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Abstract
The purpose of this study was to assess the effect of using alternative types of forest inventory units (FIUs) in multi-objective 
forest planning. The research was carried out in a Mediterranean forest area in central Spain. The study area was divided, 
alternatively, into pixels (square cells) and segments of two different sizes (small and large), which represented the tested 
FIU types. Airborne laser scanning data (ALS) and field sample plots were combined using the area-based approach to 
estimate forest attributes for each FIU. Dynamic treatment units were created using cellular automaton optimization aiming 
at maximizing timber production during a 60-year plan with periodical even-flow cuttings both with and without the aim of 
creating aggregated harvest blocks. The hypothesis was that the use of segments would enhance the clustering of harvests, 
as compared to cells, and provide dynamic treatment units more suitable for forestry practice. The results showed that 
segment-based planning created compact harvest blocks even without the use of spatial objective variables in optimization. 
The spatial layout of the solution for large segments was the most efficient in the absence of spatial objective variables. The 
FIU type that performed the best in maximizing timber production was the small segments. For the three tested FIU types, 
the inclusion of spatial objective variables further improved the clustering of harvests, especially during the latter half of the 
60-year planning period. Segmentation acted as a first-phase clustering that made spatial optimization easier and faster. In 
the case of square cells, the clustering of harvests was greatly improved by the inclusion of spatial goals. The forest planning 
system and the spatial optimization method proposed in this study maximize the utility of fine-grained ALS data.
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Introduction

The use of remote sensing data in forest inventory has con-
siderably increased the efficiency of practical forestry opera-
tions (Maltamo and Packalen 2014). Airborne laser scanning 
(ALS), especially, is nowadays extensively used to predict 
stand-level forest attributes (Maltamo et al. 2014). The 
integration of remote sensing data into forest management 

planning can be highly valuable as ALS data provide spa-
tially continuous and accurate information about canopy and 
underlying trees.

ALS can be also used to stratify a given forest area 
into homogenous inventory units (Mustonen et al. 2008). 
There are several methods and techniques for classifying 
and delineating forest inventory units (FIUs), ranging from 
traditional aerial photointerpretation to automatic unsu-
pervised or supervised segmentation (Coburn and Roberts 
2004). Good estimates of current stand attributes result in 
better projections of future stand conditions, which con-
tributes to reducing uncertainty in forest planning (Eid 
2000; Mäkinen et al. 2009). Segmentation methods are 
computationally more demanding than straightforward 
approaches based on a grid of cells when delineating FIUs 
(e.g., Næsset 1997), but this effort might be compensated 
for in later steps of forest planning as FIUs based on seg-
ments tend to be more homogenous than grid cells in 
terms of stand attributes, and follow better existing stand 
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boundaries (Hyvönen et al. 2006). The use of the so-called 
nano-segments (Pippuri et al. 2013) as temporary interpre-
tation units might enhance the performance of using seg-
ments in forest planning. Nano-segments enable reduced 
edge effect in the border of actual segments while keeping 
the mean size of prediction unit approximately the same as 
the size of field plots used in model fitting.

Size and shape of FIUs are important parameters to 
consider in modern forest management planning, which 
often combines spatial and non-spatial objectives (Puk-
kala et al. 2009). Previous studies have explored the use 
of dynamic treatment units (DTU) with different inven-
tory units by integrating spatial goals in the formulation 
of optimization-based forest planning problems (Heinonen 
et al. 2007; Packalen et al. 2011; Pascual et al. 2016), so as 
to cluster harvesting activities as required in forestry prac-
tice (Öhman and Eriksson 2010). However, adding spatial 
objectives increases the complexity of optimization prob-
lems. Different shapes and sizes of inventory units have 
different neighborhood relationships, which may result in 
different optimal solutions for a given spatially explicit 
forest planning problem.

The aim of this study is to assess the impact of dif-
ferences in size and shape of FIUs on the achievement 
of spatial and non-spatial forest management objectives. 
We compare three ALS-based alternative FIUs: segments 
of two different sizes (small and large) and square cells. 
Stand attributes at segment levels are computed from 
nano-segments for which attributes are predicted first. This 
reduces the issue caused by mixed cells in the border of 
the segments.

