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Abstract
Forest resource data is important in targeting the forestry operations, and it is in the hearth of the precision forestry con-
cept. The forest resource data can be produced with many techniques, and the number of existing forest data sources has 
increased during the years. In addition to the forest resource data, other data describing the circumstances of the forest site, 
such as trafficability and weather conditions, are available. In Finland, a forest data platform gathers the data sources under 
a single service for easier implementation of the precision forestry applications. This data is useful in operations planning, 
but it also describes the conditions that prevail when the forest machine arrives to the forest site. This study proposes data 
fusion between fieldbus time series of the forest machine and the forest data. The fused dataset enables explorative statisti-
cal analysis for examining the relationship between the machine performance and the forest attributes and provides data for 
building predictive models between the two. The presented methods are applied into a dataset generated from a field test data. 
The results show that some fieldbus time series features are predictable from forest attributes with R2 value over 0.80, and 
clustering methods help in interpreting the machine behavior in different environments. In addition, an idea for generating 
a new forest data source to the forest data platform based on the fusion is discussed.
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Introduction

In precision forestry, a wide range of data sources is utilized 
to generate accurate information about the state of the for-
est at a given location. This information is mainly for forest 
resource management and decision support systems in the 
wood procurement process for targeting forestry operations 
(Fardusi et al. 2017; Gülci et al. 2015). Detailed and timely 
information about forest parameters is collected primarily 
with remote sensing technologies, such as airborne laser 
scanning (ALS), aerial photography and satellite imagery 
methods (Holopainen et al. 2014; Mason et al. 2016; Fardusi 
et al. 2017). Forest machines, in particular the cut-to-length 

(CTL) machinery, are able to gather the forest parameters as 
the tree dimensions are measured during the tree harvesting 
(Lindroos et al. 2015; Mason et al. 2016; Lu et al. 2018). The 
environment sensing capabilities of the forest machines at 
forest site can be extended by equipping them with mobile 
laser scanners (MLS) or different types of cameras (Mel-
ander and Ritala 2018; Salmivaara et al. 2018; Holopainen 
et al. 2014). Furthermore, the current state estimate of the 
forest for precision forestry operations can be updated with 
data from other geographical information systems (GIS), 
such as soil topography and weather databases (Mason et al. 
2016; Salmivaara et al. 2017).

The data sources for precision forestry, described above, 
are very homogenous in terms of the representation and the 
availability. In Finland, these data sources are being col-
lected under a forest Big Data platform for easier implemen-
tation of new precision forestry applications (Hämäläinen 
2016; Venäläinen et  al. 2015; Rajala and Ritala 2016). 
This platform is intended to be publicly available in near 
future, but currently it is still in a development phase with a 
restricted access. The platform has a single interface where 
a client application can retrieve forest-related data originally 
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residing in many separate databases. The client can freely 
request any number of data sources for a given forest area in 
Finland, and the platform returns a single fused dataset con-
taining the data in standardized grid cells. The grid cell size 
adopted in the platform is 16 m × 16 m. At the time of writ-
ing, there was data from 10 open sources available through 
the platform implementation. The platform includes for 
example forest inventory data (Finnish Forest Center 2019; 
Luke Natural Resource Institute of Finland 2019), land sur-
vey data (National Land Survey of Finland 2019), weather 
reports and predictions (Finnish Meteorological Institute 
2019), other smaller datasets like forest classification based 
on changes in the Sentinel-2 satellite images, and metadata 
like Finnish municipality borders. The geographical area 
covered is wide; values of many forest attributes are avail-
able throughout Finland. The interface is built for automatic 
retrieval of the forest data, enabling easier implementation 
of new services in precision forestry framework. In addi-
tion, the platform supports custom data sources generated 
by the client applications. For instance, forest machine data, 
harvesting locations or forest parameters measured by the 
harvester could be uploaded to the platform as private or 
public data.

Harvesters and forwarders, used in the CTL framework, 
measure extensively parameters related to their own perfor-
mance and the wood procurement process. The automation 
layer of the CTL machine consists of a fieldbus system that 
connects all the related units, such as actuators, sensors and 
controllers together, forming a distributed control system. 
The control system constantly produces and processes hun-
dreds of signals related to the vehicle engine, transmission 
and harvester head performance and control, and to the pro-
duction. The control system and the human operator inter-
act through the on-board IT system of the forest machine, 
which also produces standard production and performance 
data based on the measurements during the work. This data 
can be transferred from the IT system of the forest machine 
to other wood procurement IT systems via mobile networks, 
offering a source of information about the visited forest site 
and the executed work (Olivera and Visser 2016; Strandgard 
et al. 2013). The CTL forest machines have an on-board 
Global Navigation Satellite System (GNSS) receiver that 
constantly records the geospatial coordinates of the machine, 
thus enabling the positioning of the recorded data. For preci-
sion forestry, the positioned harvester data can be fused with 
the GIS data sources, for example remotely sensed forest 
inventories (Lu et al. 2018). With such fused data, the inter-
actions between the machine performance and environment 
can be better understood, thus expanding the usefulness of 
harvester data beyond collection of forest parameters. For 
example, Eriksson and Lindroos (2014) and Obi and Visser 
(2017) have analyzed the production and the performance 
data to learn the effect of the working environment on the 

