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Abstract We simplified Kozak’s taper model by setting

the inflection point at 1.3 m (dbh) without losing accuracy

and precision. The simplification was required to facilitate

the estimation of the covariance parameters when using a

mixed-effects method. This method was necessary to take

into account the correlation among multiple diameter

measurements on an individual stem. The simple stem

taper model was fitted to an extended data set collected

across the province of Quebec, Canada. Comparison of the

predicted stem taper and the derived stem volume with

those obtained using existing models showed a comparable

predictive power for the simple model. Including a pre-

diction of the tree random effects based on supplementary

diameter measurements of the bole improves the predictive

ability of the model around the extra diameter observation.

This model offers welcome simplicity as a means of pre-

dicting tree taper at coarse resolution for planning tree

harvesting.

Keywords Random effects � Black spruce � Stem taper �
Variable-exponent taper equation

Introduction

Knowledge of tapering in a stem is of great value to pri-

mary log breakdown because it affects grade yield.

Moreover, in the context of integrating timber harvest with

product recovery, it is necessary to develop mathematical

models that predict stem taper from (1) tree-level covari-

ates such as dbh, height, and crown length, and (2) stand

attributes such as those available from forest polygon

maps. For tree level, several models have been proposed

with more or less detail to assess the generality of taper

equations as well as the effect of diverse tree attributes on

taper variation. So far no study has investigated the sim-

plification of taper equations for facilitating the quantifi-

cation of current and eventual stand-level attributes on the

variation of stem form. This simplification approach is

justified for planning tree harvesting.

In Canada, boreal black spruce (Picea mariana (Mill.)

B.S.P.) is a major commercial species. The use of taper

equations can improve estimates of standing timber value

and help schedule harvesting as a function of its current

market demand. However, the existing stem taper equa-

tions are limited in their extended applications by the small

number of trees used for their parameterization and by their

inability to take into consideration the correlation among

repeated measurements on individual trees (e.g., Newnham

1988; Bonnor and Boudewyn 1990; Sharma and Zhang

2004). Within this context, the objective of this paper was

to develop a more general taper equation, which would

apply over larger areas of black spruce stands. This was

done by combining data sets from past studies into a larger
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database. The correlations among the data were taken into

account through a mixed-effects model. Moreover, we

tested the effect of measuring additional diameters along

the bole over the predictive ability of the model by pre-

dicting the random effects using measured upper diameters

as pre information. Like existing taper equations for black

spruce, the mathematical formulation of stem taper was

based on Kozak’s variable-exponent equation (1988).

Data

We used data from six studies containing 947 trees and

covering all ecological domains where black spruce is

present: the western and eastern black spruce-moss forest,

and the western and eastern balsam fir-yellow birch forest

(MRNF 2003). Since the data set was largely sufficient for

the parameterization, 30% of the trees from each ecological

domain were randomly kept apart for validation. dbh and

height ranges are shown in Table 1 for partitions and study

sites. Large ranges of dbh and heights were covered, and

these ranges were similar for the parameterization and

validation partitions.

Ouellet (1983) measured outside bark diameter from the

stump up to merchantable height (9-cm diameter outside

the bark). Between both limits, outside bark diameter was

measured at 0.15, 0.80, and 1.30 m, at 0.05 m below the

first live whorl as well as at each third of merchantable

height. The same sampling was used in Ung and Ouellet

(1993) and in Bonnet and Pastor (1997). In Ung (1990),

Beaumont et al. (1999) and Ruel et al. (2003), outside bark

diameter was measured at 0.15, 1.30, and thereafter, at

each meter up to the first live whorl. Also, diameter mea-

surements were taken at each whorl up to the tip of the

crown. Rycabel (personal communication, 2002) used a

more regular pattern with measurements at 0.15, 0.65,

1.15 , 1.30, 2.15 m, and thereafter, at each meter up to the

apex. For each sampled tree, total height and dbh (mea-

sured at 1.3 m) were also recorded.

Method

Three steps were followed: simplification of Kozak’s

equation, model specification, and model verification with

wood volume comparison.

