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Abstract
Forest transformation from coniferous monocultures to mixed stands is being promoted worldwide, including the introduction 
of fast-growing broadleaved tree species within native stands. Here, we studied how enrichment of temperate European Scots 
pine (Pinus sylvestris) forest by North-American northern red oak Quercus rubra impacted macronutrient concentrations 
in two long-lived and dominant components of the forest understory: bilberry Vaccinium myrtillus and lingonberry V. vitis-
idaea. Study sites were located in forest complexes (central Poland) which occupy continuously reforested lands (hereafter 
ancient forests) as well as post-agricultural lands (recent forests), all suitable for mesic pine forests. Samples of bilberry and 
lingonberry leaves, stems, and fruits were collected in pine stands and in adjacent Scots pine-red oak stands, in both ancient 
and recent forests. Concentrations of macronutrients (C, N, P, K, Ca, S, and Mg) in aboveground biomass components were 
analysed using standardized chemical procedures. The study revealed intra- and interspecific (bilberry vs. lingonberry) dif-
ferences in concentrations of all nutrients in leaves, stems, and fruits, except for invariable C concentrations. Macronutrient 
accumulations in plants were decreased by land-use discontinuity and favoured by enrichment of tree stands by Q. rubra. 
The estimated macronutrient pools were much higher for V. myrtillus than V. vitis-idaea in all forest types studied. They 
were lower in forests enriched with Q. rubra, both ancient (up to 25.5% for bilberry and 99.9% for lingonberry) and recent 
(46.9% and 99.9%, respectively), as well as in recent pine forest (46.6% and 81.1%, respectively) than in ancient pine forest. 
Higher K and S pools (39.3% and 6.5%, respectively) noted for bilberry in an ancient forest with Q. rubra were exceptions. 
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Despite more effective accumulations of elements at the species level, macronutrient pools of Vaccinium myrtillus and V. 
vitis-idaea decreased significantly in the presence of introduced Q. rubra due to negative impacts of this broadleaved tree 
on bilberry and lingonberry cover and biomass. Therefore, the limitation of alien Q. rubra planting in sites of mesic pine 
forest with the abundant occurrence of V. myrtillus and/or V. vitis-idaea is recommended.

Graphic abstract

Keyword  Coniferous forest transformation · Quercus rubra introduction · Carbon sequestration · Nutrient pools · 
Vaccinium myrtillus · Vaccinium vitis-idaea

Background

Vaccinium myrtillus L., known as bilberry (Nestby et al. 
2011), and V. vitis-idaea L., known as lingonberry or 
cowberry (Luby et al. 1991), are common and dominant 
components of understory layers in temperate and boreal 
forests (Timoshok 2000; Turtiainen et al. 2013; Leusch-
ner and Ellenberg 2017a). These long-lived ericaceous 
dwarf-shrubs play an important role in forest ecosystem 
functioning and yield valuable non-wood forest products 
(Woziwoda et al. 2019a, 2021, and references therein). By 
affecting the restoration of tree seedlings (Maubon et al. 
1995; Jäderlund et al. 1996), they constitute one of the 
major drivers of vegetation dynamics (Nilsson and War-
dle 2005; Kolari et al. 2006). Vaccinium myrtillus and V. 
vitis-idaea successfully colonize coniferous monocul-
tures, including Scots pine (Pinus sylvestris L.) stands 
commonly planted on post-agricultural soils in Europe 
(Matuszkiewicz et al. 2013; Woziwoda et al. 2014b). Both 
species can co-occur at the same sites; however, they differ 
in adaptation to the environment which is reflected mainly 
in their leaf longevity: V. myrtillus is deciduous, and it 
sheds leaves every autumn, while evergreen V. vitis-idaea 
sheds 2–4-year-old leaves irregularly (Ritchie 1955, 1956). 
As V. myrtillus and V. vitis-idaea achieve high cover and 
biomass, they play an important role in ecosystem pro-
ductivity and a regulating role in nutrient fluxes (Eeva 

et al. 2018; Grelet et al. 2001). The concentrations of ele-
ments in bilberry and lingonberry leaves, stems, fruits, and 
rhizomes, however, are modified by site conditions (e.g. 
Fernández-Calvo and Obeso 2004; Zvereva and Kozlov 
2005; Jens et al. 2015; Mikulic-Petkovsek et al. 2015; Par-
zych 2016). Uptake of specific nutrients and accumula-
tion in plants depends on their availability in soils and is 
modified by the co-occurrence of other nutrients (Barker 
and Pilbeam 2007; Marschner 2012). Concentrations of 
elements in plant leaves, stems, and fruits are naturally 
different, as specific biomass components are composed of 
different tissues and different biochemical processes occur 
within them. Furthermore, nutrient concentrations in spe-
cific organs change seasonally (Havas and Kubin 1983; 
Bujor et al. 2018). To avoid nutrient loss with litter, bil-
berry and lingonberry translocate elements from leaves to 
stems and rhizomes, and then, while conditions are favour-
able for growth—re-translocate them to developing tissues 
(Grelet et al. 2001). The most intensive bioaccumulation 
of nutrients in aboveground shoots occurs in the full veg-
etative season, during fruit ripening (Lahdesmaki et al. 
1990). This is also a time for collection of bilberry and 
lingonberry fruits and leaves (a non-wood forest products, 
NWFP), both for domestic as well as industrial use (e.g. 
Turtiainen and Nuutinen 2012; Kilpeläinen et al. 2018).