Material

Study area

The study area is the public forest MUP89 owned by the 
municipality of San Leonardo de Yagüe (41°51′N, 3°15′E, 
1122 m–1243 m a.s.l.) and located in the Iberian System 
mountain range, in central Spain. The study area of 1059 
hectares consists of Pinus nigra Arn. stands with scattered 
presence of Pinus pinaster Ait. as a secondary species. The 
MUP89 consists of two forest areas divided by a main road 
and secondary forest tracks. The southwestern limit is the 
Rio Lobos canyon where slopes steeper than 45° can be 
found. The landscape is a mosaic of heterogeneous patches 
of vegetation, typical of many Mediterranean forest areas, 
resulting in substantial variation in forest attributes through-
out the study area. Forest management in the area is devoted 
to ensure sustained timber supply to local industries, impor-
tant drivers of local economy.

Sample plots and ALS data

Systematic sampling was used to establish a network of 
116 circular sample plots of 12.6 m radius. The plots were 
measured during autumn 2010 using satellite positioning 
system (Trimble R6 Global Navigation Satellite System) to 
precisely determine the locations of plot centers. On each 
plot, all trees with a diameter at breast height (dbh) > 7.5 cm 
were callipered and the heights (h) of all trees were meas-
ured using Vertex III hypsometer. Stand basal area (G) and 
number of trees per hectare (N) were computed from tree 
data, while age was estimated using tree-ring analysis of a 
dominant tree per plot. The maximum tree height measured 
in each plot was considered as the dominant height (H0) of 
the plot (Table 1).

The ALS data were collected in April 2010 using ALS60 
II laser scanning system. The study area was scanned from 
an altitude of 1200  m above ground level, with a scan 
angle of ± 12°. This resulted in a nominal pulse density of 
2 pulses m−2 and a footprint size of 26 cm (1/e2). An interpo-
lated digital terrain model (DTM) of 1-m2 cell size was con-
structed by classifying echoes as ground and non-ground hits 
according to the approach described by Axelsson (2000). 
Heights above ground level were calculated by subtracting 
DTM from ALS echoes. The 1-m2 canopy height model 
(CHM) was interpolated by searching the highest ALS echo 
from the center of each pixel within a radius of 1.6 m. Empty 
pixels were filled by the average value of non-empty neigh-
boring pixels (Fig. 1).

Methods

Estimation of stand‑level attributes

Forecasting stand development under alternative manage-
ment options based on forest growth and yield models (see 
further details in “Growth models and simulation rules” 

Table 1   Summary information of the sample plots used as training 
data

dbh tree diameter at breast height (1.3 m), h tree height, N number of 
trees per hectare, G stand basal area, H0 dominant height

Variable Min Mean Max

dbh (cm) 10.0 19.8 64.2
h (m) 2.1 11.1 27.0
N (trees ha−1) 60.0 714.1 2000.0
G (m2 ha−1) 1.3 25.9 56.5
H0 (m) 6.1 15.3 27.0
Age (year) 23.0 61.4 132.0
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section) required the prediction of the current number of 
trees per hectare (N), stand basal area (G, m2 ha−1) and 
dominant height (H0, m) for each segment or cell. We relied 
on the area-based approach (Næsset 2002) to predict these 
stand attributes using ALS metrics and field sample plots. In 
this approach, the echoes within a given plot area are used to 
describe above-ground vegetation characteristics. An array 
of 41 ALS height and density metrics were computed for 
each plot (McGaughey 2015) and used as potential predictor 
variables for our regression models.

First we selected an initial set of predictor variables 
based on well-performing variables in our previous stud-
ies and with the help of the stepwise model construction 
procedure (Venables and Ripley 2002). In the second stage, 
square-root, logarithmic and quadratic transformation of the 
response and predictor variables were tested and final mod-
els were selected based on visual assessment of residuals. 
Statistical analyses were carried out in the R software (R 
Development Core Team 2016).

Definition of FIUs

Segments

Multiresolution segmentation implemented in Trimble 
eCognition program was used to create either small or 
large segments from the canopy height model (CHM) of 
1-m cell size. Individual pixels (image objects of one-
pixel-size) were first identified, and then merged into 

neighboring objects based on a homogeneity criterion, 
which was calculated as a combination of CHM and 
shape homogeneity (Trimble eCognition 2015). The CHM 
homogeneity was defined based on the standard deviation 
of the CHM values, and the shape homogeneity based on 
the deviation from a compact shape. By weighting these 
criteria and changing the scale parameter, the results of 
multiresolution segmentation can be customized. When 
larger objects are preferred, higher values for the scale 
parameter are used, and vice versa.