logging performance. Most notably, they found that the stem 
size, the forest terrain and the size of the operation signifi-
cantly affect the harvester productivity. However, detailed 
analysis of the machine behavior in different environments 
requires fieldbus data. Although the forest machines have 
quite good communication capabilities, neither time series 
of fieldbus variables nor their summaries are automatically 
recorded for later investigation. As the number of variables 
available on the fieldbus is high, recording all the variables 
at a high sampling rate is not feasible due to the limited 
communications network bandwidth. Hence, the fieldbus 
time series must be either analyzed and summarized at the 
on-board computer or collected for a limited test period and 
possible limiting the number of signals. Examples of the 
latter exist in literature; for example, in field tests of Suvinen 
and Saarilahti (2006) and Ala-Ilomäki et al. (2012) variables 
from the forest machine fieldbus were collected over a lim-
ited period of time and then analyzed offline together with 
the environmental data. These authors focus on modeling 
the relationship between certain machine variables and the 
environmental data for trafficability and have found that the 
motion resistance measured from the fieldbus variables has 
a connection to the resulting wheel rut depth.

Many studies on the effect of the working environment 
on the forest machine operation have been published (see, 
e.g., Han et al. 2006; Häggström and Lindroos 2016; Obi 
and Visser 2017; Sirén et al. 2019). Recent research shows 
that the operator can significantly affect the forest machine 
performance by setting appropriate machine parameter val-
ues for the given environment (Prinz et al. 2018). It was 
found that in particular harvester fuel consumption can be 
reduced, if the settings of the machine are manipulated cor-
rectly. Currently, forest machines calculate locally a set of 
performance indicators from the fieldbus time series, which 
can help the operator to tune the machine parameters. How-
ever, such performance indicators ignore the effect the envi-
ronment causes. Fusion of forest machine signals, produced 
during the normal logging work, and the nation-wide for-
est platform data would provide automatically forestry Big 
Data that allows data analysis methods and machine learn-
ing algorithms reveal useful machine–environment relation-
ships. Should a set of forest parameters be clearly related to 
a level of a particular machine signal, valuable information 
for both forest machine development and forest operations 
planning would be obtained.

The current paper presents how machine data and forest 
platform data are fused and analyzed in field tests. Initial 
findings resulting from the automatic data fusion of two 
completely different data sources in forestry domain are 
presented. The detailed aims of this paper are: (1) to pre-
sent an automated data fusion approach that combines for-
est resource data to fieldbus time series data of the forestry 
machine; (2) analysis of the forestry equipment and forest 



215European Journal of Forest Research (2020) 139:213–227	

1 3

environment interactions in the fused data; and (3) discuss 
the opportunities of such data fusion and storing summa-
ries of forest machinery data in the platform as a private or 
public data source.

Materials and methods

Fusion of forest data

The forest data platform offers possibility to request only 
the data sources that are important for the client applica-
tion. It is in a pilot stage, and new data sources are being 
added continuously. This study analyzes forest inventory 
data produced by the Finnish Forest Center, which is avail-
able for the field test site. In addition, land survey data were 
included in the dataset. The client queries the platform in 
JSON (JavaScript Object Notation), defining the geographic 
area of the data to be retrieved, the data sources and the data 
tags within the sources. The area is expressed as a GeoJSON 
multi-polygon, and the platform returns the requested data 
for each 16 m × 16 m grid cell intersecting the given poly-
gon. The platform returns the data as CSV files (Comma 
Separated Values), so that an individual Finnish (ETRS-
TM35FIN) map sheet (size 24 km × 48 km) generates one 
CSV file. In the data, a grid cell is represented as a single 
row, with an identifying grid number, and values of each 
forest parameter in its columns.

The fieldbus data of a harvester (Ponsse Scorpion King) 
and a forwarder (Ponsse Elk) were collected during field 
tests in Vihti region in Finland in May 2016. The data con-
sists of 22 signal channels (time series) recorded 4.5 h for the 
harvester and 2.75 h for the forwarder. The tests consisted of 
harvester and forwarder runs on the same forest path. The 
harvester first opened the path, conducting an ordinary thin-
ning operation, and the forwarder followed the route with a 
constant tree load. The forwarder run was repeated several 
times in selected parts of the test track. The dataset has been 
the basis of research on rut formation and measurements (see 
Salmivaara et al. 2018; Sirén et al. 2019), which specifies 
the test run environment and conditions, not repeated here. 
In this study, seven fieldbus channels related to the diesel 
engine, transmission and cooling of the forest machine were 
analyzed together with forestry data. Hereafter, the field-
bus signals are referred to collectively ‘System signals’ in 
this paper, only the traveling speed and fuel consumption 
are separately labeled. System signals 1 and 3 are the rota-
tional speeds of the hydrostatic drive motor and the diesel 
engine, respectively. System signal 2 is the torque of the 
diesel engine, and the signals 4 and 5 are the control signals 
of the hydraulic motor and the cooling unit. The sampling 
time throughout the fieldbus data collection was 20 ms. The 
GNSS (Global Navigation Satellite System) receiver of the 

forest machine recorded the location for each time instant 
of the fieldbus data, although with a higher sampling time 
of one second. Such data will be referred to as positioned 
time series.

