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Abstract
Retention of habitat trees is a common biodiversity conservation practice in continuous cover forests of temperate Europe. 
Commonly, living habitat trees are selected on the basis of their tree-related microhabitats (TreMs) such as cavities or crown 
deadwood. Owing to the increasing frequency and intensity of climate change-related disturbances, habitat trees in particu-
lar are expected to experience increased mortality rates. This may impact the long-term provisioning of TreMs. Here, we 
compared the TreM occurrence on living and dead trees to investigate whether dead trees support more and other TreMs 
than living trees. We also hypothesized that a combination of living and dead trees results in the most diverse stand-level 
TreM composition. We surveyed the TreM composition of living and dead habitat trees in 133 one-hectare plots in the Black 
Forest region managed according to a continuous cover approach. We fitted generalized linear mixed models to identify 
the main predictors of TreM occurrence to predict their abundance and richness. Tree identity (as a combination of species 
and vitality status) and diameter were the main drivers of TreM abundance and richness, which were highest on dead Abies 
alba. Even though dead A. alba and Picea abies supported TreM numbers similar to those provided by large living trees, 
their TreM composition was significantly different. This suggests that dead trees cannot substitute the habitat functions of 
living habitat trees, but they can complement them to increase the overall stand-level TreM diversity, in particular through 
decayed, large snags.

Keywords Biodiversity conservation · Retention forestry · Habitat tree · Wildlife habitat · Integrative forest management

Introduction

The multifunctional role of forests is recognized world-
wide, and in Europe, numerous integrative forest manage-
ment approaches aim to balance potential conflicts between 
the goal of timber production and biodiversity conservation 
(Freer-Smith and Carnus 2008; Bollmann and Braunisch 
2013; Kraus and Krumm 2013; FAO Report 2020; Euro-
pean Commission 2019). Commercial forestry with short 
production cycles has often simplified and homogenized 

forest structures. As a consequence, these forests often lack 
habitat for many forest-dwelling species especially those 
dependent on structural elements of old-growth forests (Ishii 
et al. 2004; Kuuluvainen 2009; Winter and Brambach 2011; 
Kraus and Krumm 2013; Fredowitz et al. 2014). In recent 
decades, retention forestry has been promoted to reduce the 
impacts of harvesting on many forest-dwelling species (Gus-
tafsson et al. 2020). This forest management approach was 
introduced in North America about 35 years ago, but has 
also been practiced and researched in the context of clearcut-
ting systems in regions such as Scandinavia and Australia 
(Gustafsson et al. 2012). One important element of reten-
tion forestry is biological legacies, i.e. structures and organ-
isms that remain on site after disturbances to ensure habitat 
continuity for forest-dwelling species (Franklin et al. 2002; 
Gustafsson et  al. 2012). Consequently, in uneven-aged, 
continuous cover forests of temperate Europe, the practice 
aims at enriching the conditions of the post-harvest eco-
system and achieving temporal and spatial connectivity of 
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key habitats by intentionally retaining deadwood and habitat 
trees (Gustafsson et al. 2020). Habitat trees are large living 
or dead standing individuals that already bear specific struc-
tures needed by many specialist species for parts of their life 
cycle for foraging, breeding, or nesting (Bütler et al. 2013; 
Larrieu et al. 2018). These structural features are called tree-
related microhabitats (hereafter TreMs) and are essential for 
the structure and viability of forest communities and many 
associated species (for example: arthropods—Dajoz 2007; 
Stokland et al. 2012; bryophytes and lichens—Jahns 1989; 
Fritz and Heilmann-Clausen 2010; bird communities—
Gossner et al. 2016; Gouix and Brustel 2012; Ranius 2002; 
Basile et al. 2020).

TreMs have not only been used as a proxy indicator of 
biodiversity in forests, but also as an efficient tool for habitat 
tree quality assessment and selection (Asbeck et al. 2019, 
2021a; b; Larrieu et al. 2018). In the last decade, the con-
cept of TreMs has been widely implemented in integrated 
conservation approaches through retention of habitat trees in 
managed Central European forests. Here, past management 
practices led to relatively low levels of standing deadwood 
and habitat trees owing to the constant removal of diseased, 
dying or old trees during thinning and traditional stand 
improvement practices. While deadwood retention is rather 
straightforward, the selection of suitable living habitat trees 
is increasingly based on TreMs in current schemes adopted 
in Germany, Austria, Switzerland, and France (Asbeck et al. 
2021a, b).