Model simplification

Let i and j be the tree and the along-bole measurement

position indices, respectively, such that i = 1, 2,…, n and

j = 1, 2,…, mi. Kozak’s original equation can then be

represented as follows:

yij ¼ A � dbhB
i

1� ffiffiffiffiffi

gij
p

1� ffiffiffi

p
p

� �Cij

þeij ð1aÞ

gij ¼ hij
�

hti ð1bÞ

where yij is the inside bark diameter for section j in tree

i, dbhi is the outside bark diameter at breast height, p is

the relative height of the inflection point, hij is the height

of the measurement, hti is the total height of the tree, eij

is the random error term, and A, B and Cij are parameters

to be estimated. The inflection point is where the stem

profile changes from neiloid to paraboloid, and its rela-

tive height is thought to be constant within a given

species, regardless of tree size (Demaerschalk and Kozak

1977). Parameters A and B, which deal with the con-

version from outside to inside bark diameter, are assumed

to be constant within a given species, and can be esti-

mated with any appropriate data set (e.g., Garber and

Maguire 2003). Parameter Cij represents the core of

model 1a as it makes it possible to fit the various forms

all along the bole. In fact, the bole form is considered to

vary according to the relative height of the section (gij)

and tree characteristics.

By only addressing outside bark diameter, which is

required for wood product estimates at the preharvest

planning stage and during harvest for optimum bucking,

Eq. 1a can be simplified by dropping not only A but also B.

Further simplification was carried out on term Cij, which

represents the variable exponent. In the original model, Cij

involved a complex linear function that included seven

parameters and incorporated gij under many forms, such as

linear, square, inverse, square root, and logarithmic. First,

Cij was relocated as an exponent of both gij and p. Then, we

reduced the linear function to three parameters as follows:

Table 1 Total height and dbh ranges in the database

Partitions and sites Number

of trees

dbh (cm) Height (m)

Parameterization

Chibougamau-Quévillon 437 7.7–32.9 5.7–22.8

Saint-Camille 14 8.6–23.0 9.7–17.5

Alma 20 6.6–25.0 8.9–19.2

Rouyn-Noranda 127 8.8–32.2 8.7–25.1

Baie-Comeau 45 9.9–26.4 9.7–19.5

Validation

Chibougamau-Quévillon 212 6.3–31.1 7.2–23.1

Saint-Camille 5 11.4–25.2 11.7–19.4

Alma 12 7.7–24.2 9.1–18.5

Rouyn-Noranda 51 10.1–30.2 9.0–25.3

Baie-Comeau 24 9.7–26.5 8.8–22.3
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yij ¼ dbhi

1� g
Cij

ij

1� p
Cij

i

 !

þ eij ð2aÞ

Cij ¼ aþ b � gij þ c � g2
ij ð2bÞ

pi ¼
1:3

hti
ð2cÞ

where a, b and c are the general parameters of the model.

Through Eq. 2c, we lose the classical notion of inflection

point by setting it at breast height, or 1.3 m. Although this

is a strong assumption, preliminary trials revealed no major

bias. Like most stem taper equations, Eq. 2a is mathe-

matically consistent. At the apex of the tree, diameter yij

converges to 0. At breast height, the ratio involving gij and

pi yields 1 and y is equal to dbhi plus an error term so it is

equal to dbh in expectation.

Model specification

When parameterizing a stem taper model, regular statis-

tical estimators, such as ordinary or nonlinear least

squares, rely on the assumptions of independently and

normally distributed error terms with homogeneous

variances (Steel et al. 1997, § 7.10). Besides, stem taper

data are often autocorrelated as we can reasonably

assume that diameter measurements are not entirely

independent within the same tree. Departures from the

assumption of independent errors result in biased statis-

tical inferences (Sullivan and Clutter 1972), which hinder

the selection of appropriate explanatory variables (Greg-

oire et al. 1995). Over the last three decades, the mixed-

effects method has become increasingly popular in the

forestry literature for this kind of analysis. This method

makes it possible to relax the assumption of homoge-

neous variances and independent error terms. Recently, it

has been used for modeling stem taper (e.g., Garber and

Maguire 2003; Leites and Robinson 2004; Trincado and

Burkhart 2006).

In general terms, model 2a can be expressed as follows:

yij ¼ f ðb; di; xijÞ þ eij ð3Þ

where xij is a vector of explanatory variables; di is a vector

of unobserved tree random effects for tree i; b is a vector of

unknown fixed-effect parameters; and eij is the residual

error term. The vector of tree random effects and the vector

of within-tree residual error terms (ei) are both assumed to

be multivariate normally distributed, i.e., di �i:i:d: MVNð0;RÞ
and ei �i:i:d: MVNð0;RiÞ. The variance–covariance matrix of

the within-tree error terms (Ri) is usually set to Ri ¼ r2Imi

under the assumption of independence. However, the dis-

tribution of ei becomes multivariate when Ri is assumed to

have a correlation structure.