Current studies on the effects of the North-American 
northern red oak Quercus rubra L. introduction to native 
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European forests revealed strong negative impacts on both 
V. myrtillus (Woziwoda et al. 2019a) and V. vitis-idaea 
(Woziwoda et  al. 2021). We found that the cover and 
aboveground biomass of bilberry and lingonberry were 
significantly lower in mixed Scots pine-northern red oak 
forests than in Scots pine monocultures. Quercus rubra 
suppressed the abundance of understory plants (Woziwoda 
et al. 2014a; Dyderski and Jagodziński 2021), mainly due 
to its significant effects on-site conditions, i.e. on light 
transmittance (Dyderski and Jagodziński 2019) and soil 
physicochemical parameters (Reich et al. 2005; Nicolini 
and Topp 2005; Bonifacio et al. 2015; Stanek et al. 2020). 
The continuity of forest land use also impacted bilberry 
and lingonberry cover and biomass, and differences in 
their abundances were noted in reforested lands (classified 
as ancient forests sensu Peterken 1974) versus afforested 
post-agricultural lands (recent forest). However, it is still 
unknown how these changes affected the chemical compo-
sition of plants. The recognition of nutrient concentrations 
in floral components of the forest understory is of crucial 
importance for the assessment of the effects of man-made 
changes in tree stand composition and land-use form, and 
consequently, for proper forest management. This issue 
requires urgent clarification also because commercially 
important Q. rubra has been commonly underplanted 
in European coniferous forests (Woziwoda et al. 2014c; 
Nicolescu et al. 2020), and at present it spreads spontane-
ously in an uncontrolled way (e.g. Woziwoda et al. 2018, 
2019b; Chmura 2020; Dyderski and Jagodziński 2020a; 
Dyderski et al. 2020). The recognition of macronutrient 
concentrations in V. myrtillus and V. vitis-idaea at the peak 
of the plant’s growing season can be also useful for bil-
berry and lingonberry pickers, dwellers, and consumers.

In this study, we examined concentrations of macronutri-
ents (C, N, P, K, Ca, S, and Mg) in aboveground shoots of V. 
myrtillus and V. vitis-idaea in mesic Scots pine forests and 
Scots pine-northern red oak forests with different land-use 
histories. The question was, are there any general patterns 
in the impacts of former land-use changes and alien tree 
occurrence on bilberry and lingonberry chemical composi-
tion, and especially, does Q. rubra impact species-specific 
bioaccumulation of macronutrients in these long-lived dwarf 
shrubs? If yes, how are they related to environmental factors, 
e.g. to light conditions? And finally, how have the bilberry 
and lingonberry nutrient pools changed in the forest under-
stories of different forest types studied?

Material and methods

The plant material—lingonberry and bilberry shoots, was 
collected in four forest types: ancient pine forest (AFP, 
treated as reference), recent pine forest (RFP), ancient pine 

forest with introduced Quercus rubra (AFQ), and recent pine 
forest with introduced Quercus rubra (RFQ).

Study area

The study site was located in central Poland, in two for-
est complexes: Aleksandrówek (ancient forest; 51.8599° N, 
18.9912° E) and Małyń–Jerwonice (recent forest planted 
about one hundred years ago on former agricultural lands 
excluded from cultivation due to low fertility of soils; 
51.7803° N, 19.0455° E, ca 10 km from the ancient for-
est). The mean annual temperature of this area is 8.4 °C, 
and the mean annual precipitation is 605 mm (Kożuchowski 
2011). Soils of the study sites represent Haplic Podzols in 
the ancient forest, and Albic Brunic Arenosols in the recent 
forest, according to the World Reference Base for Soil 
Resources classification system (WRB 2015). The soils 
developed from Quaternary fluvioglacial sands. They are 
characterized by medium moisture content (despite coarse 
granulation), strongly acidic pH (4–5), and a low abundance 
of nutrients (SHS 2003). Both forest complexes are commer-
cial (timber wood production is the main management goal), 
but also public, with open access for recreational activity 
including free berry picking. The ancient pine forest (AFP) 
is an 86-year-old P. sylvestris monoculture, and it is adjacent 
to a pine forest with Q. rubra (AFQ) intentionally planted 
under a pine canopy a half-century ago. Both ancient forest 
types studied occupy one forest division with a total area of 
12.8 ha, one-third of which has Q. rubra. The recent pine 
forest (RFP) is a 69-year-old monoculture of P. sylvestris 
(2.9 ha), adjacent to a 100-year-old stand of P. sylvestris 
with 35-year-old Q. rubra (RFQ), also intentionally planted 
on the area of 10.95 ha. At present, numerous Q. rubra trees 
form a dense and continuous canopy below crowns of the 
Scots pine trees, both in ancient and recent forest (Table 1, 
Fig. 1).

Juveniles of Q. rubra and other deciduous tree species 
(rowan Sorbus aucuparia, alder buckthorn Frangula alnus, 
silver birch Betula pendula, pedunculate oak Q. robur) occur 
in the shrub layer (b) of the studied forests. The understory 
vascular plant layer (c) is dominated by bilberry and/or lin-
gonberry dwarf shrubs, and in some places—by grasses: 
Deschampsia flexuosa and Festuca ovina. The moss layer 
(d) covers almost all the ground in both pine forests (AFP 
and RFP), while it is sparse in forests with Q. rubra (AFQ 
and RFQ) (Fig. 1).

Light environment estimation

To characterize light conditions in the understory layer, 
we conducted a vegetation survey of 15 randomly sam-
pled plots (100 m2) per forest type, recording all vascu-
lar plant and bryophyte species (see details in Woziwoda 



1502	 European Journal of Forest Research (2021) 140:1499–1514

1 3

et al. 2021). We recorded the cover of each species using 
the Braun-Blanquet (1964) scale. To describe the light 
conditions, we used two indicators widely used in plant 
community ecology: Ellenberg’s light ecological indicator 
value (EIV.L) from Ellenberg and Leuschner (2010) and 
specific leaf area (SLA, expressed in cm2 g−1) obtained 
from the LEDA database (Kleyer et al. 2008) and Paź-
Dyderska et  al. (2020). For each plot, we calculated 
community-weighted mean values of EIV.L and SLA, i.e. 
mean weighted by species cover. For EIV.L, we used data 
for vascular plants and bryophytes and vascular plants 
only, while SLA reflected only the vascular plant commu-
nity. We decided to analyse EIV.L for both vascular plants 
and bryophytes, as the latter dominate the understory in 
AFP and RFP and are also responsive to light availabil-
ity (Dyderski and Jagodziński 2020b). We used one-way 
ANOVA followed by Tukey’s posteriori test to assess the 

differences in EIV.L and SLA community-weighted mean 
values among forest types studied.