Previous studies have shown that TreM abundance and 
richness are linked to both specific tree attributes [diameter 
at breast height (DBH), species, vitality status (live vs. dead 
trees)] (Michel and Winter 2009; Vuidot et al. 2011; Paillet 
et al. 2017; Kaufmann et al. 2018; Asbeck et al. 2019) as 
well as stand and environmental conditions (forest manage-
ment, forest type, altitude) (Larrieu et al. 2014a, b; Winter 
et al. 2015; Asbeck et al. 2019). In temperate forests, broad-
leaved trees, large trees and dead standing trees were consist-
ently found to bear more and richer TreMs than coniferous, 
small and living trees, respectively (Asbeck et al. 2021a, 
b). Only the largest trees supported all TreM types (Larrieu 
et al. 2014a, b). This can be attributed to a combination of 
factors related to species and vitality status: different wood 
properties, crown structure, position of the tree in the can-
opy, tree senescence (Asbeck et al. 2020, 2021a; b). Interest-
ingly, the degree to which these tree attributes complement 
one another in terms of TreM abundance and richness at the 
stand level has not been studied so far.

Information on the combination of vitality status and tree 
species is valuable, since the selection of habitat trees has 
often focused on one of these attributes alone and never on 
their interaction (for example: Read 2000 in Britain; Land 
for Wildlife Queensland Note (2016) in Australia; Bütler 
et al. 2021 in Switzerland). Commonly, retaining large living 

trees is one of the most straightforward approaches to pro-
vide TreMs at the stand level. However, large trees are facing 
global decline (Lindenmayer et al. 2012) and their increased 
size also makes them more susceptible to disturbances and 
environmental stress leading to mortality (Grote et al. 2016). 
Large trees suffer more than smaller ones from disturbances 
such as wind throw and drought-related water stress due to 
their greater heights and exposed crowns (Bennett et al. 
2015; Stovall et al. 2019; Forzieri et al. 2021). Under high 
water stress, tall trees may also be more readily attacked 
by biotic agents, such as bark beetles (Pfeifer et al. 2011). 
Since a higher tree mortality is expected in European forests 
(Samaniego et al. 2018; Senf et al. 2020), information on 
how tree death affects the formation and dynamics of TreMs 
is valuable, also to support decisions about salvage harvest-
ing or tree retention.

Biological, physical and chemical wood substrates are 
different not only among living trees, but also among dead 
trees of different decay stages (Herrmann et al. 2015; Kahl 
et al. 2017). The decay rate, which differs greatly among tree 
species, has an important role in snag dynamics (Cornwell 
et al. 2009) and likely a significant effect on TreM occur-
rence. For example, the low wood density of fast-growing 
species (Populus, Betula sp.) influences their susceptibility 
to breakage. This can result in branches and crowns falling 
earlier than in other hardwood species such as Quercus sp. 
(Basham 1991). In species preferred by wood-boring insects, 
tree decay is accelerated by excavated galleries (Rayner and 
Boddy 1988), often leading to the formation of ephemeral 
TreMs such as pockets and shelters under loosened bark. 
Moreover, higher carbohydrate and lower lignin levels in 
broadleaved trees cause higher decay rates when compared 
to conifers (Cornwell et al. 2009; Kahl et al. 2017). How-
ever, wood decay rates differ greatly among conifers. For 
example, P. abies logs decomposed 21 to 25 years faster 
than those of A. alba (Přívětivý et al. 2018). In addition, 
tree size has an effect on its wood decay dynamics. Larger 
trees, which have a smaller ratio of volume to surface area of 
wood exposed to colonization by wood decaying organisms, 
are expected to decompose slower than smaller trees (Mack-
ensen et al. 2003; Vanderwel et al. 2006). Thus, deadwood of 
large trees and/or conifers are more likely to bear long-lived 
TreMs and greater abundance and richness of TreMs due to 
their longer persistence.

Although most studies on deadwood dynamics have 
focused on downed logs (Angers et al. 2012), we can assume 
that relative differences in decay rates among tree species 
remain similar in standing dead trees. However, it is likely 
that snags decay at a slower rate owing to the low degree of 
soil contact, which has been described as a primary driver 
of wood decomposition (Shorohova and Kapitsa 2014; 
Přívětivý et al. 2018). Yet, we do not know, how decay may 
influence provision of TreMs in snags.
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Despite possible differences in habitat provision between 
dead and live large trees, the different microhabitat assem-
blages and how they complement each other have not been 
considered in current concepts of habitat tree retention in 
Central European forests. Yet, an evidence-based selection 
of living and dead trees to optimize microhabitat provision 
in managed forest is pivotal, especially since current for-
est management approaches for biodiversity conservation 
may become unsuitable under climate change (Augustync-
zik et al. 2019, 2020). Therefore, one important goal of our 
research was to offer practical recommendations for tree 
retention suitable for managed forests in Central Europe. The 
research objectives of our study were to investigate differ-
ences in TreM composition of living and dead habitat trees 
and to assess their complementarity in providing TreMs at 
the forest stand level. For that purpose, we compared TreM 
abundance, richness and composition on habitat trees of 
different species, vitality status (living or dead) and dimen-
sions. In this study, we did not consider species and vitality 
status as two different factors, but combined them into tree 
identity. Our hypotheses were that:

1. TreM abundance, diversity and composition differ 
between different tree identities;

2. TreM abundance and richness differ between standing 
dead trees of different decay stages; they increase with 
decay stage and snag diameter;

3. The highest stand-level TreM abundance and richness 
can be achieved through combinations of trees with dif-
ferent identities.