Due to the nonlinear form of Eq. 3, estimating the

variance–covariance matrix R for the tree random effects is

tedious. One way to obtain a more convenient form is to

approximate model 3 through a first-degree Taylor

expansion around the random effects (Pinheiro and Bates

2000, p. 312):

yij ¼ f ðxij; di; bÞ þ eij ffi f ðxij; 0; bÞ þ zijdi þ eij ð4Þ

zij ¼
of ðxij; di; bÞ

odT
i

�

�

�

�

di¼0

where zij is a matrix of partial derivatives of the model with

respect to the random effects.

From Eq. 4, the variance for the vector of within-tree

diameters can be estimated as:

varðyiÞ ¼ ZiRZT
i þ Ri � Vi ð5aÞ

Zi ¼

zi1

zi2

. . .
zimi

2

6

6

4

3

7

7

5

ð5bÞ

where matrix Zi consists of the appropriate zij stacked and T

is a matrix transposition. In addition to random effects, a

correlation structure and a variance function can be

specified for Ri. Details on correlation structures and

variance functions are available in Davidian and Giltinan

(1995), Littell et al. (2006), and Pinheiro and Bates (2000,

§ 5.3.3). In a general context, the covariance matrix Ri can

be expressed as (Pinheiro and Bates 2000, p. 205):

Ri ¼ C1=2
i UiC

1=2
i

¼

r2
i1 qi12ri1ri2 . . . qi1mi

ri1rimi

qi21ri2ri1 r2
i2 . . . qi2mi

ri2rimi

. . . . . . . . . . . .
qi1mi

rimi
ri1 qi2mi

rimi
ri2 . . . r2

imi

2

6

6

4

3

7

7

5

ð6Þ

where Ci is a diagonal matrix whose elements are the

residual variances r2
ij and Ui is a correlation matrix whose

off-diagonal elements are the correlations qijj0.

In this case study, the parameters of model 2a were

expressed through a mixed model adjustment as linear

functions of one or many fixed effects as well as of the

single tree random effect:

ai ¼ b1 þ b2

hti

dbhi
þ b3hti þ d1;i ð7aÞ

bi ¼ b4 þ d2;i ð7bÞ

ci ¼ b5 þ b6

hti

dbhi
þ d3;i ð7cÞ

where b1, b2, b3, b4, b5, and b6 are the elements of the

column vector of fixed-effect parameters (b), and d1,i, d2,i,

and d3,i are the elements of the vector of tree-level random

effects (di). We assumed that this vector had an
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unstructured covariance structure, i.e., there was no

structure specified for the 3 9 3 matrix R. Moreover,

matrix Ri was modeled through a first-order autoregressive

correlation structure and a power-of-the-mean variance

function, which provided the best fit. The power-of-the-

mean variance function and the continuous autoregressive

correlation structure that were fitted are defined as follows:

varðeijjdiÞ ¼ r2
ij ¼ r2 EðyijjdiÞ

� �

2h ð8aÞ

corrðeij; eij0 jdiÞ ¼ qijj0 ¼ q hij�hij0j j ð8bÞ

where EðyijjdiÞ is the mean predicted value conditional on

the tree random effects, and r2, h and q are parameters to

be estimated. Note that Eqs. 8a and 8b completely specify

matrices Ci and Ui in Eq. 6. The adequacy of the random

effects, the variance function, and the correlation structure

were assessed through likelihood ratio tests and parsimony

criteria (AIC and BIC).

The parameterization of nonlinear mixed models relies

on likelihood estimation. Because the maximization of the

likelihood function involves a complex integral, some

approximations have been proposed in the statistical liter-

ature. Some of them consist in linearizing the model

through a first-order Taylor expansion around the expected

value zero of the random effects as shown in Eq. 4 and

applying the linear mixed-model theory (e.g., Lindstrom

and Bates 1990; Vonesh and Carter 1992). Model (2a) with

all the aforementioned features was parameterized using

the nlme package (Pinheiro et al. 2008) available in R

software (R Core team 2008), which is based on this type

of approximation.

