibility would be to create a small-scale 
dominant height and stem number map. This would give 
an indication of whether there is a selection of trees with a 
certain height in the area of the optimal support position for 
a planned cable road. The difficulty with the positional accu-
racy of the potential support trees would thus be eliminated. 
Last but not least, drone data could be used as a data basis 
instead of ALS point clouds (Dietsch et al. 2020). Drones 
can be used in steep, inaccessible and remote locations and 
thus provide valuable data in this terrain. Nonetheless, our 
study highlights that remote sensing offers great research 
potential and a wide range of possibilities to support forest 
operations and cable road design.

Appendix

Test plots

See Table 6.

Filtering methods

See Fig. 5, Table 7.

Residual plots

Call:

lm(formula = fmla.best.log, data = ds_NH_
ohnena)

Residuals:

Min 1Q Median 3Q Max
− 0.85023 − 0.13058 0.00688 0.12696 
0.88582

Coefficients:

Estimate Std. Error t value Pr( >|t|)
(Intercept)  2.981e+00  8.915e−02 
33.437 < 2e−16 ***
log(htot_m)  8.797e−01  3.734e−02 
23.559 < 2e−16 ***
I(htot_m^2) 2.206e−04 4.515e−05 4.885 
1.26e−06 ***
–-
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 
‘*’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 0.2231 on 783 
degrees of freedom

Table 6  The most important parameters are listed for all 10 test plots

The threshold value for the tree height above which full clipping occurs on the plots was estimated

Test plot Area  [m2] Elevation 
[m a.s.l.]

Record 
used 
[year]

Reference 
trees [num-
ber]

Tree species [number] Estimated tree height 
threshold for census 
[m]

Scharans 2502 1760 2016 24 Spruce (21), Scots pine (3) 22
Domat/Ems, Tgialia 2500 1240 2016 18 Spruce (10), Larch (5), Fir (2) 24
Domat/Ems, Parvis da Tgongs 2509 670 2016 26 Spruce (14), Fir (6), Pine (6) 21
Felsberg 2616 1300 2016 26 Spruce (22), Larch (4) 23
Obersaxen 12,178 1700 2008 116 Spruce (116) 23
Siat 3546 1615 2014 29 Spruce (46) 25
Sent 3176 1500 2014 45 Spruce (36), Scots pine (5), Larch (4) 20
Jenins 2648 1215 2014 47 Spruce (47) 22
Furna 2149 1215 2014 38 Spruce (44) 29
Igis 1100 620 2004 20 Thuja (20) 23
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Fig. 5  Output raster file of the different filtering methods

Table 7  Description of the seven filtering categories, consisting of one control and six filtering methods

The output raster files of the filtering methods are shown below in Fig. 5

Filtering Short description Source

F0-Control Control without filter
F1-Gaussian filter Gaussian filter, sigma depends on resolution Menk et al. (2017)
F2-Correction of CHM 

artefacts
Multi-stage filtering: artefacts are replaced with interpolated values Jakubowski et al. (2013)

F3-LM + Filtering Two-stage filtering: removal of holes and artefacts, smoothing with low-pass filter Eysn et al. (2015)
F4-Opening Removal of small structures Burger & Burge (2006)
F5-Closing Removal of holes Burger & Burge (2006)
F6-FGI_LOCM Gaussian filter without watershed transformation, procedure slightly adapted Kaartinen et al. (2012)
F7-Metla Holes and artefacts are defined based on their neighborhood and interpolated Kaartinen et al. (2012)
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Multiple R-squared: 0.8418,Adjusted 
R-squared: 0.8414
F-statistic: 2083 on 2 and 783 DF, 
p-value: < 2.2e−16

See Fig. 6.