Methods

Research area

The study was carried out within the project “Conserva-
tion of forest biodiversity in multiple-use landscapes” 
(Storch et al. 2020). The research area is located in the 
southern Black Forest (Latitude: 47.6°–48.3°N, Longitude: 
7.7°–8.6°E, WGS 84) within an altitudinal range between 
500 and 1400 m.a.s.l. (Fig. 1). Data were collected on 133 
one-hectare plots, which were initially selected following 
a landscape gradient of forest cover in the surrounding 25 
 km2 and a structural complexity gradient that was indicated 
by the number of standing dead trees per plot. The research 
plots are dominated by three tree species, Norway spruce 
(Picea abies (L.) Karst), European beech (Fagus sylvatica 
L.) and Silver fir (Abies alba Mill.), in this order of abun-
dance. Healthy living trees were dominating the growing 
stock in the studied stands. Few trees of lower vitality 
classes, diseased or dying, were present in the study plots.

Forest management in the study area follows the prevail-
ing paradigm of close-to-nature forest management, applied 
in many Central European forests, which generally avoids 
clearcutting, intensive soil preparation, use of fertilizers and 
herbicides (Bauhus et al. 2013; Larsen et al. 2022). Among 
the plots used for this study, the management intensity is 
variable, ranging from no interventions in six plots located 
in strict forest reserves, to more intensively managed for-
ests (Asbeck et al. 2021a, b). In the latter, the proportion of 
tree volume that was harvested in recent decades can reach 
80% of the theoretical maximum of the standing volume 
(Asbeck et al. 2021a, b). Even though a difference in TreM 
abundance and richness between managed and unmanaged 
forest stands can be expected (Paillet et al. 2017; Asbeck 
et al. 2021a, b), a previous study conducted on the same 
plots as used here showed that different forest management 
types did not have a significant effect on TreM abundance 
and richness on living habitat trees (Asbeck et al. 2019). 
The time since the management ceased (less than 50 years) 
appears to not have been long enough to see a difference 
yet in the TreM estimates between currently managed and 
unmanaged stands (see also Vuidot et al. 2011). The studied 
plots still show similar stand characteristics irrespective of 
their current management type.

Data collection

The TreM inventory followed the standardized typology of 
Larrieu et al. (2018). The typology includes 15 TreM groups 
that follow a hierarchy related to morphological characteris-
tics and biodiversity relevance (Larrieu et al. 2018) (Appen-
dix: Table 3). The TreMs were surveyed on the largest 15 
living and, if possible, on 15 standing dead trees in each plot. 
The dead trees had a minimum DBH threshold of 20 cm and 
were selected in a random grid in the field to capture most 
of the variation of TreMs. In 18% of the plots, 15 dead trees 
were found, 10% of the plots had none and the rest had a 
variable number of dead trees (1–13) (Appendix: Table 4). 
The largest 15 living trees in each plot, which we regard 
as potential habitat trees, were pre-selected from LIDAR 
images based on their crown diameter, which is a strong 
determinant of stem diameter (here DBH) (e.g. Jucker et al. 
2017). This method relates to the local guidelines for habitat 
tree selection (The old- and dead wood concept, Forst 2015) 
and was more time-efficient than a selection based on terres-
trial inventory. Previous studies showed that TreM richness 
and abundance were strongly and positively related to DBH 
(Asbeck et al. 2021a, b). Hence, these 15 largest trees with 
a DBH ranging from 18 to 142 cm were the best candidates 
for habitat trees with many and diverse TreMs.

Living habitat trees were located in the field based on 
their GPS coordinates obtained from LIDAR images. TreMs, 
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tree DBH and species identity were recorded for all trees 
(living and dead). In addition, decay stages of dead trees 
were noted. The decay stage of standing dead trees was 
assessed in five classes adapted from Sippola and Renvall 
(1999) and Puletti et al. (2019): (1) hard wood, completely 
covered with bark, fresh phloem sometimes present; (2) 
wood mostly hard, most of the bark left, but no fresh phloem 

present; (3) wood is partly decayed on the surface or in the 
centre, large pieces of bark usually loosened or detached, 
branches still present; (4) most of the wood is soft, the cen-
tral parts can remain hard, while the surface layers of the 
wood can be missing; (5) wood is very soft, usually covered 
by epiphytes. The presence of TreMs such as broken tops, 
crown deadwood or bark characteristics is often included 

Fig. 1  Location of the 133 one-hectare plots in the Black Forest, Germany (insert) in the ConFobi study design (Storch et al. 2020)
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in classifications of standing deadwood. If such a classi-
fication were employed, provision of TreMs would not be 
independent from decay class in a statistical sense and could 
lead to biased results. Thus, we employed a methodology 
that classified dead wood solely on the wood decay stage to 
avoid this problem. Fieldwork was carried out during win-
ter of 2019–2020 in the leafless and snow-free period. The 
TreM inventory was done by the same team of observers 
to minimize observer effects (Paillet et al. 2015). Binocu-
lars were used to identify TreMs at greater tree heights. The 
main characteristics of the surveyed trees are summarized 
in Table 1.