Model validation

In addition to likelihood ratio tests and parsimony criteria

(AIC and BIC), normalized residuals were used to check

the fit of the model. Considering the variance–covariance

matrix of the error terms, a vector of within-tree normal-

ized residuals (ri) can be approximated from the linear

mixed-model theory (cf., Pinheiro and Bates 2000, p. 239)

as

ri ¼ V̂
1=2

i

� 	T

ðyi � fðXi0; b̂ÞÞ ð9Þ

Normalized residuals can be seen as standardized residuals

for mixed models because they account for the modeled

covariances. If the mixed model is properly parameterized

with regard to its covariance features, we can expect the

elements of ri to be independently and normally distributed

with mean 0 and variance 1, i.e., ri �i:i:d: Nð0; IÞ (SAS Insti-

tute 2008). These normalized residuals were used to check

residual correlations.

Once model 2a was parameterized, mean predictions were

generated for each observation of the validation partition.

Because the random effects do not occur linearly in the

model, these predicted values did not correspond to the

mathematical expectation for the population, i.e.,

E½yij� 6¼ f ðxij; 0; b̂Þ. In fact, the population-averaged predic-

tions, i.e., the mathematical expectation of yij without prior

knowledge of the random effects, were obtained by inte-

grating the marginal prediction of the model with respect to

the random effects (e.g., McCulloch and Searle 2001, p. 65).

In this case study, these population-averaged predictions

would be obtained through E½yij� ¼
R

f ðxij; di; b̂Þ�
prðdiÞ � ddi. However, there was no closed-form solution to

this integral and therefore, it was computed numerically.

Let ŷij be the population-averaged predicted values for

section j of tree i. The validity of the model was assessed

through the average bias and the root mean square error

(RMSE), which were computed as follows:

Bias ¼
Pn

i¼1

Pmi

j¼1 ðyij � ŷijÞ
Pn

i¼1 mi
ð10aÞ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

Pmi

j¼1 ðyij � ŷijÞ2
Pn

i¼1 mi

s

: ð10bÞ

Relative biases and RMSE were obtained by dividing

Eqs. 10a and 10b by the average observed diameter.

Average biases and RMSE were calculated by classes of

tenths of relative height as is done in most of the studies on

the stem profile modeling (e.g., Garber and Maguire 2003;

Sharma and Zhang 2004). Moreover, the trees were

grouped into 5-cm dbh classes to check if bias was related

to tree size.

Predicted stem tapers were also used to compute tree-

level volume estimates. Estimated and observed volumes

for trees of the validation data set were compared with

assessed volume prediction bias. Observed volumes were

calculated using two outside bark round-end diameters: a

0-cm limit, which provided the total volume, and a 9.1-cm

limit, which is considered as the merchantable limit in the

province of Quebec. The volumes were calculated with

Smalian’s formula (Avery and Burkhart 1983, p. 30).

Biases and RMSE were then computed.

Finally, like Lappi (2006) and Kublin et al (2008), the

simplified model was also used to evaluate the number and

best location of supplementary diameter measurements.

According to the mixed model theory (Littell et al. 2006),

additional diameters along the bole can be considered as

prior knowledge of the stem taper, and can be used to

predict the vector of tree random effects as:

d̂i ¼ R̂Z
T

i V̂
�1

i ðyi � fðXi; 0; b̂ÞÞ:
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Using the predicted d̂i is known to reduce the variance of

the model predictions (e.g., Hall and Bailey 2001). To test

this effect in this case study, the validation data set was

divided into ten relative height classes again. Like Trin-

cado and Burkhart (2006), the root mean square error

(RMSE) within each relative height class was obtained

using the predicted random effect parameter. The evalua-

tion was conducted with two different scenarios. The first

used only one supplementary diameter at absolute heights

of 0.0001 m (stump height), 3.5, 7, and 10 m. The second

used two supplementary diameters at absolute heights of

3.5 m, with 7 m and at 3.5 m with 10 m.

Results

We parameterized the model several times keeping the

fixed-effect specification constant. We first included the

variance function, then the random effects and finally the

correlation structure. According to AIC and BIC statistics,

every additional covariance feature, i.e., the random

effects, the variance function, and the correlation structure

significantly improved the maximum likelihood of the

model (Table 2). The maximum log-likelihood (LLK)

value increased from -6,237 for the model including the

variance function only to -4,175 for the complete model

(model 5 in Table 2).

