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Abstract This study aims at the development of a model

to predict forest stand variables in management units

(stands) from sample plot inventory data. For this purpose

we apply a non-parametric most similar neighbour (MSN)

approach. The study area is the municipal forest of

Waldkirch, 13 km north-east of Freiburg, Germany, which

comprises 328 forest stands and 834 sample plots. Low-

resolution laser scanning data, classification variables as

well rough estimations from the forest management plan-

ning serve as auxiliary variables. In order to avoid common

problems of k-NN-approaches caused by asymmetry at the

boundaries of the regression spaces and distorted distri-

butions, forest stands are tessellated into subunits with an

area approximately equivalent to an inventory sample plot.

For each subunit only the one nearest neighbour is con-

sulted. Predictions for target variables in stands are

obtained by averaging the predictions for all subunits. After

formulating a random parameter model with variance

components, we calibrate the prior predictions by means of

sample plot data within the forest stands via BLUPs (best

linear unbiased predictors). Based on bootstrap simula-

tions, prediction errors for most management units finally

prove to be smaller than the design-based sampling error of

the mean. The calibration approach shows superiority

compared with pure non-parametric MSN predictions.

Keywords k-NN � Calibration method � Imputation �
BLUP � Forest inventory � Lidar � Laser data

Introduction

Forest inventories have been conducted in forest enter-

prises of the German federal state of Baden-Württemberg

since 1986. The sampling design consists of concentric

fixed radius plots in regular sampling grids. A forest stand

in Baden-Württemberg represents one single planning and

control unit. Information regarding the individual stands is

necessary for efficient forest planning and operational

management. This need is the motivation for the specific

task assignment of this study. For each forest stand, esti-

mations of the following target variables should be

rendered separately for each tree species: area proportion;

volume and number of trees per ha in 5 cm DBH classes;

volume per ha of timber assortments; mean age, height and

DBH; basal area per ha; damages; and proportion of

regenerated area. As we aim at predictions for polygons

(forest stands) by means of data from circular plots (sample

plots of forest inventory), this undertaking is subject to

spatial statistics and regionalisation methods.

So far this challenge has been met by deriving estima-

tions for the target variables from the average of values

observed on the sample plots in the respective stand. The

area of forest stands usually ranges from 0.5 to 20 ha. The

regular sampling grid is 100 m 9 200 m. Therefore, a

single stand mostly comprises only few sample plots and

frequently even none. In the case that no sample plots are

available from a stand, estimations are obtained by
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synthetic estimators from heuristically classified post-

strata. However, this approach has several weaknesses and

could result in the following three problems:

1. Due to low sample size in stands, estimations of the

mean are highly uncertain and are therefore in most

cases unreliable.

2. The application of synthetic estimators derived from

heuristically classified strata can cause serious bias for

stands without sample plots. Further, predictions could

be too smooth and only describe a small amount of

variation.

3. The area estimations by means of the sampling grid are

very imprecise, because of its wide meshes. Conse-

quently, it cannot be guaranteed that the sum of area-

weighted mean estimations would yield the same result

as the unbiased (Gregoire and Valentine 2007) Hor-

vitz–Thompson estimator for the population (forest

enterprise).

In this paper we present a new 3-stage procedure for

precise and reliable predictions of forest stand variables

from inventory-based sample plot data. The three stages

are:

Stage 1: preliminary predictions based on a non-

parametric most similar neighbour (MSN) approach

(Moeur and Stage 1995).

Stage 2: random parameter calibrations of the prelimin-

ary predictions by means of sample plot observations.

We call this calibrated nearest neighbour (CNN)

approach.

Stage 3 (optional): global bias corrections.

Stage 1: Most similar neighbour predictions

Because of the small area of forest stands (problem 1) and

the stands without sample plots (problem 2), we use off-site

sample plot data (Lappi 2001) for predictions of target

variables. In comparison with the large number of response

variables, only a small number of auxiliary predictor

variables are available. As a result, the application of a

parametric regression model would leave a large propor-

tion of total variance unexplained.

For the purpose of local predictions of stem density and

basal area from double sampling inventory schemes geo-

statistical approaches were successfully applied by

Mandallaz (1993, 2008). Geostatistical approaches follow a

stringent mathematical theory and provide closed form

expressions for error variance estimates. Nieschulze (2003)

also examined diverse geostatistical models for regionali-

sation of forest variables from inventory data. However, in

that study he proved the intrinsic stationarity hypothesis

(Diggle and Ribeiro 2007) to be untenable. In Germany,

forests are managed in very small and mostly even-aged

stands. Therefore, it is not assured that nearby locations

must be more strongly correlated than far-off locations.