Different scales and weightings for CHM and shape 
were used to split the study area into segments of two 
different sizes. In both segmentations, an initial fine-
grained segmentation was first made for the whole study 
area using multiresolution segmentation. Two sets of scale 
parameters were used to get two segmentations of differ-
ent average sizes of segments. Then, the region-growing 
method of multiresolution segmentation was used to merge 
the smallest segments to their neighboring image objects. 
First, all image objects smaller than 500 m2 were merged, 
and then all objects smaller than 1000 m2 were merged 
to their neighbors if the scale and weightings enabled the 
merging of the objects. The average sizes for small and 
large segments were 1651 m2 and 3595 m2, respectively. 
The creation of segments took 37 and 22 min for small 
and large segments, respectively. As a final step, segment 
borders were slightly smoothed using the Chaikin’s Algo-
rithm implemented in GRASS GIS (GRASS Development 
Team 2017).

Fig. 1   Delineation of the study area with the orthophotograph as background image on left and the canopy height model (CHM) on right
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Nano‑segments

Segments were divided into sub-units (later referred to as 
nano-segments) using a grid of cells, as described in Pippuri 
et al. (2013), to obtain prediction units of about the same 
size as the field plots but without mixed cells in borders of 
segments. Grid cells were first intersected by segment bor-
ders. Then, the formed small parts of grid cells in the inner 
edge of the segment were merged to the neighboring cells 
(Fig. 2). As a result, nano-segments never crossed segment 
boundaries, which prevented the creation of mixed calcula-
tion units, i.e., units that included parts of two dissimilar 
stands. The resulting non-square cells were, on average, 
slightly larger than square cells (here 500 m2), but minor 
difference in size is not a serious issue in the area-based 
method (Table 2). 

ALS metrics were computed and forest attributes predicted 
for nano-segments. Then, predicted nano-segment attributes 
were aggregated to obtain stand attributes for segments as fol-
lows: for stand basal area and number of trees, segment-level 
attributes were computed as area-weighted mean values; and 
the segment value of H0 was computed as the maximum domi-
nant height among all nano-segments located within a given 
segment.

Square cells

Cell-based planning was implemented using a grid of square 
cells that were overlaid with the study area. The cell size was 
500 m2 (side 22.36 m), i.e., equal to the area of the field sam-
ple plots. The ALS metrics were computed for the cells, and 
finally, stand attributes (N, G and H0) were predicted for every 
cell.

Growth models and simulation rules

To be able to use individual-tree growth models in simulation, 
diameter distribution models as used in Pascual et al. (2016) 
were fitted to our data and used to transform the predicted 
stand-level attributes into individual-tree level information.

Growth models were developed based on permanent plots 
from the 2nd and 3rd Spanish National Forest Inventory (NFI) 
(DGCN 1996, 2006). The model set (Eqs. 1–5) consisted of 
models for 10-year diameter increment (Id, cm), 10-year sur-
vival rate (s), height–diameter relationship (Hd, m), number 
of ingrowth trees during a 10-year period (Fin, trees ha−1) and 
the mean diameter of ingrowth (Din, cm). The models are as 
follows:

(1)Id = 1.182e

(

1.353−0.023 d−0.092
BAL

ln (d+1)
+0.033BALthinned+0.534GI

)

(2)

s =
1

1 + e

(

−

(

0.681+0.014 d−0.0144
BAL

ln (d+1)
+0.057BALthinned+1.283 ln (A)

))

(3)
Hd =

9.513 − 4.003 ln (A) + 0.307A
(

1 +
1276.76

d2

)0.523

Fig. 2   Delineation of large segments (red boundaries) and the corre-
sponding nano-segments (yellow boundaries). The background shows 
the canopy height model (CHM). (Color figure online)

Table 2   Area and number of 
nano-segments and the three 
alternative forest inventory 
units used in planning: square 
cells, small segments and large 
segments