The normalized residuals were normally distributed with

homogeneous variance. Empirical correlations were com-

puted for height classes along the bole. The residuals

exhibited low but persistent correlations for some distances

between the diameter measurements (Fig. 1). Most corre-

lations did not exceed the [-0.2, 0.2] range. The parameter

estimation yielded the following parameter estimates (all

significant at a = 0.01):

âi ¼ 0:8918þ 0:1575
hti

dbhi
� 0:0244hti þ d1;i ð11aÞ

b̂i ¼ 2:9929þ d2;i ð11bÞ

ĉi ¼ �2:6326þ 1:0313
hti

dbhi
þ d3;i ð11cÞ

R̂ ¼
0:0116 �0:0575 0:0554

�0:0575 0:6669 �0:7280

0:0554 �0:7280 1:0325

2

4

3

5 ð11dÞ

r̂2 ¼ 0:0706 ð11eÞ

ĥ ¼ 0:2204 ð11fÞ
q̂ ¼ 0:3356 ð11gÞ

Note that the parameter estimates in Eqs. 11e, 11f, and 11g

refer to the correlation structure and the variance function.

The 95% confidence intervals of the fixed-effect parame-

ters are annexed to this paper.

The estimates of the fixed-effect parameters and the

variance–covariance matrix R were used in turn to generate

a population-averaged mean predicted stem profile for each

tree of the validation data set. The biases and RMSE were

calculated for each 5-cm dbh class. Results are shown in

Table 3. Two diameter classes (2.5–7.5 and 27.5–32.5 cm)

were omitted from this table because they had too few

trees.

The model tends to underestimate the diameters in the

lower and upper sections, whereas the mid-section diam-

eters are overestimated. For sections below 0.8 in relative

height, most biases are smaller than or close to 0.4 cm in

absolute value, and the RMSE ranges from 0.2 to 1.1 cm

(Table 3). These biases are relatively low, with absolute

relative values ranging from 0 to 6.5% which are similar to

those obtained by Garber and Maguire (2003) and Sharma

and Zhang (2004). For the upper sections, the biases are

larger and range from 0.5 to 0.7 cm like those obtained by

Garber and Maguire (2003) and Sharma and Zhang (2004).

The pattern is similar for all diameter classes. With an

average bias of 0.1 cm for all the validation data pooled,

the model predictions can be considered nearly unbiased on

average (Table 3).

Table 2 Maximum log-likelihood (LLK) and information criteria

(AIC and BIC) of the different models

Model Covariance features LLK AIC BIC

1 Variance function -6,237 12,489 12,542

2 Model 1 ? random effect d1,i -5,748 11,513 11,573

3 Model 2 ? random effect d2,i -4,876 9,775 9,848

4 Model 3 ? random effect d3,i -4,492 9,012 9,105

5 Model 4 ? correlation structure -4,175 8,380 8,479

Fig. 1 Empirical correlations against distance classes between height

sections along the bole (dashed lines represent the 95% confidence

intervals under the null hypothesis H0: Corrðrij; rij0 Þ ¼ 0)

Eur J Forest Res (2009) 128:505–513 509
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The volume estimates show average biases that range

from 0.1 to 3.2 dm3 in absolute values (Table 4). These

biases are relatively small, representing less than 1% of the

average observed volumes. RMSE tends to increase with

the diameter. However, the relative root mean square error

is rather constant, ranging from 5.4 to 10%. For most

diameter classes, bias and RMSE are slightly larger for the

merchantable volume.

When only one supplementary diameter measurement

was considered at stump height (0.0001 m), 3.5, 7, and

Table 3 Biases and root mean square errors (RMSE) of the mean

stem profile predictions with respect to the validation data set (relative

biases and RMSE between parentheses)

Diameter class

and relative height

Number of

observations

Bias

(cm)

RMSE

(cm)

7.5–12.5 cm

0.0 \ gij \ 0.1 118 -0.17 (-1.4%) 0.77 (6.4%)

0.1 \ gij \ 0.2 54 0.08 (0.8%) 0.27 (2.5%)

0.2 \ gij \ 0.3 40 0.07 (0.7%) 0.25 (2.6%)

0.3 \ gij \ 0.4 41 0.00 (0.0%) 0.36 (3.8%)

0.4 \ gij \ 0.5 33 -0.02 (-0.3%) 0.32 (3.7%)