Data analysis

All data analysis was processed with the R Studio Software 
1.3.1073 (RStudio Team 2020). Preliminary data explora-
tion was done following the protocol proposed by Zuur et al. 
(2010) to avoid type I and II errors by investigating outliers, 
heterogeneity of variance, collinearity, and missing values. 
TreM abundance was calculated as the total number per 
tree, whereas richness accounted for the number of differ-
ent TreMs groups per tree (e.g. rot-holes, concavities, crown 
deadwood). To identify the main drivers of TreM abundance 
and richness across and within TreM categories, generalized 
linear mixed models (GLMMs) were used. Plot identity was 
included as a random factor to prevent autocorrelation of 
trees from the sample plots (Dormann 2013).

We defined a new variable tree identity that combined 
the variables vitality status and tree species since one is not 
independent from the other and their interaction can have a 
significant effect on TreM provisioning (e.g. dead P. abies 
or living F. sylvatica). The wood substrate of living and dead 
trees differs greatly between tree species (Cornwell et al. 

2009). Owing to the small number of observations in some 
tree species and the difficulty to differentiate between dif-
ferent dead conifer species in advanced stages of decay, we 
could assign this variable only to living and dead P. abies, F. 
sylvatica and A. alba. Unidentified tree species were pooled 
into categories of other dead or living conifers and broad-
leaved trees. Other broadleaved trees represented 3% of the 
total sample and included Quercus petraea (Matt.) Liebl., 
Tilia cordata Mill., Acer platanoides L., A. pseudoplatanus 
L., Alnus glutinosa L., Betula pendula Roth, Fraxinus excel-
sior L., Prunus serotina Erhr., Populus tremula L.. Other 
living conifers were Pinus sylvestris L., Pseudotsuga men-
ziesii (Mirb.), Larix decidua Mill. and Abies grandis Lindl., 
accounting for 14% of the total number of living trees.

We excluded insect galleries when calculating TreM 
abundance and from the TreM models, because it is practi-
cally not possible to assess from the ground the occurrence 
of this TreM over the whole tree surface, in particular not on 
snags. Microsoils, nests, twig tangles and crown deadwood 
were excluded from the statistical models for individual 
TreM groups since they were represented only by very few 
observations. Yet, they were considered in the statistical 
models for total TreM abundance and richness.

All models were based on count data with a negative 
binomial distribution that accounts for overdispersion. 
The only model which did not show signs of overdisper-
sion was the GLMM for the TreM “burrs and cankers”, 
which assumed a Poisson error distribution. Computation 
of models was done with the “glmmTMB” function of the 
“glmmTMB” package (Brooks et al. 2017). Model selection 
was done by dropping non-significant predictors in order 
to improve the Akaike information criterion (AIC) with 
the function “drop1” of the “stats” package of R. Overdis-
persion, zero-inflation and the performance of each model 
based on residuals were tested with the “DHARMa” package 

Table 1  Main attributes of the inventoried trees based on their vitality status (living or dead) and species

Tree identity N. of trees Total share DBH (cm) TreM abundance per tree TreM richness per tree

(%) Mean SD Min Max Mean SD Max Mean SD Max

Living (N = 1804)
Abies alba 332 12.07 47.85 17.2 24 142 1.6 2.5 23 0.9 0.9 5
Fagus sylvatica 392 14.25 42.11 15.8 19 120 2.3 3.4 35 1.4 1.2 7
Picea abies 753 27.38 42.02 14.1 19 115 1.1 1.9 19 0.7 0.8 6
Other coniferous sp. 262 9.53 36.10 14.9 23 102 1.1 2.2 14 2.1 1.6 4
Other deciduous sp. 80 2.91 32.75 15.8 17 88 2.8 2.7 17 1.9 1.3 5

Dead (N = 929)
Abies alba 112 4.07 66.84 17.6 20 107 5.7 6.0 27 2.0 1.3 6
Fagus sylvatica 35 1.27 53.00 21.0 20 113 4.9 7.0 29 1.5 1.2 5
Picea abies 589 21.42 54.96 15.4 20 119 3.0 3.8 25 1.4 1.2 6
Other coniferous sp. 183 6.65 57.11 11.5 20 79 4.9 5.3 31 2.1 1.6 6
Other deciduous sp. 12 0.44 43.97 10.1 20 49 2.9 2.4 8 1.7 1.1 4
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(Hartig 2018). All TreM models followed the initial for-
mula: ~ DBH + tree identity + (1|PlotID). The final models, 
after the backward stepwise selection, are summarized in 
Table 2. Plotting of models was performed with the “ggpre-
dict” function of the “ggeffects” package, which shows the 
main effect of one predictor and sets all the others in rela-
tionship to it (Lüdecke 2018). Visualization was carried out 
with the “ggplot” package (Wickham 2016).