Number Area range (ha) Average area (ha) Standard 
deviation 
(ha)

Square cells 22,879 – 0.05 –
Nano-segments of small segments 20,196 0.1–1.23 0.052 0.12
Nano-segments of large segments 20,165 0.05–1.15 0.053 0.12
Small segments 6418 0.12–9.27 1.65 1.08
Large segments 2947 0.05–30.55 3.60 2.21
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where d is dbh (cm), BAL is basal area of trees larger than 
the subject tree (m2 ha−1), BALthinned is basal area of the 
trees thinned during the past 10-year period (m2 ha−1), GI is 
growth index of the plot as defined in Trasobares and Pukkala 
(2004), A is altitude of the site in hundreds of meters, h is tree 
height (m), N is number of trees (trees ha−1), G is stand basal 
area (m2 ha−1), and Gspe is stand basal area of the species for 
which ingrowth is predicted (m2 ha−1). GI is a measure of site 
productivity. It is the ratio between the growth of the plot and 
the growth of a similar growing stock on average site (Tra-
sobares and Pukkala 2004). The removed competing trees 
during the 10-year growth projection period (BALthinned) 
were always zero in our simulations. However, BALthinned 
was not always zero in the modeling dataset (NFI plot). Since 
BALthinned improved the models for diameter increment and 
survival, it was included as a predictor in these two models.

Simulation instructions for “nearly optimal” management 
were developed as follows: We used the stand dynamics 
models shown above to predict stand attributes from pre-
sent state to 10 years ahead. We then calculated the pre-
dicted 10-year value increment and divided it by the stump-
age value of the stand, to obtain relative value increment 
(RelVaInc). Then, a regression model showing RelVaInc 
as a function of stand-level attributes was used to develop 
instructions for thinning basal area and for the diameter at 
which final felling should be done assuming a 2% discount 
rate to find out when a stand was financially mature for thin-
ning or final felling. The results of these calculations were 
used to develop simulation instructions as shown in Pascual 
et al. (2018).

Simulation of forest management alternatives

The set of growth and yield models (Eqs. 1–5) was used 
to predict stand dynamics for a 60-year planning period 
(divided into three 20-year periods). The simulation instruc-
tions were used as follows: If the stand mean diameter of 
a given FIU was higher than the final felling diameter of 
the instruction, seed tree cut was simulated followed by the 
removal of seed trees in the following period. Otherwise, 
stand basal area was compared to the thinning basal area, 
and a thinning treatment was simulated if the basal area was 
higher than in the instruction. In this case, three thinning 
intensities were simulated: light (20% reduction in stand 
basal area), intermediate (30%) and heavy thinning (40%). A 
total of 60,581 treatment schedules were simulated for large 
segments, 129,641 for small segments and 460,417 for cells. 

(4)

Fin = − 474.1 + 140.1 ln (N) − 155.5 ln (G) + 2094.8
Gspe

G

(5)Din = 0.059 + 1.261 ln (N) − 0.224G

To create variation in the timing of cuttings, the basal area 
limit for thinning and the diameter limit for final felling were 
multiplied by 0.7, 1 and 1.3 and the simulation was repeated 
with all modifications of the simulation instructions.

Planning problems and spatial optimization

Forest planning aimed at maximizing timber production 
during the 60-year planning horizon (i.e., sum of harvested 
volumes and ending volume less initial volume) with even-
flow of harvested timber every 20-year period. For each FIU 
type, two alternative planning problems were formulated, 
i.e., either without considering spatial objectives (NonSpat-
Plan), and by explicitly including spatial objectives (Spat-
Plan). As a result, six alternative forest plans (two per FIU 
type) were developed.

The following four non-spatial objective variables were 
used in both NonSpatPlan and SpatPlan: maximize grow-
ing stock volume at the end of the plan, i.e., after 60 years 
(Vtot), and harvest the same volume during all three 20-year 
periods (R1, R2 and R3, respectively). A harvesting target 
of 50,000 m3 per period was defined based on preliminary 
optimizations which showed that cutting 50,000 m3 during 
20 years maintained the growing stock volume at the initial 
level. Therefore, we set the harvesting target as 50,000 m3 
in all problems.