Samples collection

Vaccinium myrtillus and V. vitis-idaea aboveground 
shoots (ramets) were collected in June–July (for bil-
berry) and August–September (for lingonberry) 2017, 
in 400 research plots in total (50 research plots, each 
50 × 50 cm in area, set up in the Scots pine forests with 
and without Q. rubra, in each of the two localities, and 
located randomly in clumps of V. myrtillus and V. vitis-
idaea; for more information see Woziwoda et al. 2019a, 
2021). Bilberry and lingonberry sampling in different 
months was necessary due to phenological differences in 
the development of their shoots and berries—in the study 
area, bilberry fruits one month earlier than lingonberry, 

Table 1   Tree stand density, 
mean trunk circumference 
at 1.3 m height (± standard 
deviation) and growing stock 
of the forests studied: ancient 
pine forest (AFP, treated as 
reference), ancient pine forest 
with introduced Quercus rubra 
(AFQ), recent pine forest (RFP) 
and recent pine forest with 
introduced Q. rubra (RFQ)

Data estimates are from field inventories of this study except for growing stock (asterisk), which is from the 
Forest Data Bank (FDB 2018) (data published in Woziwoda et al. 2019a). Tree stand labelling: a1—upper 
tree canopy layer, a2—lower tree canopy layer, b—shrub layer, following Braun-Blanquet (1964)

AFP AFQ RFP RFQ

Tree stand density
Pinus sylvestris (a1)
 Ind. ha−1 693 ± 118 480 ± 168 847 ± 222 613 ± 141
 Trunk circum. (cm) 72.8 ± 13.6 96.5 ± 17.5 78.7 ± 18.0 83.4 ± 15.2

Quercus rubra (a2)
 Ind. ha−1 − 940 ± 555 − 640 ± 558
 Trunk circum. (cm) − 24.5 ± 15.2 − 29.8 ± 8.3

Quercus rubra (b)
 Ind. ha−1 + 500 ± 440 + 250 ± 92
 Trunk circum. (cm) − 10.9 ± 3.9 − 12.7 ± 5.1

*Growing stock (m3 ha−1) 263 263 366 336

Fig. 1   Forest types studied: ancient pine forest (AFP), ancient 
pine forest with introduced Quercus rubra (AFQ), recent pine for-
est (RFP), recent pine forest with introduced Q. rubra (RFQ), and 
their structure described by mean cover of forest layers (the pic-
ture width = 100% cover of the layer): a1—upper tree canopy 
layer, a2—lower tree canopy layer, b—shrub layer, c—herb layer 

(with ericaceous dwarf shrubs), and d—moss layer; and the cover 
(mean ± standard error) of bilberry Vaccinium myrtillus (in blue) and 
lingonberry V. vitis-idaea (in red) noted for each forest type. Data 
were estimated from our field phytosociological studies made follow-
ing Braun-Blanquet (1964)
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and shoots were collected at the peak of the species-spe-
cific fruiting season. Sampling time variation allowed 
us to avoid mistakes connected with seasonal changes in 
nutrient accumulation in specific components (i.e. leaves, 
stems, and fruits) caused by translocation of elements 
within the plant.

Ramets (ten in each plot, randomly chosen) of both 
species studied, separated into stem, leaves, and fruits, 
dried and packed in marked closed polyethylene bags 
(Woziwoda et al. 2019a, 2021), were used for studies. 
For chemical analysis, ten samples of lingonberry and bil-
berry leaves and stems, each at around 10 g of mass, were 
separated from dried material gathered for each of the 
four variants studied (160 samples in total). Ten-gram-
samples contained dried plant material composed from 
samples deposited in subsequently numbered bags. In the 
same way, 40 ten-gram-samples of bilberries (ten sam-
ples for each of four variants) and 20 ten-gram-samples 
of lingonberries (ten samples for each of two pine forest 
variants; in forests with Q. rubra lingonberry did not pro-
duce fruits, Woziwoda et al. 2021) were composited from 
samples of dried berries. Samples of leaves, stems, and 
fruits (biomass components)—220 in total, were sent to 
the laboratory for chemical analysis.

Laboratory analyses

The plant material was homogenized in a laboratory 
grinder (IKA A11, Germany). Until the time of analyses, 
the samples had been kept in leak-proof, closed polyeth-
ylene bags. To determine the total phosphorus and metal-
lic elements, the plant samples (0.5 g) were digested in 
a solution of 65% HNO3 acid and 30% H2O2 (1:1 v/v) in 
a closed system. Then, the samples were supplemented 
with deionized water (Hydrolab, HLP 10, Poland) to a 
volume of 50 ml. The concentration of P was determined 
by spectrophotometry with a molybdenum-blue method 
(5001 Hitachi, Japan). The concentrations of Mg and 
Ca were determined by atomic absorption spectrometry, 
and K was determined by atomic emission spectrometry 
(AAS 2100, PerkinElmer, USA). Element concentrations 
were expressed on a dry weight basis. The wavelengths 
at which the various metals were detected were as fol-
lows: K 766.5 nm, Mg 285.2 nm, and Ca 422.7 nm. The 
tests were carried out following the original standards 
(Merck KGaA, 1 g/1000 mL). All analyses were carried 
out in three replicates, and the samples were represented 
by average values (the variance of the replicates was 
checked, and outliers were skipped). Total concentrations 
of organic C, N, and S were determined by dry combus-
tion using the MacroCube CHNS analyser (Elementar, 
Germany).