The association of TreMs with tree identities was investi-
gated by using a bipartite network, clustering tree identities 
with similar TreMs into functional groups (e.g. Asbeck et al. 
2020). This type of network is divided into modules, identi-
fied with a modularity matrix described by Newman (2006). 
By accounting for the TreM abundance per tree identity, 
the modularity measures are applied to a weighted version 
of the bipartite network (Beckett 2016). The analysis was 
performed with the R package “bipartite” (Dormann et al. 
2018).

Nonparametric methods were employed to test whether 
TreM abundance and richness are significantly different 
for different decay classes and diameters of dead trees. We 
further investigated the effects of four different approaches 
of selecting habitat tree at the plot level. Here, we chose 
for each one-hectare plot the ten habitat trees with high-
est TreM richness and abundance following four different 
retention strategies. The number of ten habitat trees per ha 
is at the upper end of the currently practiced range of habitat 
retention in European forests (Gustafsson et al. 2020). In the 
first simulated retention approach, we selected a combina-
tion of five living and five dead habitat trees (trees that sup-
port TreMs). For the second and third approach, we focused 
on ten dead and, respectively, ten living habitat trees. The 
fourth approach represents a “reference” selection of ten 
habitat trees per plot with the overall highest abundance or 
highest richness of TreMs irrespective of their vitality sta-
tus. Significant differences in the average TreM abundance 
and richness among the four retention approaches were 
tested using the nonparametric rank-based Kruskal–Wallis 
test with Dunn post-hoc tests (Dunn 1964). Figures were 
designed to be colour-blind friendly with the R package “vir-
idis” (Garnier et al. 2021).

Results

Habitat tree level

The main drivers of the overall TreM abundance and rich-
ness were DBH and tree identity. Most of the TreM groups 
increased significantly with increasing DBH, but the interac-
tion between DBH and TreM occurrence was not significant 
for exposed sapwood and epiphytes (Table 2). The GLMM 
model indicated that the tree identity with the highest 

TreM richness and abundance was dead A. alba. Other liv-
ing coniferous species such as P. sylvestris, L. decidua, P. 
pseudotsuga appeared to have the lowest TreM richness 
and abundance. In addition, other living broadleaved trees 
(excluding F. sylvatica) were significant only in the model of 
TreM abundance (Fig. 2, Table 2). The highest abundance of 
woodpecker cavities, burrs and cankers were found on dead 
A. alba, whereas the highest occurrence of rot-holes and 
exposed sap- and heartwood was predicted for other living 
conifers (Fig. 3, Table 2).

In dead trees, both TreM abundance and richness differed 
significantly among decay classes (Kruskal–Wallis test for 
TreM abundance (χ2 = 72.422, df = 4, p value < 0.0) and 
for TreM richness (χ2 = 77.096, df = 4, p value < 0.05) with 
highest values in decay classes 4 and 5 (Fig. 4, Appendix: 
Fig. 7). TreM abundance and richness on dead trees in more 
advanced decay classes increased with increasing DBH. 
Snags of A. alba had the highest mean DBH among dead 
trees, followed by other conifers that could not be identified 
to species level due to their advanced decay stage (Table 1). 
The average DBH of P. abies was 20 cm smaller than that of 
A. alba. Deciduous species other than F. sylvatica belonged 
to the smallest DBH category.

The bipartite analysis of the TreM composition dis-
tinguished four main functional groups within the matrix 
of TreM abundance and tree identity (Fig. 5, Appendix: 
Table 3). The first group was characterized by occurrence 
of woodpecker cavities, insect galleries, concavities, as well 
as exposed sap- and heartwood. This group of TreMs was 
mostly found on dead conifers. The second group consisted 
only of dead F. sylvatica and was characterized by the occur-
rence of fungi, both perennial and annual (Fig. 5). TreMs 
such as rot-holes, crown deadwood, nests and microsoils 
were mostly associated with living F. sylvatica and other 
broadleaves and conifers (excluding A. alba and P. abies). 
The last group, comprised of living A. alba and P. abies, 
supports most strongly the occurrence of epiphytes and other 
epiphytic structures, fresh exudates, burrs and cankers and 
twig tangles (Fig. 5).