0.5 \ gij \ 0.6 22 -0.01 (-0.1%) 0.39 (5.0%)

0.6 \ gij \ 0.7 24 0.13 (1.9%) 0.50 (7.4%)

0.7 \ gij \ 0.8 23 0.21 (4.0%) 0.52 (9.6%)

0.8 \ gij \ 0.9 17 0.40 (9.8%) 0.48 (11.8%)

0.9 \ gij \ 1.0 14 0.20 (13.3%) 0.30 (20.0%)

Overall 386 0.01 (0.1%) 0.52 (5.6%)

12.5–17.5 cm

0.0 \ gij \ 0.1 253 0.06 (0.3%) 0.73 (4.4%)

0.1 \ gij \ 0.2 80 0.10 (0.8%) 0.44 (3.3%)

0.2 \ gij \ 0.3 105 0.20 (1.5%) 0.51 (3.8%)

0.3 \ gij \ 0.4 96 -0.08 (-0.7%) 0.60 (5.1%)

0.4 \ gij \ 0.5 115 -0.06 (-0.5%) 0.66 (5.8%)

0.5 \ gij \ 0.6 87 -0.12 (-1.3%) 0.59 (6.0%)

0.6 \ gij \ 0.7 80 0.05 (0.6%) 0.59 (6.7%)

0.7 \ gij \ 0.8 53 0.47 (6.3%) 0.73 (9.9%)

0.8 \ gij \ 0.9 54 0.61 (11.9%) 0.76 (14.8%)

0.9 \ gij \ 1.0 24 0.45 (20.5%) 0.48 (21.7%)

Overall 947 0.10 (0.8%) 0.64 (5.3%)

17.5–22.5 cm

0.0 \ gij \ 0.1 222 -0.05 (-0.2%) 1.01 (4.5%)

0.1 \ gij \ 0.2 52 0.18 (1.0%) 0.69 (3.7%)

0.2 \ gij \ 0.3 139 0.30 (1.7%) 0.70 (4.0%)

0.3 \ gij \ 0.4 67 0.12 (0.7%) 0.64 (4.0%)

0.4 \ gij \ 0.5 124 -0.07 (-0.5%) 0.72 (5.1%)

0.5 \ gij \ 0.6 63 0.10 (0.7%) 0.88 (6.6%)

0.6 \ gij \ 0.7 75 -0.22 (-2.1%) 0.83 (8.1%)

0.7 \ gij \ 0.8 92 0.27 (3.0%) 0.71 (8.0%)

0.8 \ gij \ 0.9 76 0.72 (12.1%) 1.07 (18.1%)

0.9 \ gij \ 1.0 46 0.61 (23.6%) 0.76 (29.3%)

Overall 956 0.14 (1.0%) 0.84 (5.6%)

22.5–27.5 cm

0.0 \ gij \ 0.1 53 -0.18 (-0.7%) 1.34 (4.8%)

0.1 \ gij \ 0.2 20 0.47 (2.1%) 0.92 (4.0%)

0.2 \ gij \ 0.3 38 0.26 (1.2%) 0.98 (4.7%)

0.3 \ gij \ 0.4 19 0.07 (0.4%) 0.89 (4.6%)

0.4 \ gij \ 0.5 26 -0.19 (-1.1%) 0.97 (5.7%)

0.5 \ gij \ 0.6 26 -0.39 (-2.6%) 0.66 (4.3%)

0.6 \ gij \ 0.7 14 -0.37 (-2.9%) 0.71 (5.6%)

0.7 \ gij \ 0.8 37 0.07 (0.7%) 0.79 (8.2%)

0.8 \ gij \ 0.9 30 0.41 (6.1%) 0.61 (9.1%)

Table 3 continued

Diameter class

and relative height

Number of

observations

Bias

(cm)

RMSE

(cm)

0.9 \ gij \ 1.0 29 0.50 (18.3%) 0.74 (27.2%)

Overall 292 0.07 (0.4%) 0.94 (5.8%)

All diameter classes

0.0 \ gij \ 0.1 660 -0.03 (-0.2%) 0.93 (4.9%)

0.1 \ gij \ 0.2 212 0.18 (1.2%) 0.57 (3.7%)

0.2 \ gij \ 0.3 330 0.26 (1.6%) 0.68 (4.3%)