The data fusion between the forest data and the field-
bus signals is initialized by requesting the forest data for 
the area where the machine has been operating. The cor-
respondence between the forest and the fieldbus data points 
is determined based on the location information given in 
the platform for the grid cells and by the forest machine 
positioned time series data. The forest data provided by the 
platform is static in the time scales of forest machine runs. 
As the forest data is given as 16 m × 16 m grid cells, the 
fieldbus time series data must be mapped on the same cells. 
Therefore, the second task in the data fusion operation is to 
label each time instant in the fieldbus dataset with the grid 
identification number associated to the recorded location at 
that time instant. This is referred to as grid-positioned time 
series. Thus each grid cell is associated with grid episodes, 
which represent machine operation at the cell. A grid epi-
sode is a subsequence of the total fieldbus time series, and 
the length varies from cell to cell depending on the dura-
tion the machine has spent in that cell (Fig. 1). Note that a 
grid cell may have several grid episodes associated to it, if 
the forest machine returns to a cell that was already visited 
earlier.

A grid episode includes all executed machine opera-
tions, such as driving forward or cutting a tree. To analyze 
the effect of the environment to a particular operation, the 
grid episodes need to be divided further. In this study, 
the driving motion of the machine was separated from the 
in-place work of the harvester and the forwarder based 
on a fieldbus signal that indicates whether the driver has 
enabled a brake for the in-place work. This breaks the 
grid episodes into several sub-episodes, as there can be 

Fig. 1   A forest machine route divided according to the grid cells of 
the forest data. Change in color indicates change in the grid episode
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multiple in-place working points within a grid cell, and 
the average length of sub-episodes is naturally shorter. 
Figure 2a shows an example of the sub-episodes resulting 
from the driving motion. Here, each sub-episode holds a 
subsequence of fieldbus time series of varying length. Due 
to the effect of forest canopies to the performance of the 
GNSS receiver, the route seems slightly erratic and inter-
mittent. Obviously, formation and selection of the sub-
episodes is according to the research question addressed 
and Fig. 2a serves only as an example.

To generate useful datasets for statistical analysis and 
machine learning algorithms, the varying-length sub-epi-
sodes are sampled several times with a constant time win-
dow that is shorter than the original sub-episode. In this pro-
cess, the starting point of each constant-length sub-episode 
(CLSE) is chosen uniformly randomly within the duration 
of the sub-episode, leading to a set of constant-length sub-
episodes that can be overlapped. In this study, the number 
of the CLSE’s per sub-episode was set so that the sum of the 
CLSE lengths corresponds to the length of the original sub-
episode being sampled. Each resulting CLSE is considered 
as a representative sample of the machine time series for 
the current grid cell and for the current working mode. The 
route after the division into constant-length sub-episodes 
(CLSE) is shown in Fig. 2b. The chosen constant length 
affects greatly the number of total time series in a result-
ing fused dataset and has to be considered when building 
the dataset for analysis purposes. In general, the harvester 
sub-episodes have lower mean length than those of the for-
warder, because the forwarder did not stop as often as the 
harvester. To clarify the terminology of the time series in 
this study, an overview is presented in Table 1.

Preprocessing is an important part in the automatic gen-
eration of the fused data sets. The dataset may lack some of 
the forest features for some grid cells, so removal of data 
points lacking some of the needed values was necessary. 
Forest parameters that are constant throughout the driven 
route are meaningless in the data analysis and were thus 
removed. Continuous forest data variables were normalized 
to zero mean and unit variance before analysis and nominal 
variables were coded as indicator variables for the machine 
learning algorithms. Furthermore, the dimensionality of 
the continuous forest variables was reduced with principal 
component analysis (PCA) to compact the representation. 
The variables describing the trees in the PCA transforma-
tion were laser height, laser density, age, mean diameter, 
mean height, basal area and volume. The laser height indi-
cates a height were 85% of the laser observations are in a 
cumulative distribution for the grid cell, taking into account 
only observations that are above two meters. The percentage 
of the observations above the two meter level is described 
by the laser density. Other variables describe the average 
dimensions of the trees in the grid cell. In addition, ground 
height variation and change (above sea level) between the 
grid cells in the machine route were included in the PCA 
transformation when transforming the forest data for the 
field test area.

Analysis of fused data

The fused dataset enables statistical analysis and machine 
learning modeling for seeking the relationships between the 
environment and the forest machine operation. Depending 
on the analysis method, the resulting fieldbus samples can be 

Fig. 2   a Sub-episodes resulting from the driving motion of the forest machine. b Sub-episodes sampled with constant length (CLSE). Change in 
color indicates change in the sub-episode (a) or in the CLSE’s (b)
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either transformed into a set of features or used as raw multi-
variate time series. Here, an arithmetic mean of each CLSE 
channel was adopted as the simplest feature for describing 
the individual CLSE channel sample. Such simplification 
of the time series into one simple feature enables straight-
forward correlation analysis and statistical significance tests 
for the fused data at the forest data grid level. In the fused 
dataset, the features of both the machine fieldbus time series 
and forest parameters (or the principal components of them) 
were located on the individual columns of the resulting data-
set. Thus, a single row in the dataset represents a single 
fused sample dedicated to certain grid cell in the forest.