Plot‑level results

The four simulated retention strategies showed significant 
differences in TreM provision at the plot level. Selecting 
solely dead or living trees yielded the lowest abundance and 
richness of TreMs. The combined approach (five living and 
five dead habitat trees) yielded similar TreM abundance and 
the smallest reduction in TreM richness from the optimum 
level given by the reference selection of the ten trees with the 
overall highest abundance and richness of TreMs, irrespec-
tive of their status (Fig. 6, Appendix: Table 5).
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Discussion

Our results show that retention practices should take in 
consideration not only tree size and identity, which were 
important predictors of TreM abundance and richness, 
but also TreM composition. We identified four functional 
tree identity groups with distinctly different TreM associa-
tions. While dead A. alba trees provided the highest TreM 
abundance and richness, large living broadleaved trees sup-
ported distinct TreMs, not found on A. alba. In contrast to 
approaches that retain solely living or dead trees, retention 
of different tree identities not only assures complementary 
TreMs but provides also for an overall higher TreM abun-
dance and richness.

Dead Abies alba provide many and diverse 
TreMs

Our results show that TreM abundance, richness and compo-
sition differed significantly among tree identities. Large dead 
A. alba carried the highest total abundance and richness 
of TreMs, almost twice the amount found on F. sylvatica 
and other broadleaved trees. Many previous studies found 
broadleaved trees to bear more and richer TreMs than coni-
fers (Larrieu and Cabanettes 2012; Asbeck et al. 2019), but 
those results were reported for living trees only. The produc-
tion time of A. alba in close-to-nature management is often 
longer than that of other species and the snags of A. alba 
were most likely of old large trees and in an advanced stage 
of decay. Snags of old A. alba trees are likely to persist for 
long periods owing to a combination of wood properties, a 
high mean DBH and possibly also a deep root system, which 
provides for anchorage in the soil. Debris of trees with larger 

dimensions shows in general a low decay rate (Vanderwel 
et al. 2006; Fravolini et al. 2018). This is related to a smaller 
surface to volume ratio which is exposed to mechanical and 
biological agents involved in decomposition, and a higher 
heartwood to sapwood ratio, where the heartwood is typi-
cally more decay resistant (Mackensen et al. 2003; Cornwell 
et al. 2009). Deadwood logs of A. alba decayed slower than 
those of P. abies, especially at cold sites (Přívětivý et al. 
2018). Thus, snags of A. alba in this study may have per-
sisted longer and accumulated TreMs that appeared both 
while trees were alive (burrs, cankers, twig tangles) and/or 
after their death (woodpecker cavities, concavities).
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Dead A. alba supported also the highest occurrence of 
woodpecker cavities, which are some of the most impor-
tant TreMs for biodiversity conservation in European for-
ests (Larrieu et al. 2018). The high number of woodpecker 
cavities on dead A. alba, twice as many as on F. sylvatica, 
was contrary to our expectations since woodpeckers in their 
natural habitats are expected to prefer non-resinous wood 
(Schmidt and Czeschlik 2006; Tozer et al. 2011; Blanc and 
Martin 2012). Yet, in contrast to other conifers, wood of 
A. alba does not have primary resin ducts and glands (e.g. 
Metzler et al. 2012) and is thus more attractive to woodpeck-
ers. However, many other studies have found high numbers 
of cavities in snags of A. alba, P. abies and P. sylvestris in 

managed forests (Vuidot et al. 2011; Larrieu and Cabanettes 
2012; Paillet et al. 2019). This is probably related to the lack 
of old living broadleaved trees that have dead branches or 
decayed parts of the stem with soft wood formed by fun-
gal decomposition. Hardwood trees with presence of wood 
decaying fungi such as Fomes fomentarius are preferred 
by woodpeckers for cavity excavation, presumably to save 
energy (Rolstad et al. 2000; Zahner et al. 2012). Trees in 
managed forests are relatively young and since forest man-
agement commonly removes injured and decaying trees, 
large living hardwood trees with signs of decay are rare. 
Thus, the A. alba snags may fill an important gap as suit-
able trees for woodpecker cavities in these mixed mountain 
forests.

Our model predicted lowest numbers of TreMs for other 
living conifers, which is probably attributable to the pres-
ence of the introduced Douglas fir, P. menziesii. It has been 
shown that, even though the species is abundantly colonized 
by epiphytes in its natural range, individuals of P. menziesii 
do not support many TreMs in Central Europe (Asbeck et al. 
2020). This species showed relatively low mortality rates, 
especially in the context of recent droughts (Eilmann and 
Rigling 2012) and its wood is characterized by a high decay 
resistance (Kahl et al. 2017). In addition, owing to its high 
growth rate, it is typically substantially younger than other 
tree species at a given tree diameter and hence has less time 
for the accumulation of TreMs until harvesting. Further-
more, fruiting bodies of perennial fungi were predicted to 
be abundant on snags of P. abies. This can be explained by 

Fig. 4  Estimated mean of TreM abundance (left) and richness (right) 
of dead trees for each decay class in five categories from low (1) to 
high decay (5) with a 95% confidence interval