Detailed description of the assignment process

The assignment of the detected trees to the reference trees 
was done in two steps (Fig. 7):

(1) On every plot, tree height (H) and DBH were measured 
for the 100 largest trees (DBH) per hectare and for 20% 

of the remaining trees (randomly), which required the 
recording of DBH for all trees in an earlier step. Based 
on the trees (for which DBH and H were known), an 
estimation was made, above which tree height threshold 
all the trees in the plot were recorded. The estimation 
of this threshold was based on the tree height distribu-
tion of all trees (for which DBH and H were known) on 
the plot. Since tree height was only measured for the 
100 largest trees (DBH) and for 20% of the remaining 
trees, there was a ‘kink’ in an otherwise smooth height 
distribution curve. The corresponding tree height at the 
‘kink’ was identified visually for each plot and defined 
as the threshold value. Depending on the stand struc-
ture of the respective plot, the threshold was between 

Fig. 6  Residual plots of the allometric equation used to calculate DBH from tree height
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20 and 29 m height. The assignment process was then 
carried out for all trees above the defined tree height 
threshold (we refer these trees as reference trees). For 
the detected trees, the threshold value was lowered by 
the defined tolerance range of 5 m. Thus, for example, 
with a tree height threshold of 20 m, a detected tree of 
18 m could be assigned to a nearby (< 3 m) reference 
tree of 21 m height.

(2) For each reference tree the following procedure was 
carried out. First, all detected trees within 3 m hori-

zontal distance and a tree height difference < 5 m to the 
reference tree were selected. Second, the combination 
(reference tree – detected tree) with the shortest hori-
zontal distance was selected as assigned, so that no tree 
was assigned more than once.

Definitions of additionally calculated metrics

See Table 8.

Detailed results of the selected best method 
combinations

See Tables 9, 10.

Matching of remote sensing and terrestrial data

Methods

To find out how closely the remote sensing data matched 
the terrestrial data, the heights of the sample trees were 
compared with the height data from the ALS-CHM at the 
same location. Therefore, a buffer with a radius of 3 m was 
created around each sample tree according to Eysn et al. 
(2015), starting from the stem base coordinate (Fig. 8). 
This corresponds approximately to an average crown size, 
within which the tree top, i.e., the highest point of the CHM, 
should be located. Within the buffer, the highest value from 
the CHM was compared with the terrestrially recorded tree 
height. For all overlapping tree buffers, only the tallest sam-
ple tree was included in the analysis. In total, 276 sample 
trees were analyzed. A locally averaged regression curve 
(Loess method) was calculated for the evaluation.

Fig. 7  Example of the assignment process, in which a detected tree 
(in white) is assigned to the reference tree (gray middle tree). Tree 1 
is more than 3 m away from the reference tree, tree 2 has a tree height 
difference of more than 5 m, and tree 3 is further away from the refer-
ence tree than tree 4, which is thus assigned to the reference tree

Table 8  Descriptions of additionally calculated metrics

Metric Description Formula

Match Rate MR [%] Ratio of the number of assigned reference trees B
Z
 to the number of reference 

trees, times 100
MR = 100 ∗

B
Z

B
Ref

Omission Error OE [%] Reference trees to which no detected trees were assigned (false negative, Type II 
error), expressed as a percentage

OE = 100 ∗
B
Ref

−B
Z

B
Ref

Number of reference trees All trees above the defined threshold
Number of detected trees For the calculation of the number of detected trees, the same threshold (tree 

height) was chosen as that of the reference trees (1st step in assignment 
process). Since detected trees below the threshold value were also considered 
in the assignment process, there was a possibility that the number of detected 
trees was smaller than the number of assigned trees. In this case, the number of 
assigned trees was used for the calculation

Difference in tree height [m] Difference in tree height between the reference tree and the assigned detected tree HDiff = HBRef − HBDet

Distance between tree positions [m] Mean distance between the reference trees and the assigned trees scipy.spatial.dis- tance.
cdist (xy, xy, 'euclid-
ean')
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Results

Both data processing variants (without or with pitfree 
algorithm) resulted in the same derived tree height values 
 (HCHM), except for a few sample trees (Fig. 9). A compari-
son of the remote sensing data  (HCHM) with the terrestrial 
data  (Hterr) showed different behavior depending on the tree 
height. For tree heights <  = 25 m (N = 39), those derived 
from the remote sensing data were taller than those derived 
from terrestrial measurements, as shown by the local mean 
according to the Loess method (Cleveland et al. 1992). The 
smaller the trees, the greater the difference between  HCHM 

and  Hterr. For tree heights > 25 m (N = 237), the CHM-
derived tree heights were smaller than the terrestrially meas-
ured tree heights. The local mean (Loess method) showed a 
difference of up to 5 m, with the difference increasing with 
increasing tree height.