In this study, the Pearson correlation coefficient for each 
pair of the forest and machine variables quantified the lin-
ear dependencies in the entire fused dataset. High corre-
lations within forest data or within machine signals allow 
reducing the set of variables in the dataset either directly or 
with methods, such as PCA. Then prediction models can be 
identified effectively between uncorrelated explanatory vari-
ables and uncorrelated target variables. Such correlations 
and models between continuous forest data variables and 
fieldbus time series signals can reveal important relation-
ships in the machine–environment interaction.

Forest data includes many forest parameters that are cat-
egorical, rather than continuous. Soil type, main tree spe-
cies, and trafficability class are examples of such variables. 
Obviously, their impact on continuous fieldbus time series 
cannot be evaluated through correlation measures; the 
question is that when CLSE channel features are grouped 
according to a categorical variable, does the statistics of 
the features differ significantly between the groups. The 
null hypothesis for statistical tests is that the categorical 
forest parameter, according to which the sub-episodes have 
been grouped, has no effect on the machine fieldbus time 
series and thus there are no significant differences between 
the feature statistics of the grouped sub-episodes. Most 

categorical forest parameters have more than two possible 
values; for example, soil type has six different classes for 
the grid cells within the field test set. For this reason, one-
way analysis of variance (ANOVA) and equivalent nonpar-
ametric Kruskal–Wallis tests were utilized to evaluate if at 
least one of the resulting group means of features (CLSE 
channel means) differs statistically significantly from the 
other group means. The selected significance level was 
0.05. As ANOVA assumes normally distributed data, the 
normality of each forest parameter groupings was tested 
(Jones et al. 2019), and the statistical test type was selected 
based on the results.

In addition to aforementioned statistical analysis, 
machine learning methods can be applied to the fused 
dataset. Machine learning can be divided into supervised 
and unsupervised methods, which differ in that the former 
requires the desired outcomes—labels or values—in the 
dataset, whereas the latter does not. Examples of methods 
from both categories in the analysis of the fused dataset are 
demonstrated in this study. Unsupervised machine learning 
covers clustering algorithms, which aim to find structure 
in data without known labels. In the current context, clus-
tering can reveal structures or tendencies of the machine 
signals in different forest conditions, given only the fused 
data. In contrast, supervised machine learning algorithms 
can predict a value or a class if the target value is given 
in the training set but is not available currently. Here, the 
model can be trained for predicting a single fieldbus time 
series (CLSE channel) feature from the forest platform data, 
allowing predictions of the machine behavior for the grid 
cells never visited before. The main objective using any of 
the machine learning methods is to generalize rules from a 
fused training dataset for understanding the machine–envi-
ronment relationship. All the machine learning analyses in 
this work were implemented with Python algorithms in the 
Scikit-learn library (Pedregosa et al. 2011).

Table 1   The terminology of time series in this study

Term Explanation

Fieldbus time series A recorded time series of the forest machine operation, consisting of several channels for different vari-
ables in the forest machine fieldbus

Positioned time series A fieldbus time series that has the location of the forest machine, recorded by the GNSS receiver, for each 
time stamp

Grid-positioned time series A fieldbus time series that has a grid cell identification number for each time stamp
Grid episode Subsequences of the total fieldbus time series that are assigned into a specific grid cell. This can consist of 

multiple time series, if the machine visits the same grid cell repeatedly. See Fig. 1
Sub-episode A time series that is produced by dividing a grid episode according to the working mode (e.g., harvesting/

moving). Thus, grid episodes usually consist of multiple sub-episodes. See Fig. 2a
Constant-length sub-episode (CLSE) A section of the sub-episode that is sampled to have a predetermined constant length. Thus, the CLSE is 

commonly shorter than the sub-episode and a single sub-episode can be sampled to many CLSE’s. See 
Fig. 2b. Note that the CLSE, like all other time series types described in this table, consists of several 
signal channels
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Hierarchical clustering (Xu and Wunsch 2008; Seber 
1984) of the fused dataset was employed as an example of 
the unsupervised learning methods. In hierarchical cluster-
ing, the data is clustered in different levels by merging or 
splitting clusters according to their distances. Hierarchical 
clustering is a descriptive method defining a process of col-
lecting individual data points into clusters of increasing size. 
The bottom-up hierarchical clustering algorithm starts by 
assigning each data point to its own cluster and calculating 
a distance measure between each cluster. Then clusters that 
have the smallest intercluster distance are merged together. 
This creates clusters for a hierarchy level, and the algorithm 
continues iteratively by calculating the distance between the 
formed clusters and further merging the clusters. The merg-
ing is continued until all the data points are designated to 
a single cluster. In this study, the CLSE features were hier-
archically clustered. A meaningful clustering of the fused 
data set is one in which all CLSE’s of each grid cell are 
in the same cluster, thus also implying a clustering of the 
grid cells. Finding this kind of clustering of the grid cells 
based only on the machine time series data would indicate 
a meaningful relationship between the forest data and the 
machine data.