Quality assurance/quality control (QA/QC)

The QA/QC of the analytical procedures was carried out 
by analysing the standard certified reference material of 
plants (CRM 060), adopting the same procedures as for the 
analysed samples. The results of the experimental measure-
ments agreed with the recommended reference value mate-
rial. Analysis of most of the elements is accurate within a 
3% analytical error. Recoveries were calculated as a ratio of 
the determined value to the certified one and were within 
the confidence intervals of the certified values. Recoveries 
were as follows: 99 ± 2% (P), 98 ± 3% (K), 98 ± 2% (Mg), 
97 ± 3% (Ca). Birch leaf certified reference material (B2166, 
Elemental Microanalysis) was used to ensure the quality of 
C, N, and S analyses.

Data analyses

All analyses were conducted using R software (R Core Team 
2019). We compared the chemical composition of studied 
plants using redundancy analysis (RDA)—a constrained 
version of principal components analysis. In RDA, we 
used scaled (i.e. subtracting the mean and dividing by SD) 
macronutrient concentration and C:N ratio. As constraints, 
we assumed species, forest variant, and biomass component. 
We conducted RDA using the vegan package (Oksanen et al. 
2018). Before analyses, we ensured that variables are not 
intercorrelated using variance inflation factors. Then, we 
compared the full model with the null model using Akaike’s 
Information Criterion (AIC) and we tried to reduce model 
AIC by reducing the number of variables. We also used vari-
ance partitioning to show how much variability is explained 
by a particular variable.

We calculated the mean concentrations of studied 
macronutrients and mean nutrient masses in plant tissues 
for each treatment. To calculate nutrient pools, we used 
data from previous studies on biomass allocation (Wozi-
woda et al. 2019a, 2021). We used mean biomass alloca-
tion into stems, leaves, and fruits in each forest variant, 
mean ecosystem-level dry biomass, and mean nutrient 
concentrations to obtain a pool of each nutrient for bil-
berry. For lingonberry, we used mean biomasses of com-
ponents, mean lingonberry cover, and mean nutrient con-
centrations to obtain nutrient pools. We referred to AFP 
as a reference, calculating differences connected with 
land-use change (ancient versus recent forest) and with Q. 
rubra (pine versus red oak). We calculated how SE of esti-
m a t i o n  i s  p r o p a g a t e d  f o l l o w i n g : 
SEpool

pool
=

√

SE
x1

x1

2
+

SE
x2

x2

2
+

SE
x3

x3

2
 , where pool—total nutrient 

pool in the ecosystem (mass of a particular element in 
organs of the species studied), × 1– × 3—variables used in 
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calculations, SE—standard error. We used SE instead of 
SD or variance due to uneven sample size, which affects 
error calculations. Then, to show nutrient pools in each 
treatment we summed nutrient pools in each biomass com-
ponent, assuming additive error propagation. We assessed 
the impacts of land-use history and Q. rubra invasion 
using ANOVA. We quantified the influences of both fac-
tors and their interaction using the modEva::varPart() 
function (Barbosa et al. 2013). After ANOVA, we com-
pared the significance of mean values by Tukey posteriori 
tests and we calculated marginal mean values of each treat-
ment using the emmeans package (Lenth 2019). The same 
procedure was applied at the concentration and ecosystem 
level.

Results

Difference in light conditions among forest types

Regardless of the indirect light availability indicator used, 
ANOVA revealed significant differences among forest 
types analysed (F3,56 = 33.72, p < 0.0001 and F3,56 = 10.05, 
p < 0.0001 for EIV.L and SLA, respectively). Considering 
only vascular plant species, the community-weighted mean 
of EIV.L did not differ statistically significantly (F3,56 = 1.84, 
p = 0.151). AFP had the lowest SLA, indicating the high-
est light availability, as well as the highest value of EIV-L. 
RFP did not differ statistically significantly from AFP both 
in terms of EIV-L and SLA community-weighted means. 
Results indicate lower light availability in forests with Q. 
rubra (Table 2).

Table 2   Ranges, mean, and SE values of community-weighted mean 
Ellenberg’s ecological indicator values of light requirements for both 
bryophytes and vascular plants (EIV.L) and vascular plants only 
(EIV.L vascular), and specific leaf area (SLA) of understory vegeta-

tion (n = 15 per variant) in ancient pine forest (AFP), ancient pine for-
est with introduced Quercus rubra (AFQ), recent pine forest (RFP), 
recent pine forest with introduced Q. rubra (RFQ), assessed using 
one-way ANOVA

Variants marked with the same letter did not differ statistically significantly (p > 0.05), according to Tukey’s posteriori test

Variable Variant min mean SE max Tukey test

SLA AFP 119.62 168.96 8.00 221.42 C
AFQ 156.29 239.22 6.28 260.05 A
RFP 129.48 199.01 8.72 240.64 Bc
RFQ 145.88 206.11 11.66 257.34 Ab

EIV.L AFP 5.51 5.76 0.05 6.15 A
AFQ 4.89 5.08 0.04 5.50 C
RFP 5.63 5.78 0.03 6.00 A
RFQ 4.80 5.37 0.10 5.92 B

EIV.L vascular AFP 5.07 5.52 0.10 6.45 A
AFQ 4.76 5.16 0.08 6.25 A
RFP 5.07 5.29 0.07 6.02 A
RFQ 5.00 5.37 0.17 7.00 A

Fig. 2   Redundancy analysis (RDA) showing patterns of macronutri-
ent composition within the studied samples. Points represent samples, 
bold labels—numeric variables, regular font labels—constraining 
factors. Upper-left subplot: Venn diagram representing variance par-
titioning among RDA constraints. RDA AIC = 214.44, AIC of null 
model (without constraints) = 458.47. Significance of constraints fit-
ness: Table 3

Table 3   The fit of environmental traits to redundancy analysis (RDA) 
results evaluated using a PERMANOVA test (999 iterations)

Constraining variable df variance F Pr (> F)

Forest type 3 0.650 18.560 0.001
Species 1 0.467 39.992 0.001
Biomass component 2 4.396 188.231 0.001
Residuals 213 2.487 – –
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Variability of macronutrient concentrations

Analysis of macronutrient concentration patterns showed 
that the main driver of variability was the biomass compo-
nent (leaves, stems, fruits), responsible for 56% of variability 
explained by the model (Fig. 2, Table 3). Species (lingon-
berry or bilberry) and forest type (AFP, AFQ, RFP, RFQ) 
each explained 6% of the variability. The ordination diagram 
revealed a clear distinction between fruits (upper right part 
of the plot) and other components, as well as between leaves 
and stems (between the labels of ‘lingonberry’ and ‘stems’). 
All these factors significantly drove the chemical composi-
tion of berries. We found more samples from pine forests 
with Q. rubra at the left side of the ordination diagram, but 
no differences between ancient and recent forests.