Fig. 5  Functional groups of 
the bipartite network between 
TreMs and different tree identi-
ties. The darker the squares the 
more associations of the species 
with a certain type of TreM 
were observed. The intensity 
of the colour blue provides for 
a relative comparison within a 
given tree identity (by rows), 
but not over the whole matrix. 
The colour intensity refers 
thus to a 0–100% frequency of 
association of the tree species 
with the TreM group. Red boxes 
delineate the functional groups 
(Dormann et al. 2021)
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the presence of Fomitopsis pinicola, a primary decay fungus 
which often colonizes dead trees infested by bark beetles 
(Vogel et al. 2017). Large areas of the Black Forest domi-
nated by P. abies have been subjected to recent bark beetle 
outbreaks (FVA report, Baden-Württemberg 2020). The lack 
of other TreMs on dead spruce trees is likely attributable 
to the fact that the majority of these snags developed only 
recently (2–3 years since death) and were quite small. Thus, 
time may not have been sufficient to develop new TreMs spe-
cific to deadwood. Previous studies predicted the formation 
rate of TreMs on living trees (Courbaud et al. 2017, 2021), 
which increased with DBH for most of the TreM categories. 
However, reliable time series based on longitudinal obser-
vations are still needed to understand TreM development 
(formation and persistence) on both living and dead trees.

Living broadleaved trees have a distinct 
TreM composition

The bipartite network analysis of functional groups showed 
that trees of different identities supported distinct TreM 
groups. The main four functional groups of TreMs were 
related to tree genera, vitality status and thus similar wood 
properties. Similar results were found in a comparison of 
TreM composition between forest stands from North Amer-
ica and Central Europe (Asbeck et al. 2020). The only TreM 
group in our study that was found in equal abundance in 
both conifers and broadleaved trees is crown deadwood. This 
TreM may be related to the age of trees, their wood prop-
erties and crown shape. In the Black Forest region, stands 
of P. sylvestris and F. sylvatica are managed under longer 

production cycles (120–160 years) than faster-growing coni-
fer species such as P. abies or P. menziesii (60–100 years) 
(Asbeck et al. 2021a, b). Therefore, F. sylvatica and P. syl-
vestris (from the category of living coniferous species) are 
likely old, have more exposed crowns that lead to increased 
amounts of crown deadwood. Crown deadwood of P. syl-
vestris and F. sylvatica offers suitable resources for specific 
organisms (for example, saproxylic wasps, Ulyshen et al. 
2011, and saproxylic beetles, Bouget et al. 2011) and could 
not be replaced by simply selecting dead conifers with an 
overall higher abundance and richness of TreMs. The most 
significant identities among the living trees for an increased 
TreM abundance were other broadleaved trees (such as 
Quercus, Acer, Fraxinus sp.) and F. sylvatica for TreM rich-
ness. This highlights the crucial role of living large broad-
leaved trees for supporting TreMs that are needed by many 
forest species (Stokland et al. 2012; Gossner et al. 2016; 
Basile et al. 2020; Kaufmann et al. 2021).

TreM abundance and richness in snags 
increased with decay class

TreM abundance and richness were higher on dead than on 
living trees and increased with advancing decay stages. Pre-
vious studies had shown that TreM abundance and richness 
increased with DBH of live habitat trees (Asbeck et al. 2019, 
2021a, 2017; b; Großmann et al. 2018; Paillet et al. 2019). 
The positive effect of tree dimension on TreM occurrence 
was attributed to the indirect effect of tree age and life traits 
because this allows trees more time to accumulate TreMs 
(Asbeck et al. 2021a, b; Kõrkjas et al. 2021). The effect 
could also be a result of an increased surface area, suitable 
for specific TreMs (large cavities, epiphytes, long-lasting 
TreMs on larger snags that decay slowly). Here, we show 
that this relationship is also true for standing dead trees and 
thus confirms the importance of deadwood in large sizes and 
different decay classes in forests (Jonsell et al. 1998; Sii-
tonen 2001; Merganičová et al., 2012). Whether the positive 
effect of DBH on TreM patterns is due to increased surface 
area or due to tree senescence (through age and growth pat-
terns) remains to be analysed for snags in the Black Forest 
region.