Hierarchical clustering is not used for associating a new 
data point to a cluster, whereas the well-known K-means—
algorithm (Jain and Anil 2010) is suited for this purpose. 
In this work, Finnish forest grid cells were clustered into 
typical forest types with the K-means algorithm. K-means 
cluster centers allow association of any new data points to 
the clusters without the need of redoing the analysis with 
all the data. As the forest data platform enables access to 
forest data in the whole of Finland, the cluster centers can 
be identified for large forest areas representing all the types 
of forests in Finland. The grid cells of a field test area can 
then be allocated to the clusters according to their distances 
to the centers of the K-means clusters, thus enabling a more 
robust comparison between different field tests with varying 
forest types. However, the number of clusters in the K-means 
algorithm needs to be prescribed. It is not clear what is a 
good number of clusters with the forest data, and therefore, 
the clustering was experimented with number of clusters 
varying from 2 to 20. The number of forest grid cells in 
Finland is enormous, of the order of 109. Thus ten large 
areas were queried, resulting to approximately 28 million 
grid cells (7000 km2), distributed over 31 map sheets. The 
map sheets were further sampled to reduce the number of 
data lines, resulting a sample of 100,000 grid cells that was 
considered as a representative sample of the Finnish forests.

Supervised machine learning can be applied to solve 
classification and regression problems. In this study, regres-
sion algorithms were compared for predicting machine 
signal levels for a grid cell, when only forest data is given 
in advance. With such models, the aim is to predict forest 

machine performance before the operations. In the training 
phase, the target signal levels for the grid cells, essentially 
the mean values of the CLSE’s channels, were given for the 
algorithm. As the length of the CLSE is a tuning parameter 
of the method, the method was experimented with differ-
ent lengths to find the length that best correlates with the 
environment variables. This optimal CLSE length may vary 
depending on the settings and the features to be predicted. 
For instance, the signals resulting from the in-place work 
probably have different optimal CLSE length than the sig-
nals in driving motion. Many algorithms exist for learning 
the regression model from data, but here linear regression 
(LR) and random forest regression (RF) were utilized from 
the Scikit-learn library. The number of estimators in the 
random forest regressor was set to 100, but otherwise the 
algorithms were used with default parameters. The predic-
tion accuracy was evaluated by calculating the coefficient 
of determination ( R2 ) for the regression results. The coef-
ficients were calculated using K-fold cross-validation with 
five folds.

Results

Dataset statistics

Correlations were investigated between continuous forest 
parameters and machine time series features. Figure 3 pre-
sents a correlation matrix for CLSE channels in the case 
where the harvester was moving in the forest. The length of 
the CLSE’s was 300 samples (6 s). The results are similar 
with the sub-episodes of the in-place working harvester and 
the driving motion of the forwarder.

Considering the data fusion approach, the most interest-
ing correlations are between machine signals and the forest 
parameters. Many of the variables show no significant cor-
relation, while some variable pairs between the groups have 
correlation with absolute value in the range 0.3–0.5. The fig-
ure also shows clearly some high correlations within the for-
est parameters and, respectively, within fieldbus time series 
features. This suggests that rather than identifying regression 
models between the original variables, those between some 
linear combinations of variables is preferable. For instance, 
tree basal area and tree volume have a close to perfect cor-
relation, so there is no reason to include both as independent 
variables in the regression analyses.

Principle components are a natural way of describing 
highly correlated forest parameters. The four first compo-
nents explain 95.4% of variation in the nine forest param-
eters (tree and soil) in Fig. 3. The percentage of variation 
explained and the loadings of the four components are given 
in Table 2.
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Figure 4 shows the correlation matrix after the PCA trans-
formation of the forest parameters. The harvester system 
signal 5, which is related to the cooling of the harvester 
system, shows the best correlation with principal compo-
nents three and four of the forest data. The second principal 
component, consisting of 31% of the total forest data vari-
ation, has correlation of 0.4 with the fuel consumption and 
the harvester system signal 2 (related to the diesel engine of 
the harvester).

The effect of a single categorical-type forest parameter to 
each fieldbus signal channel was evaluated by grouping the 
CLSE’s with a single forest parameter at a time and conduct-
ing ANOVA or Kruskal–Wallis tests to determine the sta-
tistical significance of the resulting differences in the CLSE 
means. Figure 5 shows boxplots for the sub-episode means 
when grouped by the soil type. All the presented time series 
channels show statistically significant differences between 
some of the groups (significance level 0.05).

Clustering

Hierarchical clustering methods were applied to the datasets 
generated from the fieldbus data. The clustering of the har-
vester data when the harvester was moving divided both the 
machine and the forest data in a sensible manner, meaning 
that most of the forest data samples from the same grid cell 
are in the same cluster. The tolerance for the correct sample 
division can be relaxed for a certain degree, allowing more 
clustering groups for the use of further analysis. The CLSE 

mean values inside the two clusters are distributed according 
to boxplots shown in Fig. 6.

After the data is divided into clusters, the clusters can be 
characterized, for example, by the mean value of each forest 
parameter. Table 3 shows the differences in forest param-
eters between the clustered groups. In the table, parameters 
that show statistically meaningful differences according to 
ANOVA are marked bold. The information in the table gives 
interpretation for the generated two groups. For example, 
in the case of moving harvester, the cluster 1 represents 
dense forest with low changes in ground height level and 
correspondingly cluster 2 represents grid cells with fewer 
trees and larger ground height variations. In addition to con-
tinuous forest parameters, categorical forest variables were 
also taken into account after the clustering of the machine 
signals. Statistical significance tests are not applicable to 
categorical variables, but the appearance frequency of cer-
tain categorical value inside a cluster can be calculated. For 
instance in the clustering of the harvester driving motion 
data, the dominant value for the forest parameter trafficabil-
ity was type 1 (“accessible when frost-damaged”) in the first 
cluster and type 2 (“accessible in normal summer condi-
tions”) in the second cluster.