SpatPlan included four additional spatial objective vari-
ables with the aim of aggregating harvesting activities: max-
imization of the proportion of cut–cut borders of all adja-
cent FIUs (CC) and those treated with final felling (CCFF), 
and minimization of the proportion of cut–uncut borders 
of adjacent FIUs (CNC) and those treated with final felling 
(CNCFF). Objective variables CC and CNC were used to 
create compact treatment units for all cuttings, while CCFF 
and CNCFF did the same for final felling.

Numerical optimization methods were used to solve the 
afore-described forest planning problems using the utility 
theoretic approach, which has been successfully applied in 
multi-objective forest planning (Pukkala and Kangas 1993). 
The previous literature has explored the efficiency of heu-
ristic methods in spatially explicit forest planning problems 
(Pukkala and Kurttila 2005). Among these heuristics algo-
rithms, threshold accepting (TA) and simulated annealing 
(SA) have been proved to be good but very slow and inef-
ficient when the planning problem includes a high number 
of calculation units (Pukkala et al. 2009). To overcome this 
shortcoming and after testing SA, we used cellular automa-
ton (CA) (von Neumann 1966) based on its efficiency in 
solving large spatially explicit forest planning problems 
(Heinonen and Pukkala 2007; Mathey et al. 2007).

The CA method described in Heinonen and Pukkala 
(2007) was used to solve a two-phase optimization prob-
lem including FIU-level and neighborhood-related goals 
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(local function), and global goals at study area level 
(global function). The initial solution was obtained by ran-
domly assigning one of the simulated schedules to each 
FIU. Then, for each FIU, a random number is drawn from a 
uniform 0–1 distribution. A mutation took place if the ran-
dom number was smaller than the current mutation prob-
ability (Heinonen and Pukkala 2007). Otherwise, innova-
tion occurred if the random number was smaller than the 
current innovation probability. When innovation occurred, 
the schedule which maximized the following local objec-
tive function was selected for the cell or segment.

NonSpatPlan:

SpatPlan

where U is the objective function value and V is the ending 
volume of the FIU (m3 ha−1) and Vmax is the largest ending 
volume value after 60 years among all schedules of all FIUs 
(m3 ha−1). In SpatPlan, based on preliminary tests, the same 
weights were used with all FIU types giving high importance 
to CNC and CNCFF objectives in order to create compact 
harvest blocks.

When the local phase was completed, a global objec-
tive function (Eq. 8) was added to the local function to 
obtain a function that expressed both local and global 
objectives (Eq. 9). The global objective function expressed 
the 50,000 m3 periodical cutting targets (R1, R2 and R3) 
and maximized the total ending volume (Vtot, m3). Ending 
volume was included also in the global function as pre-
liminary tests showed that this resulted in slightly better 
solutions than having the non-spatial objective only in the 
local objective function. The global priority function was:

where P is global priority. After the local optimization phase 
(maximizing Eqs. 6 or 7) was completed, the global phase 
started to use Eq. 9 as the objective function. The value of 
b was increased gradually so that the step size was propor-
tional to the mean size of the FIU type. The starting value of 
b was zero. In every iteration, the value of b was increased 
by 0.072 when using large segments, 0.0022 when using 
small segments and 0.001 when using cells. When the global 
utility function (Eq. 8) reached a value which could not be 
improved, global optimization ended in all cases. At that 
point, the even-flow harvesting targets (R1, R2 and R3) were 

(6)U =
V

Vmax

(7)
U = 0.10

V

Vmax

+ 0.15CC + 0.20(1 − CNC)

+ 0.15CC
FF

+ 0.40
(

1 − CNC
FF

)

(8)
P = 0.25p1(R1) + 0.25p2

(

R2

)

+ 0.25p3(R3) + 0.25p4
(

Vtot

)

always met. The objective function maximized in the second 
phase was:

where OF is total priority, a is the area of the FIU, A is the 
total area of the study area, and b is the weight of the global 
priority function P. An example of the progress of an opti-
mization run is shown in Fig. 3.