0.3 \ gij \ 0.4 230 0.05 (0.3%) 0.68 (5.0%)

0.4 \ gij \ 0.5 306 -0.07 (-0.5%) 0.70 (5.4%)

0.5 \ gij \ 0.6 207 -0.07 (0.6%) 0.70 (6.0%)

0.6 \ gij \ 0.7 200 -0.09 (-0.9%) 0.71 (7.4%)

0.7 \ gij \ 0.8 215 0.24 (2.8%) 0.74 (8.9%)

0.8 \ gij \ 0.9 183 0.59 (10.4%) 0.87 (15.3%)

0.9 \ gij \ 1.0 113 0.50 (20.7%) 0.66 (27.4%)

Overall 2,656 0.10 (0.8%) 0.76 (5.7%)

Table 4 Biases and root mean square errors (RMSE) of volume

estimates with respect to the validation data set (relative biases and

RMSE between parentheses)

Diameter class

and volume

Number

of trees

Bias

(dm3)

RMSE

(dm3)

7.5–12.5 cm 50

Total volume -0.1 (-0.2%) 3.2 (5.5%)

Merchantable volume -0.2 (-0.5%) 3.6 (10.0%)

12.5–17.5 cm 120

Total volume 0.3 (0.2%) 8.5 (6.5%)

Merchantable volume 0.3 (0.3%) 9.2 (8.1%)

17.5–22.5 cm 104

Total volume 1.3 (0.5%) 16.7 (6.3%)

Merchantable volume 1.6 (0.6%) 17.2 (6.9%)

22.5–27.5 cm 25

Total volume -3.2 (-0.8%) 25.6 (6.2%)

Merchantable volume -2.8 (-0.7%) 25.5 (6.4%)

Overall 304

Total volume 0.8 (0.4%) 14.9 (7.6%)

Merchantable volume 0.9 (0.5%) 15.3 (8.6%)
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10 m each time, Fig. 2 shows that: (1) the corrected curve

is better than the mean response, (2) the correction cannot

improve the accuracy of the whole stem; instead, the part

around the supplementary diameter measurement is

improved significantly, (3) the correction can hardly

improve the prediction if the supplementary diameter is

measured at the very bottom of the bole. Thus, the best

placement depends on which part of the stem is considered

to be more important. When two supplementary diameter

measurements were considered, Fig. 3 shows that: (1) in

general, the prediction is better than supplemented by only

one extra diameter measurement, and (2) compared with

the mean response, the improvement is less significant.

Discussion

The stem taper equation obtained represents a simplified

version of Kozak’s original variable-exponent equation. It

has three general parameters when the outside bark diam-

eter is considered as the dependent variable. The use of

random effects with a variance function and a correlation

structure represents two advantages over the ordinary least

square estimators. First, if the covariance features are

adequate, the estimators for the vector of fixed-effect

parameters and the variance components of the model are

thought to be unbiased, although this property is derived

from linear theory and has not been extended to the non-

linear case (Pinheiro and Bates 2000, p. 314). Therefore,

the appropriate explanatory variables either at the tree scale

or the stand scale can be selected according to their sig-

nificance level. In this case study, tree height and the

height/dbh ratio (hi/dbhi) were significant variables in the

prediction of stem taper.

Second, the mixed-effects method ensures some con-

sistency among model predictions through the estimation

of distinct error components. In this case study, four error

components were found to be significant. Three were

related to tree level, i.e., the three random effects (d1,i, d2,i,

and d3,i), whereas the last one was the residual error, which

is associated with diameter measurements (eij). The result

obtained is more satisfying than what would be obtained

using least square estimators in which the single error term

is assumed to be entirely independent from one section to

the other along the bole. Actually, such a least square-

based model is likely to have a lower maximum log-like-

lihood when compared with a model with a variance

function only (model 1 in Table 2), which in turn has a

much lower maximum log-likelihood when compared with

the proposed model (model 5 in Table 2).

An alternative to the simplification of Kozak’s equation

is a linearization through a logarithmic transformation,

which reduces the magnitude of the numerical problem of

estimating its parameters. However, the logarithmic trans-

formation induces a bias when the predicted values have to

be back-transformed (Duan 1983). Moreover, the log-

transformed diameter did not respect the assumption of

normality in this case study. For these reasons, the non-

linear approach was preferable.