In addition to clustering of local field test data, a rep-
resentative sample of the forest data in Finland was clus-
tered using the K-means algorithm. Before clustering, the 
tree data was transformed to three principal components 
using PCA. Table 4 shows the explained variance of each 
principal component and contributions of single forest 

Fig. 3   A correlation matrix 
between forest data and har-
vester CLSE mean values when 
moving
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tree parameters. The three principal components explain 
together 96.3% of the total forest tree data variance.

Figure 7a shows the clustering result of the forest tree 
data sampled from 26 million grid cells of different forest 
areas in Finland with six clusters. The K-means cluster-
ing was experimented with several different cluster num-
bers, but the distances of the individual samples from their 
cluster centers decreased quite steadily while increasing 
the cluster number, so no single best cluster number was 
found. The forest tree data from the field tests in Vihti, 
shown in Fig. 7b, was partitioned according to the six 
centers.

All the clusters are represented in the field test data, 
but clusters 1, 5 and 6 have significantly more grid cells 
than others. Sub-episodes can be grouped according to 
the clusters, enabling comparison of signal features under 
general forest types in Finland. Figure 8 shows the differ-
ences in harvester fuel consumption and system signal 1 
when driving forward in the field tests.

Taking into account the most represented clusters (1, 
5 and 6) in the one-way ANOVA, significant differences 
exist between some of the clusters in the fuel consumption 
( p < 0.0001 ) and the harvester system signal 1 ( p = 0.006 ) 
CLSE mean values.

Prediction

For fieldbus signal feature prediction, linear and random 
forest regression models were trained with the forest data 
alone as the explaining variables and a mean value of a 
CLSE channel as the target variable. The prediction results 
for the moving harvester and forwarder data are collected 
to Table 5. The length of CLSE was set to 300 samples 
(6 s) after examining the results with lengths between 50 
to 1000 samples as both the harvester and forwarder data-
sets showed best predictability in average at this window 
size. However, the prediction of system signal 5, for exam-
ple, returned better results with the window size of 100 
samples, so the optimal window size may be individual 
for each fieldbus signal.

For visualizing the best prediction performance of the 
random forest regression, Fig. 9 shows the sorted values for 
the true and predicted CLSE means of system signal 5 over 
an independent test set containing 20% of the total dataset 
values (CLSE window of 100 samples, R2 = 0.93). The most 
important predictors for the system signal 5, reported by 
the Python random forest regressor, are the third principal 
component of the tree data (43.5%), the soil type of class 20 
(21.8%) and the second principal component of the tree data 
(16.9%). In this respect, the system signal 5 is an exception, 
as all other signals have the first three principal components 
of the tree data as the most important predictors.Ta
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Discussion

The greatest benefit in the use of the forest data platform 
for predicting the forest machine behavior is that the data is 
continuously available for the entire forest area in Finland; 
each site visited can be automatically analyzed in terms 
of the environment parameters and recorded fieldbus time 
series. Another advantage is that a model, trained with the 
forest data and fieldbus measurements from field tests, can 
predict working conditions for the grid cells in the sites to be 
visited in future. For example, harvester fuel consumption 
for the planned route could be estimated by downloading 
the forest data and predicting the fuel consumption level 
with the pre-trained model for each grid cell along the route. 
However, the problem in the predictive setting is that the 
model requires a comprehensive set of training examples 
from different forest conditions before reliable predictions 
can be produced. Here the limiting factor is the availability 
of the fieldbus data, as the data typically needs to be sepa-
rately collected in field tests or analyzed directly on the on-
board computer of the forest machine. Hence, the possible 
advantages gained from the comprehensive training data 
give motivation for continuous collection of fieldbus data.

The relative positioning of the datasets for fusion was 
based on the GNSS location recorded by the forest machine, 
by assigning each fieldbus data point to a platform grid cell. 
The fused dataset contains noise resulting from the forest 
data, the machine data and the data fusion process. One rel-
evant error source is the location recorded by the GNSS 

receiver, in particular when the forest canopy is blocking 
the satellite signal (Kaartinen et al. 2015; Blum et al. 2016). 
The resulting machine location is somewhat erratic, as can 
be seen in Fig. 1. The noise in the forest machine path can 
cause the time series to be positioned off from the correct 
grid cell in the fusion process, if the location erroneously 
jumps near the grid cell border. Furthermore, the GNSS 
receiver records the location from the roof of the machine 
operator cabinet, so the 8-m-long machine can be mostly on 
the neighboring cell to that of the cabinet, again resulting in 
a wrong cell label for the machine. However, typically the 
forest parameters vary smoothly between neighboring cells, 
so the error in the machine location does not necessarily 
lead to large errors in the analysis. Some modern harvesters 
are capable of determining harvested tree locations using 
the boom location data, which would help in positioning 
harvested trees to correct grid cells while working.