Plot‑level TreM provision can be optimized 
by retaining living and dead trees

Our plot-level analysis showed that retention of both dead 
and living habitat trees resulted in an overall better pro-
vision of TreMs than a sole focus on only living or dead 

Reference

Combined

Living

Dead

TreM abundance
0 50 100 0 10 20 30 40

TreM richness

sehcaorppa noit net e
R b

a

a

a

a

c

bb

Fig. 6  The influence of different retention approaches of selecting ten 
potential habitat trees on mean abundance (left) and richness (right) 
of TreMs per one-ha plot: Combined (five living and five dead trees), 
Dead (ten dead trees), Living (ten living habitat trees), Reference (ten 
trees with the highest abundance or highest richness of TreMs irre-
spective of their vitality status)
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habitat trees. Retaining trees with the highest abundance 
and richness of TreMs irrespective of their status would be 
obviously the best approach, assuming that this superior 
result will persist into the medium- to long-term future. 
However, if retention is focused solely on living or dead 
habitat trees, a great number and types of TreMs could 
not be captured. Focusing only on dead trees would also 
carry the risk that TreMs may not be provided for long 
periods owing to the collapse or fall of snags. For example, 
the half-life of snags of congeneric Picea mariana and 
Abies balsamea species in the boreal forest was less than 
20 years (Angers et al. 2010). The approach of combin-
ing both dead and living trees appears to provide abun-
dant, rich and complementary TreMs with a longer time 
horizon.

Several aspects of design and methodology could be 
improved in future studies. In our study, the recording and 
quantification of some TreMs (such as insect galleries, dead-
wood) on dead trees were constrained by the standardized 
TreM catalogue and therefore some TreM groups could not 
be included in the data analysis. In addition, TreM surveys 
following the typology of Larrieu et al. (2018) are less suit-
able on dead trees in advanced decay classes, where cer-
tain TreMs can no longer be found. Using a TreM typology 
suitable for dead trees could lead to different results. By 
comparing the widely used typology of Larrieu et al. (2018) 
with a methodology that includes TreMs relevant to the local 
biodiversity, Kõrkjas et al. (2021) showed that the choice of 
the criteria itself affects the TreM estimates. The plots of 
our study were mostly located in managed forests, where 
there are typically few large dead trees, and living trees 
have an overall low average number of TreMs compared to 
unmanaged forests (Asbeck et al. 2021a, b). In particular, the 
sample size of dead broadleaved trees was small and fitting 
models for individual TreM groups were thus not possible 
due to the low number of observations. In addition, to sepa-
rate clearly between the influence of the tree vitality status 
and species, adequate numbers of each combination of these 
two factors would need to be sampled.

Given these limitations, the recommended combined 
retention approach may be limited to Central European 
montane forests. Additional studies in lower altitude forests 
with higher abundance of dead deciduous trees would be 
needed to assess whether the combination of live and dead 
habitat trees provides for similar complementarity in TreM 
provision. In practice, in the studied plots and in many 
managed forests in Central Europe, standing deadwood 

is generally in low amounts or not present (Vítková et al. 
2018). While TreMs on dead standing trees complement 
those on large living habitat trees, snags should not be used 
to replace selection of live habitat trees or reduce their 
number. Both types of habitat trees support unique TreMs. 
Moreover, the increasing climate change-related mortality 
of large habitat trees (Bennett et al. 2015; Forzieri et al. 
2021) will make it necessary to ensure retaining sufficient 
numbers to compensate for their attrition. Retention of dead 
trees could aid biodiversity conservation efforts, but it can 
also pose a greater operational health and safety hazard than 
retention of large living habitat trees. Therefore, location of 
dead trees to be retained within stands needs careful con-
sideration to minimize risks for forest workers and people 
seeking recreation.

Conclusion

Our study shows that large trees of different species, vital-
ity status and decay class complement, but cannot substi-
tute one another in providing a rich and abundant array of 
TreMs at the plot level. For example, if in the future large 
broadleaved trees face high mortality rates, they could not 
be replaced by dead A. alba trees, even though they had 
the highest abundance and richness of TreMs.

This underlines the need for management to focus 
on the quality of habitat trees of different identities and 
functions for biodiversity conservation. So far, both habi-
tat trees and their TreMs have been mostly accounted for 
in numbers rather than according to functionality and 
complementarity in applied retention approaches. The 
trade-off between retaining large living trees versus suf-
ficient qualities and quantities of standing deadwood 
needs to be considered when disturbances increase the 
mortality of large trees. Our findings emphasize the need 
of selecting trees of different species and vitality sta-
tus to achieve high TreM abundance and richness at the 
stand level and to retain unique TreMs. The larger these 
trees and snags, the higher are their TreM abundance 
and richness.

Appendix

See Tables 3, 4, and 5; Fig. 7
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Table 5  Comparison of TreM abundance and richness of different 
retention approaches

Resulted ranks of the nonparametric rank-based Kruskal–Wallis test 
with Dunn post-hoc tests. Significance codes: ***0.001; **0.01; 
*0.05

Retention 
approach

Combined Living Dead

TreM abun-
dance

Reference 24.82 110.92*** 134.96***
Combined − 86.10*** − 110.15***
Living 24.04

TreM rich-
ness

Reference 42.72* 94.96*** 169.97***
Combined − 52.23** − 127.26***
Living 42.72*

Fig. 7  Estimated abundance (left) and richness (right) for dead trees 
in response to their DBH. Ribbons represent the confidence intervals

https://doi.org/10.1007/s10342-022-01493-1
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