Assessment of cutting aggregation

The performance of different FIU types, and NonSpatPlan 
versus SpatPlan, was assessed in terms of timber pro-
duction and aggregation of harvest blocks. The number 
and mean size of harvest blocks were computed for all 
problems. In addition, the area–perimeter ratio (AP) was 
computed to assess the spatial efficiency of segments and 
cells in creating harvest blocks considering all cuttings 
and specifically final felling. Solutions for cell-based plans 
were smoothed to eliminate the stair-type pattern caused 
by the square-shaped FIUs, to make cell- and segment-
based harvest blocks comparable with respect to AP ratio. 
The smoothing was implemented with the PAEK proce-
dure (Bodansky et al. 2002). In the PAEK, the magnitude 
of smoothing is controlled with the smoothing tolerance 
parameter. Its value was set to 23.3 m, which is slightly a 
larger value than the used cell size (22.4 m). In addition, 
the time needed for optimization was recorded for each 
problem.

Results

Regression models

The selected predictor variables for the number of trees per 
hectare (N) were the 60th percentile of height distribution of 
the echoes (ElevP60), forest cover computed from first echoes 
(FC1) and coefficient of variation of all echoes (ElevCV). In 
the stand basal area model (G), the predictor variables were 
the 20th percentile of height distribution (ElevP20) and forest 
cover including all echoes (FCALL). Finally, the 99th height 
percentile (ElevP99) was the predictor of dominant height. 
In this case, the square-root transformation of the response 
variable (H0) resulted in the best model (Table 3).

Prediction of current forest attributes

Stand attributes were predicted for each nano-segment using 
the previously presented regression models (Table 3) and 

(9)OF =
a

A
U + bP,
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then aggregated to obtain forest attributes for the FIUs. 
The mean values of N and H0 were higher for square cells 
than for segments. Predicted values of G were, on average, 
slightly lower for cells than for large segments, but higher for 
cells than for small segments (Table 4). The standard devia-
tion of G between FIUs was the same for small and large 
segments, and slightly lower for cells. The total growing 

stock volume estimates were 253,016 m3 for large segments 
and 253,019 m3 for small segments, whereas for cells the 
growing stock volume was about 1.1% less (250,163 m3).

Timber production and computation time

Timber production was the highest when small segments 
were used (Table 5). In NonSpatPlan, timber production for 
large and small segments was 0.7 and 3.9% higher than in 
cell-based planning. In SpatPlan, the difference was 2.3% 
for large segments and 4.8% for small segments. The use 
of spatially explicit problem formulation decreased ending 
volume and, as a result, timber production. The difference in 
timber production between non-spatial and spatial formula-
tion was 5.6% for large segments, 6.3% for small segments 
and 7.1% for cells.

The computational cost of using cells in SpatPlan was 
about 10 times higher than with small segments and 40 
times higher than with large segments. The difference in 
time consumption decreased to 6.1-fold (cells vs. large seg-
ments) and 4.1-fold (cells vs. small segments) times when 
the time consumed for segmentation was added. The time 
for simulating alternative treatment schedules for the FIUs 
was directly proportional to the number of FIUs, i.e., 7.8 
times longer for cells than large segments, 2.2 times longer 
for cells than small segments and 3.6 times longer for small 
segments than large segments.

Aggregation of cuttings

According to the AP values, the use of large segments 
aggregated all cuttings most efficiently (highest AP ratio) in 
NonSpatPlan, followed by small segments and cells (Fig. 4). 
The AP values increased 2.4-, 3.4- and 4.4-fold for large seg-
ments, small segments and cells, respectively, for SpatPlan 
formulation. Therefore, the benefit of using spatial optimiza-
tion increased as FIUs decreased in size. As a result, the AP 
ratios of the spatial problems were of the same magnitude 
for all three FIU types. When only final felling was con-
sidered, the improvement in AP ratios was 2.1-, 2.5- and 
3.7-fold, respectively, for large segments, small segments 

Fig. 3   Example of the progress of the two-step CA run (spatially 
explicit optimization for cells); a local and global utility, b harvested 
volume and c spatial objective variables (total length of different 
boundaries). The arrows indicate the moment when the global prior-
ity function was added to the objective function

Table 3   Models for estimating the number of trees per hectare (N), 
stand basal area (G, m2 ha−1) and dominant height (H0, m) using ALS 
metrics as predictor variables; and model performances in terms of 
RMSE and bias

Model RMSE (%) Bias (%)

N = e
(2.51−0.08Elev

P60+3.30 ln (FC1)−2.10Elev
0.5

CV
) 26.97 0.29

G = − 10.810 + 9.175Elev
0.5

P20
+ 0.005 FC

2

ALL
31.29 0.00

H
0
=
(

2.498 + 0.104Elev
P99

)2 13.17 0.45
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and cells. Final felling harvest blocks composed of large 
segments had the highest AP ratios in both problems.