The structure of the fused data set was examined with 
correlation analysis and unsupervised learning techniques, 
such as PCA, and hierarchical clustering. The dimensional-
ity of the forest data was reduced with PCA, showing that 
three first principal components carry more than 86% of 
the variability. The main principal components, based on 
their loadings of forest tree variables (Table 2), have natural 
interpretations. The first component differentiates the grid 
cells based on their total tree mass, as all the loadings have 
the same sign and increase in each variable implies more 
tree mass. The second principal component increases with 
age and mean diameter and decreases when tree density 

Fig. 4   Correlations between 
principal components of the 
forest parameters and machine 
signals
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and basal area increase. This suggests that the component 
differentiates dense forests with young and thin trees from 
sparse forests with old, thick and high trees. The principal 
components three and four are strongly related to the vari-
ation of the ground height: Both components increase with 
the height variation inside the grid cell, but the third compo-
nent is related also to increase in the ground height between 
the cells, suggesting uphill in the movement direction. The 
hierarchical clustering of the CLSE’s mean values revealed 
that the clusters found in machine signals can be associated 
to certain grid cells, thus to the attributes of the forest. The 
hierarchical clustering of sub-episodes reveals how machine 
behaves in different forest environments within the field test. 
The number of clusters was selected by requiring that sam-
ples from any given grid cell should be assigned to the same 

cluster. This resulted into division of the sub-episodes to 
two clusters, but the results could be applicable only to the 
current field test conditions.

The problem in the generalization of single field test data 
can be at least partially solved by clustering larger set of the 
forest data, a representative sample of the Finnish forests, 
with K-means algorithm. Figure 7a shows that the forest 
data, when projected to the plane of two principal compo-
nents, forms a single large connected area with few dense 
regions. Thus the K-means algorithm rather divides the area 
to a given number of sections than finds distinct clusters. 
Correspondingly to the PCA conducted for the forest data 
of the field test area (Table 2), the principal components 
for the forest data of whole Finland (Table 4) have similar 
interpretations in respect to the tree data. The ground height 

Fig. 5   Differences in CLSE 
mean values grouped by the 
soil type
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Fig. 6   Differences in CLSE 
mean values in four channels 
(harvester in motion) inside 
hierarchical clusters

Table 3   Mean values and standard deviations for forest parameters in clustered groups

Data type Cluster no. Laser den-
sity—tree 
(%)

Age—tree 
(years)

Basal area 
–tree (m2/
ha)

Stem count—
tree (pcs/ha)

Mean diam-
eter—tree 
(cm)

Volume—tree 
(m3/ha)

Ground 
height STD 
(m)

Harvester mov-
ing

1 64.3 (30.8) 31.6 (11.2) 15.0 (9.7) 1658.8 (888.2) 13.3 (2.6) 97.7 (72.9) 3.7 (3.1)
2 53.0 (31.4) 35.9 (11.1) 13.1 (9.8) 1292.0 (745.8) 14.6 (3.9) 93.5 (75.1) 5.0 (2.1)

Harvester work-
ing

1 83.2 (18.1) 29.1 (7.0) 21.8 (7.6) 2173.1 (746.4) 13.5 (2.7) 147.3 (63.6) 4.0 (3.0)
2 82.9 (17.4) 29.5 (7.2) 21.8 (7.2) 2100.6 (767.3) 13.8 (2.9) 149.2 (60.6) 4.0 (3.0)

Forwarder mov-
ing

1 75.5 (23.9) 29.6 (7.5) 18.4 (8.4) 1848.0 (788.8) 13.5 (2.8) 122.5 (64.2) 3.5 (3.5)
2 59.8 (28.3) 31.8 (13.0) 14.3 (8.7) 1551.5 (741.7) 14.0 (4.2) 95.8 (70.4) 4.8 (2.3)

Table 4   The contributions of single variables to principal components in forest tree data in Finland

Principal 
component

Explained vari-
ance (%)

Forest tree variable contribution (loadings of standardized variables)

Laser height Laser density Age Mean diameter Mean height Basal area Volume

PC1 76.0 0.41 0.27 0.35 0.4 0.41 0.38 0.4
PC2 16.8 0.14 − 0.64 0.44 0.32 0.21 − 0.41 − 0.24
PC3 3.5 0.02 − 0.70 − 0.28 − 0.13 − 0.03 0.35 0.54
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Fig. 7   Clustered forest tree data points according to the first two principal components in Finland (a) and in Vihti field tests (b). Only 5% of the 
total data points are plotted in (a) for better visualization of the clusters. Corresponding cluster centers are marked with black crosses

Fig. 8   Harvester fuel consumption and system signal 1 mean distributions when clustered with six clusters formed from the Finnish forests

Table 5   Fieldbus signal 
prediction results for driving 
motion using linear regression 
(LR) and random forest 
regressor (RF) using sample 
window of 300 samples

 R2 values higher than 0.5 are marked in bold

Fieldbus signal channel R
2

Harvester Forwarder—total Forwarder—1st 
run

Forwarder—
2nd run

LR RF LR RF LR RF LR RF

Fuel consumption 0.10 0.49 0.16 0.46 0.34 0.71 0.58 0.86
Speed 0.07 0.35 0.15 0.66 0.16 0.70 0.17 0.74
System signal 1 0.09 0.43 0.16 0.67 0.18 0.74 0.17 0.73
System signal 2 0.14 0.61 0.15 0.45 0.31 0.68 0.58 0.86
System signal 3 0.19 0.53 0.08 0.49 0.15 0.69 0.28 0.72
System signal 4 0.15 0.49 0.26 0.74 0.24 0.82 0.34 0.81
System signal 5 0.45 0.83 0.53 0.64 0.62 0.88 0.69 0.95
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variation between the grid cells is not applicable here as 
there is no predefined route in the dataset. In Fig. 7a, the 
first principal component divides data in four regions and 
the second component further halves the middle regions. 
The resulting cluster centers, representing the general forest 
types in Finland, serve as the basis for robust comparisons 
of the data from field tests. As show in Fig. 7b, the clusters 
found are not equally represented at a test location, but a few 
clusters dominate the dataset. Knowing the general forest 
types of the single field test helps in interpreting the fusion 
results from a more general viewpoint, meaning that the next 
field test results can be compared to current results, if the 
same forest types are present. For example, a minimum num-
ber of observations of the forest type could be necessitated 
before the data fusion analysis results would be considered 
comparable in the more general level.