Discussion

Tree height values derived from the CHM overestimated the 
height of small sample trees, while they tended to slightly 
underestimate the height of larger sample trees. The over-
estimation of the small trees most likely results from cases 

Table 9  Comparison of the 
statistical values of the most 
suitable combinations of 
methods with (F1 and F3, dark 
gray) and without filters (F0, 
light gray), as well as the least 
suitable method combinations 
RawLi – F5 – LM2 and RawLi 
– F7 – LM2 (white)

Combination of 
methods

Extraction Rate 
[%]

Match Rate 
[%]

Commission 
Error [%]

Omission 
Error [%]

Hdiff [m] Dist [m]

RMS STD RMS STD RMS STD RMS STD M M

RawLi F3 LM1 108.9 27.4 40.2 17.0 66.8 12.2 65.1 17.0 1.2 1.9
Pitfree F3 LM1 108.8 25.7 39.9 16.6 67.2 12.4 65.3 16.6 1.0 2.0
RawLi F1 LM1 116.5 32.6 41.0 15.4 66.0 11.6 63.4 15.4 1.4 1.9
Pitfree F1 LM1 124.6 31.2 42.3 15.3 67.2 12.0 62.0 15.3 1.5 2.0
Pitfree F0 LM1 162.8 42.9 49.6 18.2 70.7 9.6 56.3 18.2 0.9 1.9
RawLi F0 LM1 146.6 37.0 48.4 18.7 69.2 9.2 57.8 18.7 0.9 1.8
RawLi F5 LM2 1819.8 992.9 79.2 16.6 93.6 3.1 27.4 16.6 1.7 1.4
RawLi F7 LM2 1947.3 1024.2 79.2 16.6 94.2 2.8 27.4 16.6 1.7 1.4

Table 10  Statistical parameters 
of the four most suitable 
combinations of methods with 
the adapted assignment process 
(maximum horizontal distance 
of 5 m between detected tree 
and reference tree)

Combination of 
methods

ER [%] MR [%] CE [%] OM [%] Hdiff [m] Dist [m]

RMS STD RMS STD RMS STD RMS STD M M

Pitfree F3 LM1 113.7 15.0 59.6 13.1 49.2 11.9 43.4 13.1 0.9 2.5
RawLi F3 LM1 114.0 15.7 58.7 12.3 49.9 11.5 44.1 12.3 1.0 2.4
RawLi F1 LM1 122.3 19.1 59.3 15.1 53.5 13.1 44.7 15.1 1.5 2.4
Pitfree F1 LM1 130.0 22.1 62.8 14.5 53.0 11.4 41.1 14.5 1.4 2.5

Fig. 8  The agreement of the remote sensing data with the terrestrial 
data was assessed with the following three steps: (1) creating a buffer 
with radius 3  m around each sample tree (terrestrially measured 

tree height  Hterr), (2) searching for the maximum value of the CHM 
 (HCHM) within the buffer of a sample tree, and (3) comparing the val-
ues  Hterr and  HCHM for each sample tree
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where the laser signal hit a branch of a taller tree during the 
flight and thus appeared in the CHM as the highest point at 
this location. This problem was addressed by excluding the 
smaller sample trees in overlapping buffers, which explains 
why the number of trees with height ≤ 25 m was also sig-
nificantly smaller.

A possible reason for the underestimation of the height 
of large trees may be the flattening of the maximum values 
through interpolation of the ALS points. It can also happen 
that the top of the crown is not directly hit by any laser sig-
nal during the aerial survey and thus another crown point is 
defined as the local maximum. In addition, the difference in 
height could be partially explained by the temporal distance 
between the aerial survey in 2003 and the field surveys con-
ducted in 2014 and 2016. The trees are estimated to have 
grown 2–4 m in these 11–13 years (Bachmann 1999). Part 
of the difference could also be attributed to the inaccuracy of 
the tree height measurement. Hirschmugl (2008) found dif-
ferences of up to 4.5 m for conifers in tree height measure-
ments from different perspectives. Ginzler and Hobi (2015) 
calculated a RMSE of 1.55 m for the measurement accuracy 
of conifers based on double measurements conducted as part 
of the Swiss National Forest Inventory (NFI) (N = 441).
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