In NonSpatPlan, the size of harvest blocks was always 
the largest when using large segments. However, spa-
tial optimization narrowed the gap between FIU types 
(Table 6). With large segments, the mean size of har-
vest blocks was 6.1 times larger in SpatPlan as compared 
to NonSpatPlan. The corresponding ratio was 8.9 for 
small segments and 22.8 for cells. In all cases for Spat-
Plan, the size of harvest blocks increased from the first 
period onward (Table 6, Fig. 6). The number of harvest 

blocks was clearly lower in SpatPlan than in NonSpatPlan 
(Table 6).

In NonSpatPlan, all plans had scattered harvest blocks, 
most when cells were used (Fig. 5). The plans started to 
differ more and more after the first 20-year period in the 
spatio-temporal allocation of treatments and also in terms 
of prescription type. Segment-based plans included more 
final felling, while cell-based plans relied more on thinning. 
In SpatPlan, the spatial layout and distribution of treatments 
were very similar for the three FIU types (Fig. 6).

Table 4   Mean values and 
standard deviations between 
FIUs (in brackets) of forest 
attributes in the study area

Forest attribute Cells Small segments Large segments

Basal area (m2 ha−1) 24.6 (11.2) 24.1 (12.3) 24.8 (12.3)
Number of trees (trees ha−1) 626 (274.2) 592 (272.9) 608 (243.1)
Dominant height (m) 16.1 (3.8) 15.6 (4.3) 15.9 (3.8)

Table 5   Timber production 
and time consumption of 
optimization for different FIU 
types

FIU type NonSpatPlan SpatPlan

Production 
(m3 ha−1)

Solution time (s) Production 
(m3 ha−1)

Solution time (s)

Large segments 154.1 91 145.4 225
Small segments 159.1 367 149.0 894
Cells 153.6 3117 142.2 8636

Fig. 4   Area–perimeter ratio (AP) in NonSpatPlan (non-spatial formulation) and SpatPlan (spatial formulation) for the three tested FIUs when 
considering all cuttings (left) and final felling (right). A high AP value implies good aggregation and high compactness in the harvest blocks

Table 6   Mean harvest block 
size (ha) and number of harvest 
blocks (in brackets) for different 
FIU types

Large segments Small segments Cells

NonSpatPlan SpatPlan NonSpatPlan SpatPlan NonSpatPlan SpatPlan

Period 1 2.7 (133) 5.1 (57) 1.2 (281) 3.7 (81) 0.4 (802) 4.1 (88)
Period 2 3.7 (132) 16.6 (30) 1.7 (294) 18.5 (27) 0.5 (920) 19.8 (26)
Period 3 1.4 (189) 25.7 (26) 1.0 (351) 30.8 (22) 0.6 (782) 41.8 (16)
All periods 2.1 (453) 12.9 (113) 1.3 (926) 11.4 (130) 0.5 (2504) 11.9 (130)



119European Journal of Forest Research (2019) 138:111–123	

1 3

Fig. 5   Treatment units in NonSpatPlan (non-spatial)
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Fig. 6   Treatment units in SpatPlan (spatial)
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Discussion

This study compared the use of segments of different sizes 
and square cells in forest planning. The outer boundary of 
nano-segments and segments followed the irregular bound-
ary of forest patches, which is a clear advantage compared 
to cells, some of which are located in the transition zone 
between two forest patches of different characteristics, or 
between forest and non-forest area. The standard devia-
tion of G between all the FIUs of the study area was higher 
for segments than for square cells. This is logical because 
segmentation reduced the variation in the values of ALS 
metrics within segments as compared to cells, leading to 
greater variability in stand attributes between segments than 
between cells. The standard deviation of G was exactly the 
same for small and large segments, which is indicative of the 
reliability of using nano-segments for upscaling stand-level 
information to different levels of spatial resolution.