In this study, supervised machine learning was demon-
strated by predicting a mean value of a fieldbus time series 
channel for each grid cell in the dataset using only forest 
data. The instantaneous values of fieldbus time series depend 
on numerous factors, but the working environment could 
hypothetically cause changes in the average time series lev-
els available in the fused dataset. Predicting the mean values 
beforehand for the grid cells in the target forest site could 
offer valuable information for route planning, for instance. 
The prediction results for the traveling forest machines, col-
lected to Table 5, suggest that some variables, in particular 
‘System signal 5’, were indeed predictable using the forest 
data alone. This signal is related to the cooling of the forest 
machine, contrary to other system signals directly related 

to the transmission and the diesel engine. In this study, a 
single soil type class (fine graded moorland) was found to 
be important when predicting this signal, so the soil type 
appears to have an effect on the cooling of the harvester. 
One useful result for future studies was the observation of 
the best CLSE length to be 6 s in the fieldbus time series, 
suggesting that the influence of the forest parameters is on 
the average best observable in the fieldbus data with this 
window size. As the random forest regression predicted all 
the time series levels better than the linear regression, non-
linear relationships between the forest and machine data are 
of importance. In general, the predictability was higher in 
the datasets where the route was travelled only once and in 
the same direction (harvester and individual forwarder runs), 
suggesting that the direction of which the grid cell is trav-
elled is an essential piece of information. A natural explana-
tion for this is the topography of the grid cell at tilted ter-
rain. Furthermore, the number of runs already driven along 
a route appears to have an effect and needs to be considered 
in particular when predicting forwarder performance.

In the current paper, the forest data for the clustering con-
sisted only of the tree attributes without information about 
the tree species or details of the soil characteristics, such as 
the soil type, fertility and the load-carrying capacity. The 
clustering of the general forest types should consider these 
as well, but this requires dimension reduction methods for 
joint continuous and categorical data. Furthermore, the 
fieldbus time series could be more extensive, covering, for 
instance, machine inclinations and signals related to the tree 
cutting process of the harvester. The best prediction results 
were obtained, when the forest machine was constantly 
traveling forward. The reason for this could be the selection 
of the fieldbus time series channels, which were more related 
to the mobility of the harvester than the tree cutting process.

The forest data platform supports new data sources pro-
duced by the clients. Here, the forest machine data and the 
results gained from the data fusion can be thought as a new 
data source for the platform. Saving the essential analysis 
results, derived from the machine fieldbus signals, would 
emphasize more general analysis in the future, after the 
platform has data from several different forest locations in 
Finland. Currently, the platform supports addition of the data 
through CSV files, where a single line represents data for a 
particular grid cell. One possible data source, utilizing the 
results found in this paper, would include saving the overall 
mean of the CLSE’s for each grid cell together with the 
main forest type found in the K-means clustering (Fig. 7a). 
For better usability in future, factors affecting the machine 
performance, such as the machine type or the operator ID, 
should be included. In addition, for comparing results inside 
a single forest operation, the time that the forest machine 
spends in the grid cell and the main driving direction could 
be added to the grid cell data.

Fig. 9   Predicted (normalized) mean values of system signal 5 (har-
vester, CLSE of 100 samples) using only forest data
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Conclusion

The fusion of forest machine fieldbus data and forest 
inventory data through the geographical location ena-
bles machine learning methods for discovering relation-
ships between the forest machine and the environment. 
In this study, forest data were found to be a good predic-
tor when the machine time series was considered in the 
grid cell level. In particular, regressions for the data in 
individual forwarder runs showed R2 values higher than 
0.80 with many of the fieldbus signals, and similar results 
were found with some fieldbus signals from the moving 
harvester. The study found the grid cells also useful in 
the clustering of machine signals, as they provided a link 
between machine data clusters and forest data. The key 
aspect was the use of the forest data platform, which ena-
bles the analysis of the machine and forest inventory data 
everywhere in Finland. This can accelerate the develop-
ment of the forest machine and operations, as the effect 
of the environment can be analyzed without separate field 
tests for measuring the environmental conditions. The 
platform can also function as a data warehouse for the 
shown analysis results. Applications that currently utilize 
the fieldbus time series directly, like condition monitoring 
or operator guidance, could benefit from the signals that 
can be standardized in terms of the environmental effect. 
The essential constraints in the analyses are the fieldbus 
time series collection for the data fusion and the generali-
zation of the results with variations in the machine types 
and operators. The individual results shown in this paper 
were constructed using fieldbus data from a single field 
test; although some interesting results were found, more 
data needs to be gathered from different locations before 
the results can be generalized.
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