Macronutrient concentrations in biomass 
components: differentiation between species 
and among forest types

For bilberry, we found higher concentrations of macronutri-
ents in leaves than in stems and fruits (Fig. 3). Differences in 
C concentration among forest types were negligible. Higher 
leaf N and K concentrations, as well as lower C:N ratios, 
were noted in V. myrtillus from the recent pine forest and 
both pine forests with Q. rubra than from ancient pine forest. 
The concentration of P was the highest in leaves of bilberry 
from the recent pine forest and ancient pine forest with Q. 
rubra. In stems, we found the highest N and Ca concentra-
tions in RFP, while stem K concentration was higher in AFQ 
than in the other three forest types. Concentrations of N, S, 
K, and Mg in fruits were also higher in AFQ than in other 
forest types.

The presence of Q. rubra was the most important factor 
for most leaf nutrients studied, while stem nutrients were 
more affected by land-use history (Fig. 4). Q. rubra mostly 
affected S and Mg concentrations all biomass components 
of bilberry, as well as leaf N, K, and Ca concentrations, 
while land-use change mostly affected stem N, K, and Ca 
concentrations, as well as stem C:N ratio.

For lingonberry, we found higher concentrations of 
macronutrients in leaves than stems, except C, for which 
concentrations were aligned (Fig. 5). In pine forests with 
Q. rubra (AFQ and RFQ), we found higher N and S leaf 
concentrations, and lower C:N ratio and P concentration (in 
AFQ only) than in pine forests. Leaf K concentration was 
higher in AFQ than in other forest types. We also found 
lower stem N concentrations in RFQ than in the other three 
forest types, as well as lower stem K concentration in recent 
than in ancient forests.

Leaf macronutrient concentrations were more affected by 
Q. rubra than by land-use change (Fig. 4), especially for N, 
S, and P concentrations, and C:N ratio. To a lesser degree, 

this factor also affected stem macronutrient concentrations 
(Mg, Ca, S, P, and N), as well as C:N ratio. Stem K concen-
tration, however, was mostly affected by land-use change. 
Vaccinium vitis-idaea did not produce berries in pine for-
ests with Q. rubra, both ancient and recent (Woziwoda 
et al. 2021), so macronutrient concentrations in lingonber-
ries were the most affected by this species (Q. rubra limited 
allocation of elements in fruits to zero). Fruit macronutrient 
concentrations in both pine forests were more affected by 
land-use change than leaf and stem concentrations (Fig. 4).

Nutrient pools in forest understory

The estimated macronutrient pools were much higher for 
V. myrtillus than V. vitis-idaea in all forest types studied 
(Table 4). Land-use change and Q. rubra affected nutrient 
pools of lingonberry more (up to 99.9%) than bilberry (up 
to 46.9%; Table 4). Land-use change decreased (in compari-
son with AFP) the P pool in bilberry more than Q. rubra, 
but increased K and S pools, in comparison with ancient 
pine forest (39.3% and 6.5%, respectively). However, for 
bilberry, the highest nutrient pool decreases were found in 
the recent pine forest with Q. rubra, with the C and P pools 
most affected (46.5% and 46.9% lower, respectively). For 
lingonberry, the extremely high decreases in nutrient pools 
(for all elements studied) were found in both forests with Q. 
rubra (Table 4). The lowest decreases (but still exceeding 
70%) were found in the recent pine forest, with the S and C 
pools least affected (73.2% and 75.6% lower, respectively) 
and Ca and Mg pools most affected (81.1% and 80.6% lower, 
respectively).

Discussion

In line with our expectations, the biomass components were 
the main drivers of the variability of nutrient concentrations. 
The low species-specific differences in macronutrient con-
centrations were also expected as both species studied are 
congeneric. However, species-specific differences occurred, 
as the species studied differ in life strategy (deciduous vs. 
evergreen), which is reflected in their chemical composi-
tion (Grelet et al. 2001; Barker and Bryson 2007). The most 
important differences in species-specific macronutrient con-
centrations revealed here were those indicating the different 
reactions of V. myrtillus and V. vitis-idaea to changes in light 
condition after deciduous tree introduction and past changes 
in land use (ancient vs. recent forests). Differences in macro-
nutrient concentrations in plant species studied could also 
result from nutrient availability in soils or modifications 
of nutrient uptake due to the occurrence of other elements 
(Barker and Pilbeam 2007; Marschner 2012); further studies 
are needed.
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Vaccinium myrtillus and V. vitis-idaea shoots were mainly 
composed of carbon, and so its high concentration (nearly 
50% of dry mass) was expected. No intra- and interspe-
cific differences in C concentration were found in bilberry 
and lingonberry leaves, stems, or fruits, both within and 

between mesic pine forest types studied. However, results of 
this study combined with our earlier data (Woziwoda et al. 
2019a, 2021) revealed the important roles of V. myrtillus and 
V. vitis-idaea in C sequestration and storage in the Scots pine 
forest ecosystems, consistent with data from other European 