In terms of accuracy, the proposed model shows biases

that are similar in range to those of other studies. Biases in

the upper sections are particularly large, as in Garber and

Maguire (2003) and Sharma and Zhang (2004). In our

context, the low reliability in the upper bole section can be

explained by the cylindrical assumption whose effect is

exaggerated by the lack of diameter measurements in the

upper bole sections. Also, the model is constrained to pass

through the tip of the tree, and to be equal to the dbh at

1.3 m. Consequently, there is less flexibility near these

points than anywhere else along the bole. However, the

effects of these upper section biases on volume calculation

are small. Actually, biases on the estimated volumes are

0.2

0.5

0.8

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Relative height class

R
M

S
E

 (
cm

)
Mean
3.5 m
7 m
10 m
0.0001 m

Fig. 2 Root mean square error [RMSE (cm)] for the mean and

calibrated responses using one supplementary diameter measurement
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Fig. 3 Root mean square error [RMSE (cm)] for the mean and

calibrated responses using two supplementary diameter measurements
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relatively low (Table 4), and the numerical integration of

the taper function yields a reliable mean prediction for the

different volumes of a particular tree.

The mathematical consistency of the model, i.e., yij = 0

when hij = hti and yij = dbhi when hij = 1.3, brings up

some considerations about the heteroscedastic pattern of

the residuals. In fact, the variance of the prediction error

increases with the increase in the predicted value. This

statement is logical, since we can reasonably expect the

diameters at but swell to be more variable than those at the

tip of the tree. However, because of the mathematical

consistency of the model, the variance of the prediction

error should decrease as sections get closer to breast height.

For instance, there should not be a great variability in

diameter predictions 10 cm above or below breast height.

This statistical constraint has not been taken into account in

this case study in a direct manner because it would have

required a complex variance function, while a good com-

promise between complexity and efficiency is required for

operational applications.

The evaluation of the supplementary diameter mea-

surements showed that estimating the tree random effects

improves the predictive capability of the simplified

model. The corrected curve is better than the mean

response. However, the correction cannot improve the

accuracy of the whole stem; instead, the part around the

extra diameter measurement is improved significantly. So

the best placement depends on which part of the stem is

considered more important. The prediction can be mini-

mally improved by adding diameter measurements at both

ends of the bole.

The model does not include any plot covariates because

information at the plot level was not available. Conse-

quently, the model relies on the assumption of within-plot

tree independence. This can be a strong assumption, con-

sidering that some studies have already demonstrated that

some plot attributes may have an effect on stem taper (e.g.,

Garber and Maguire 2003; Sharma and Zhang 2004). We

also tested some plot random effects in the model, but

convergence could not be achieved because of the com-

plexity of the covariance features. However, the empirical

correlation (an indirect evaluation of this plot random

effect) was close to 0 (analysis not shown), indicating that

the variance of the potential stand-level random effects

might be low in this case study. This low random effect

may be explained by the inclusion of the height/dbh ratio in

the model. The ratio is a surrogate of tree density at the plot

scale.

Conclusion

We have shown that a simplified version of Kozak’s

equation can be applied to stem taper data of boreal black

spruce using the mixed-effects method with a proposed

correlation structure. The simplified equation was obtained

by fixing the inflection point at dbh. The proposed corre-

lation structure makes it possible to apply the mixed-effects

method for adequately addressing the variability of stem

taper at the tree scale. The low validation error based on the

wide gradient of collected black spruce stem taper data

provides the first evidence that this simplified variable-

exponent taper equation can reliably predict black spruce

tree taper over large areas. Related to the mean response,

predicting the random effects through additional diameter

measurements improves the predictive capability of the

obtained model around the extra diameter observation.

To further improve the model, the first step will be to

develop a variance function that is more consistent with the

model. This function should induce a decrease in the var-

iance as the sections get closer to breast height. The second

step will be to link tree scale with plot scale. Plot scale is

represented by forest polygon attributes based on aerial

photos or remote sensing. Also it is necessary to clarify the

limits of applicability of the proposed taper equation

because the assumption of the model may be violated in

other species and at other observations. Nevertheless, the

model offers welcome simplicity as a means of predicting

tree taper at coarse resolution from standard tree attribute

measurements and from eventual polygon attributes avail-

able on any forest map that can be used for the primary log

breakdown.
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Appendix

The 95% confidence intervals of the parameters are given

in the following table (Table 5).
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