In NonSpatPlan, the spatial arrangement of treatments 
was very scattered when cells were used. The dispersion of 
treatments was so high that it would be difficult to imple-
ment NonSpatPlan when using cells. This conclusion is in 
line with previous experiences on cell-based planning (Pas-
cual et al. 2016). The spatial layout of segments in Non-
SpatPlan showed fewer isolated FIUs as compared to cells. 
This suggested that, opposite to using square cells, relying 
on ALS-based segmentation leads to some spatio-temporal 
clustering of forest treatments even without using spatial 
objective variables in optimization. Therefore, segmenta-
tion may be regarded as a method to conduct preliminary or 
first-stage aggregation of cuttings.

The inclusion of spatial goals improved the formation of 
compact harvest blocks by promoting the spatio-temporal 
clustering of similar forest treatments, which is in line with 
previous studies (Lu and Eriksson 2000; Rebain and McDill 
2003; Tóth and McDill 2008). As numerically expressed by 
the AP ratios, spatial optimization yielded compact harvest 
blocks with all three FIU types but the gain in spatial goals 
was greater with smaller FIUs (cells and small segments). 
The ranking of the AP ratio of cells shifted from the last 
place to the first when all cuttings were considered. When 
the analyses were done for final felling, large segments had 
the highest AP ratio in both problems.

In this research, the same weights of objective variables 
were used with all FIU types to reveal the effect of the type 
and size of FIU on the layout of dynamic treatment units. 
Preliminary tests and sensitivity analysis were used to derive 
weights that ensured the achievement of harvesting targets 
(global optimization) while simultaneously clustering cut-
tings. These preliminary tests led to high weight for mini-
mizing the length of adjacent FIUs both treated with final 
felling (CNCFF).

As expected, the inclusion of spatial objective variables 
in problem formulation decreased timber production (by 
5.6–7.1%). Previous research has explored the effect of 
spatial formulations and spatial constraints on non-spatial 
objectives such as net present value or yield (Baskent and 
Keles 2005). For example, Daust and Nelson (1993) found 
2–29% losses in yield due to the use of spatially explicit 
formulations in Monte Carlo integer programming.

Segment-based solutions for SpatPlan concentrated cut-
tings with a lower computational effort compared to cells. It 
might be interesting to compare the performance of alterna-
tive FIUs when adding additional spatial constraints to the 
problem formulation (Williams et al. 2005; Vielma et al. 
2007) as the size and shape of FIUs might have an impact 
on the solution depending on the nature of the added spatial 
constraints (Murray and Weintraub 2002). For example, it 
might be possible to measure the contribution of segments 
to reduce the presence of undesirable edges (Ross and Tóth 
2016) when composing the harvest blocks along the optimi-
zation process. In addition, it might also be worthwhile to 
evaluate spatial optimization by integrating fire risk mini-
mization in problem formulation since wildfires are a major 
concern in the region.

Alternative optimization methods such as mixed integer 
programming and global meta-heuristics have been used to 
aggregate cuttings in spatial optimization (e.g., Pukkala and 
Kurttila 2005; McDill et al. 2016). In our case, during the 
preliminary tests with global meta-heuristics, we found that 
when SA was used with square cells in spatial optimization, 
the solution times were substantially longer than with CA, 
and the aggregation was poorer. The probable reason was 
the high number of square cells (22,879 cells with a total 
of 460,117 alternative treatment schedules), and therefore, 
global meta-heuristics became inefficient (Pukkala et al. 
2009).

Conclusions

Our results show that spatial optimization improves 
the delineation of harvest blocks. Segmentation greatly 
decreased the computational cost of spatial problem formu-
lations and substantially increased the aggregation of FIUs. 
The use of small segments maximized timber production 
in both non-spatial and spatial problem formulations. The 
compactness of harvest blocks composed of cells was greatly 
improved when spatial objective variables were included in 
problem formulation. The use of nano-segments made it pos-
sible to precisely upscale the prediction of attributes; the 
computed initial growing stock volume was the same for 
small and large segments. The findings of this study verified 
the capability of spatial optimization to create dynamic treat-
ment units when using small calculation units resulted from 
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ALS-based inventories. The spatial forest planning methods 
analyzed in this study increase the precision of prescriptions 
and help to maximize the utility that can be obtained by 
using fine-grained ALS data.
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