Fig. 3   Mean (+ SE) concentra-
tions of macronutrients and C:N 
ratios in Vaccinium myrtillus 
growing in four forest types: 
AFP—ancient pine forest, 
AFQ—ancient pine forest with 
introduced Q. rubra, RFP—
recent pine forest, RFQ—recent 
pine forest with introduced Q. 
rubra. Groups denoted by the 
same letters did not differ sta-
tistically significantly (p < 0.05) 
according to the Tukey poste-
riori tests. For models—see 
Appendix A



1507European Journal of Forest Research (2021) 140:1499–1514	

1 3

coniferous forests (Nilsson and Wardle 2005; Kolari et al. 
2006; Rodriguez and Kouki 2015). As bilberry colonizes 
recent forests faster than lingonberry (Matuszkiewicz et al. 
2013) and is more resistant to negative impacts of introduced 
alien oak (Woziwoda et al. 2014a, 2019a), it seemed to be 
more important for C storage. Indeed, the estimated C pool 
of aboveground shoots of V. myrtillus was eight times higher 
in pine monoculture planted on post-agricultural soil, and 
multiple times higher in both recent and ancient forests with 
Q. rubra, than V. vitis-idaea C pools (Table 4). Moreover, in 
reference plots (ancient pine forest) the estimated C pool of 
V. myrtillus was also more than three times higher than the 
V. vitis-idaea C pool.

The different concentrations of the next major ele-
ment—nitrogen, noted in leaves, stems, and fruits were 
also expected (Barker and Bryson 2007; Marschner 2012). 
However, we found that whole aboveground shoots of V. 
myrtillus in recent forest and V. vitis-idaea in the ancient 
and recent forests contained less N in stands with Q. rubra 
than in pure Scots pine stands. The highest N concentra-
tion in leaves in mixed stands was linked with lower expo-
sure of plants to sunlight (see Table 2), and light conditions 
strongly affect the growth, performance, and chemical com-
position of bilberry and lingonberry plants (Sjönberg et al. 
after Atlegrim 1989; Messier et al. 1998; Frelich et al. 2003; 
Uleberg et al. 2012; Nestby et al. 2011, 2014b). Both species 
studied react to decreases in light availability by specific 
leaf area (SLA) increases (Paź-Dyderska et al. 2020), and 
SLA is positively correlated with N concentration (Wright 
et al. 2004; Díaz et al. 2016). Higher N concentration noted 
in bilberry than lingonberry leaves can also result from the 

tendency of N to concentrate in the most intensively growing 
points of the plant (Tegeder and Masclaux-Daubresse 2018), 
i.e. in deciduous bilberry leaves. N accumulated in plants 
is naturally re-used by them in growing tissues. However, 
within-plant N management varies depending on whether 
the plant is evergreen (lingonberry) or deciduous (bilberry) 
(Barker and Bryson 2007). Vaccinium myrtillus remobilizes 
N to intensively growing deciduous leaves and new shoots 
from previous year stems and roots, while V. vitis-idaea 
retranslocates N predominately from previous year ever-
green leaves (Grelet et al. 2001). Moreover, N remobiliza-
tion from older lingonberry leaves to new ones occurs slowly 
during the vegetative season, while remobilization of N from 
long-lived bilberry stems and roots to seasonal leaves occurs 
faster. All these facts resulted in higher N concentrations 
noted in lingonberry stems than leaves in both pine for-
ests, while in mixed forests more N was noted in leaves, as 
leaves are bigger there (Paź-Dyderska et al. 2020) and grow 
more intensively. However, intraspecific SLA plasticity in 
V. vitis-idaea is low (Paź-Dyderska et al. 2020), and this 
evolutionary incapacity can be responsible for lingonberry 
decline after broadleaved tree planting (or their spontane-
ous encroachment) (Woziwoda et al. 2018) in the Scots pine 
stands. Admittedly, slow biomass turnover supports efficient 
internal N-cycling and favours N accumulation (Grelet et al. 
2001); however, lingonberry shoots contained less N than 
bilberry shoots. Results of this study confirmed that V. myr-
tillus more effectively uptakes nutrients from the soil than 
V. vitis-idaea (Sjönberg et al. after Atlegrim 1989; Parzych 
2016). The lower N concentrations in whole (aboveground) 
shoots found in mixed forests than in pine forests could also 

Fig. 4   The proportion of 
variance explained by Q. rubra, 
land-use change (ancient-recent 
forest), and their interactions 
in models of macronutrient 
concentrations and C:N ratios 
in bilberry Vaccinium myrtillus 
and lingonberry V. vitis-idaea. 
For models—see Appendix A
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result from lower N availability, as even fertile forest soils 
are impoverished in N in the presence of Q. rubra (Nicolini 
and Topp 2005; Stanek et al. 2020).

Nitrogen, along with phosphorus and sulphur, is pre-
sent mainly as a constituent of nucleic acids and fatty 

phospholipids, and all of these elements are accumu-
lated mainly at intensively growing green parts of plants 
(Haneklaus et al. 2007). The uptake and assimilation of N, S, 
and P by plants are strongly interrelated and dependent upon 
each other (Haneklaus et al. 2007; Sanchez 2007). Sulphur is 

Fig. 5   Mean (+ SE) concentra-
tions of macronutrients and C:N 
ratios in lingonberry Vaccinium 
vitis-idaea growing in four 
forest types: AFP—ancient 
pine forest, AFQ—ancient 
pine forest with introduced Q. 
rubra, RFP—recent pine forest, 
RFQ—recent pine forest with 
introduced Q. rubra. Groups 
denoted by the same letters did 
not differ statistically signifi-
cantly (p < 0.05) according to 
the Tukey posteriori tests. For 
models—see Appendix A
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essential for chloroplast growth and function; it is a compo-
nent of the iron–sulphur complexes of the electron transport 
chains in photosynthesis (Haneklaus et al. 2007). We found 
that Q. rubra occurrence favoured S accumulation both in V. 
myrtillus and V. vitis-idaea leaves, irrespective of the forest 
land-use history. The noted high S concentrations in bilberry 
and lingonberry fruits were expected as the sulphur-contain-
ing amino acids (cysteine and methionine) are present at 
high levels in seed storage proteins (Tabatabai 1986).

Uptake of the next element—phosphorus—from the soil 
is positively correlated with N uptake (Marschner 2012), 
and high N and P availability in soils increases bilberry 
fruit yield and shoot growth (Nestby et al. 2014a). How-
ever, intensive plant growth and fruiting occur only if both 
elements are available in high amounts or eventually high N 
concentration is noted, while even high P with low N avail-
ability is insufficient for proper plant development (Nestby 
et al. 2014a). Our study showed that in the presence of Q. 
rubra, V. myrtillus increased P accumulation in the ancient 
forest, but decreased it in the recent forest, while V. vitis-
idaea had decreased P accumulations in the presence of oak 
in both recent and ancient forests. The higher P concentra-
tion in bilberry plants growing under the closed pine-red 
oak canopy can be related to more intensive photosynthesis 
in sites with denser shade, and P is involved in this process 
(Van Heerwaarden et al. 2003). A large amount of P is natu-
rally stored within seeds in anticipation of their germination, 
so more P noted in bilberries in recent pine forest without 
than with Q. rubra can be explained by limited seed set 
production in dense shade conditions (Eckerter et al. 2019). 
However, higher P concentration in fruits collected in an 
ancient forest with Q. rubra than in an ancient pine forest 
contradicts this theory (unless bilberries from ancient forest 
contained more seeds; further studies are necessary).

Potassium, unlike other major elements, does not enter 
into the composition of any of the important plant constitu-
ents, but it is involved in numerous metabolic processes, and 
it usually occurs in all biomass components in substantial 
amounts (Marschner 2012). Regulating internal plant mois-
ture and being involved in maintaining the water status of 
the plant by control of the turgor pressure of plant cells and 
the opening and closing of its stomata, K is an essential con-
tributor to photosynthesis and respiration (White and Karley 
2010). The aforementioned functions explain much higher K 
concentration in V. myrtillus and V. vitis-idaea leaves than 
stems, as well as its higher concentration in bilberry shoots 
collected in forests with than without Q. rubra (Figs. 3, 
5). The latter is interesting, as forest soils occupied by Q. 
rubra are strongly impoverished in K (Nicolini and Topp 
2005; Stanek et al. 2020). We hypothesise that the noted 
soil impoverishment can result not only from more inten-
sive nutrient uptake by Q. rubra—as was stated in previous 
studies—but also due to increased absorption of elements 

by native understory “survivors” (further study is needed). 
Thin bilberry leaves contained more than twice as much K 
than lingonberry leaves, and much higher K bioaccumula-
tion in thin than leathery leaves was expected, although both 
species responded to increased loss of moisture in low light 
habitats (Leuschner and Ellenberg 2017b) by SLA increase 
(Paź-Dyderska et al. 2020). The high K concentrations in 
bilberry and lingonberry berries (Figs. 3, 5) resulted in turn 
from substantial participation of this element in natural pro-
cesses of fruit ripening and coloration (Upton 2001; Chu 
et al. 2011).

The high magnesium concentrations in leaves of both spe-
cies, slightly higher for deciduous bilberry, are explained 
by the role of Mg in plants (an important constituent of 
the chlorophyll molecule and effective activator in numer-
ous enzyme reactions closely related to energy-supplying 
P-compounds; Marschner 2012). Higher Mg concentration 
in shoots collected in mixed than pine forests (except lin-
gonberry in the ancient pine forest) can also be explained 
by more intensive photosynthesis ongoing in plants in light 
deficiency under a closed canopy. The lower Mg concentra-
tion in the whole lingonberry shoots from mixed pine-oak 
stands than those from pine monocultures can result from 
the lack of fruits in the former (Woziwoda et al. 2021), as 
during fruit ripening magnesium is remobilized from vegeta-
tive to reproductive tissues (Merhaut 2007). Fruiting limita-
tion in the ancient forest, however, did not change Mg bioac-
cumulation in lingonberry vegetative organs, while in recent 
forests Mg concentrations in leaves and stems were slightly 
higher in forests with than without Q. rubra.

Both N absorption from the soil to the plant as well as K 
transport within are regulated by calcium availability, and 
the more N and K, the more Ca in plant tissues (Marschner 
2012). This element is a constituent of cell walls, especially 
in leaves (Vergutz et al. 2012) and, like Mg, it is involved 
(among others) in the activation of enzymes necessary for 
photosynthesis, hence, the naturally high amounts of Ca 
found in green biomass components of both species. High 
amounts of Ca in long-living plant parts like stems or ever-
green (lingonberry) leaves are explained by its tendency 
to accumulate in plants with plant age (Marschner 2012). 
However, more than twice as much Ca was found in bilberry 
than in lingonberry leaves, and the highest Ca concentra-
tion was noted in V. myrtillus growing in the recent pine 
forest with Q. rubra. It can be connected to species-specific 
leaf structure (thinner in bilberry while thicker and leathery 
in lingonberry) and site-specific rate of water circulation. 
Calcium ions (immobile in a plant) are transported from 
the soil to the plant tissues with water by the xylem sys-
tem. Thinner leaves transpire faster, and in sites with dense 
shade plant transpiration accelerates (Sjönberg et al., after 
Atlegrim 1989; Leuschner and Ellenberg 2017b). Faster 
transpiration means faster water movement within a plant, 
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and consequently more intensive Ca uptake (but see: Pil-
beam and Morlay 2007). For lingonberry, rapid Ca uptake 
in high amounts is a very marked characteristic of nutrient 
absorption (Ingestad 2006). Higher Ca concentration noted 
in V. vitis-idaea stems in ancient pine forests may be in turn 
linked with the lingonberry strategy for specific biomass 
accumulation during generative reproduction. In the pre-
vious study (Woziwoda et al. 2021), we found that some 
fruiting shoots (noted exclusively in pine stands without Q. 
rubra) almost completely reduced their leaf biomass. Con-
sequently, the plant transpiration and photosynthesis had to 
be “taken over” by green stems which resulted in higher Ca 
accumulation within.

We are aware that conclusions drawn from our study 
might be biased by the low replicability (connected with 
very high labour demand)—each forest type is represented 
by only one study site, and research plots are probably not 
independent. This may limit the transferability of the results, 
and one should be cautious when inferring results and con-
clusions for other forests. However, despite the lack of rep-
lications, assessments of the effects of introduced (invasive) 
woody species on the biomass of native plants in forests 
with different histories of land use are scarce, and our study 
provides novel data that could be used in designing further 
researches. Lingonberry and bilberry plant biomass com-
ponents were not separated into the current growing season 
and older parts of stems and leaves, so results show both 
long-term and one-season accumulations of nutrients in 
long-lived stems and evergreen lingonberry leaves, as well 
as one-season accumulations of nutrients in deciduous bil-
berry leaves, and fruits of both species.

The second disadvantage of the study is a lack of direct 
light availability measurements, as light availability is a cru-
cial factor determining plant biomass and nutrient alloca-
tion (Karolewski et al. 2013; Czapiewska et al. 2019). How-
ever, we used indirect methods, based on functional traits 
and indicator values of plants (Ellenberg and Leuschner 
2010), that are related to light availability (Dzwonko 2001; 
Jagodziński et al. 2016). As we used vegetation surveys, 
we assessed community-based responses that neglected 
intraspecific variability of particular species (Paź-Dyderska 
et al. 2020), but provided an average response of all spe-
cies, weighted by their abundance. Moreover, SLA has 
higher inter- than intraspecific variability (Paź-Dyderska 
et al. 2020) that allows for conclusions on plant community 
characteristics. We found a lack of differences among forest 
types in EIV.L for vascular plants only, but including bryo-
phytes in the analysis revealed higher EIV.L in forest types 
without Q. rubra. Lack of differences accounting for vascu-
lar plants results from the low cover of the herbaceous layer, 
and therefore lower species richness. Bryophytes seem to 
be more sensitive to the limitation of light availability than 
vascular plants, similarly as in a multi-comparison study on 

invasive tree species effects on bryophytes (Dyderski and 
Jagodziński 2020b). Our results confirmed previous findings 
of shading by red oak (Niinemets 2010; Jagodziński et al. 
2018; Dyderski et al. 2020). However, the ability of Q. rubra 
to shade the understory is not connected with its functional 
advantage, but rather with its ability to grow beneath a P. 
sylvestris canopy (Dyderski and Jagodziński 2019). There-
fore, the effect of Q. rubra can be similar to native oak spe-
cies. For example, in Western Poland stands with Q. rubra 
transmitted 3.9 ± 0.5% of open-sky light, stands with Q. pet-
raea transmitted 5.7 ± 0.6%, while non-invaded P. sylvestris 
stands transmitted 10.2 ± 1.8% of full light (Dyderski and 
Jagodziński 2020a).

However, as Q. rubra is classified in Poland and other 
European countries as an invasive alien species (Dyderski 
et al. 2020, and references therein), the effects of its intro-
duction require more attention than of other broadleaved 
(native) species occurrence. Admittedly Q. rubra planting 
in Polish forests is currently limited, but it still can be used 
in the transformation of recent Scots pine forests occupying 
post-agricultural soils to mixed forests. Moreover, mature 
red oak trees already occur in high numbers in numerous 
localities in forests (Woziwoda et al. 2014a, b, c), and Q. 
rubra spreads effectively in an uncontrolled way (Woziwoda 
et al. 2018, 2019b; Chmura 2020; Dyderski and Jagodziński 
2020a). Our earlier studies indicated that V. myrtillus and V. 
vitis-idaea declined in Q. rubra presence (Woziwoda et al. 
2019a, 2021). Decreases in macronutrient pools revealed 
here for bilberry and lingonberry confirm earlier observa-
tions on strong negative effects of this alien tree introduction 
both on native flora and (consequently) NWFP availabil-
ity (Woziwoda et al. 2019a, 2021). Differences in nutrient 
concentrations found for V. myrtillus and V. vitis-idaea in 
the Scots pine and Scots pine-red oak forests result from 
changes in abiotic conditions caused by underplanting 
broadleaved tree species. Decreases in macronutrient pools 
indicate changes in nutrient accumulations in forest under-
stories which can have far-reaching consequences for nutri-
ent cycling within forest ecosystems. Therefore, we suggest 
controlling the occurrence of alien Q. rubra (as well as other 
broadleaved species) in pine monocultures and limiting its 
underplanting in Scots pine monocultures, especially in 
areas with abundant V. myrtillus and V. vitis-idaea.

Conclusions

Forest land-use discontinuity and enrichment of the Scots pine 
monocultures with Q. rubra significantly affected macronutri-
ent bioaccumulation in aboveground shoots of V. myrtillus and 
V. vitis-idaea. We found intra- and interspecific (bilberry vs. 
lingonberry) differences in N, S, P, K, Ca, and Mg concentra-
tions and no differences in C concentrations in bilberry and 
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lingonberry leaves, stems, and fruits. Forest land-use continu-
ity favoured the accumulation of nutrients in Vaccinium myr-
tillus and V. vitis-idaea aboveground biomass components, 
except P in bilberry. Macronutrient concentrations were also 
higher in both species in pine forests “enriched” with Q. rubra, 
both recent and ancient. However, despite the more effective 
accumulation of elements in Q. rubra presence at the spe-
cies level, at the ecosystem level macronutrient pools of V. 
myrtillus and V. vitis-idaea were significantly lower, and the 
decreases noted resulted from significant changes in bilberry 
and lingonberry cover and biomass, as a response of both spe-
cies on forest stand transformation. Therefore, the limitation of 
Q. rubra occurrence in mesic Scots pine forests in areas with 
abundant bilberry and lingonberry cover is recommended.
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