Then, empirical variograms cannot be reasonably fitted by

monotonously increasing covariance functions. Geostatis-

tical approaches, especially ordinary kriging, revealed

these weaknesses in studies by Nieschulze (2003) and

Nieschulze and Saborowski (2002). The application of

external trend functions in universal kriging, as tested by

Nieschulze (2003), led to similar problems. External trend

functions are usually regression models, e.g. yield tables,

and the residual deviation from the trend function may be

assumed stationary. Such an approach would also result in

the dilemma of estimating plenty of response variables

from only a few covariates in many models.

To solve the problems named above, we will use a non-

parametric MSN approach in our study following Moeur

and Stage (1995) and Nieschulze et al. (2005). The

neighbour distances are expressed by the similarity

between auxiliary variables in a forest stand and those

observed on the sample plot. This method has proven to be

the most promising approach in Nieschulze’s study. In

contrast to Nieschulze (2003), who used colour infrared

images, we employ airborne laser scanning data as auxi-

liary information.

Maltamo et al. (2006) detected that the application of

laser scanning data in the k-nearest-neighbour (k-NN)

approach is superior to aerial photographs or the combi-

nation of class variables and old inventory data. They also

concluded that the combination of laser data with addi-

tional information from other data sources produces even

better results on plot level. However, for stand-level pre-

dictions the usage of additional information failed to be

beneficial. In this study we operate low-density laser data

in a canopy height distribution approach (Maltamo et al.

2006).

A main disadvantage of k-NN approaches is that the

neighbourhood on the boundaries of the regression space is

asymmetric. In the models, this results in a bias towards the

mean (Malinen 2003). Besides, distorted distributions of

the reference data over the regression space can cause

serious problems. Malinen (2003) developed a locally

adapted non-parametric MSN approach, which enables the

search for a combination of nearest neighbours that have a

minimal distance to the target stand. In order to solve the

problem associated with the regression space, we propose a

tessellation of the target objects (forest stands) into sub-

units, which will have an area approximately equal to that

of the reference objects (sample plots) with 12 m radius.

Thereby, we assign to each of these subunits the observa-

tions of only one, namely the nearest, sample plot. The

estimates on the stand level are obtained by averaging over

the assigned nearest-neighbour observations of all subunits.
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As one forest stand comprises a lot of subunits, a variable

number of sample plots (nearest neighbours) are applied

for the stand level estimates.

Stage 2: Random parameter calibration

In our study region sample plots are located in approxi-

mately 77% of the forest stands. Therefore, additional

information on prior observations is available for these

forest stands. In order to enhance the precision of the pre-

dictions we seek to strike a new path in the present study:

we treat the nearest-neighbour estimates as preliminary and

apply sample plot observations for calibrations of the

nearest-neighbour predictions obtained from stage 1.

Stage 3 (optional): Global bias correction

However, there is still no guarantee that adding up the

nearest-neighbour estimates will lead to unbiased estimates

for the entire region (forest enterprise) (Lappi 2001).

Hence, a nearest-neighbour approach will generally not

solve problem (3), which results from the comprehensible

demand in practice for consistent estimators to be

established.

In contrast, Horvitz–Thompson estimations by means of

design-based weights deliver unbiased results for the entire

region. Deville and Särndal (1992) present regression

estimators with weights for the auxiliary variables being

calibrated, so that weights are as close to the design-based

weights as possible. Lappi (2001) derives prior weights

from a spatial variogram model and calibrates them via

BLUPs (best linear unbiased predictors) in order to assure

equality between the weighted sum and the average of the

auxiliary variables.

In the present study we compare subsequently our

accumulated results with the Horvitz–Thompson estimates

for the entire forest enterprise. For this purpose we apply

simple proportional multipliers for bias corrections. This

heuristic procedure can definitely not be viewed as a local

bias adjustment nor does it improve precision of the pre-

dictions on stand level. Rather, it should merely provide

consistency on the global level. Therefore, we opt to pro-

vide the bias correction method in stage 3 only in the case

that practitioners insist on complete consistency between

the calculated Horvitz–Thompson estimates from inventory

software application, on the one hand, and the added up

results of the non-parametric prediction, on the other.

A main drawback of nearest neighbour approaches is

that closed form expressions for unbiased error variance

estimates do not exist. Stage and Crookston (2007) devel-

oped closed-form expressions for approximations of the

nearest neighbour prediction variance, with the variance

being approximatively partitioned into several components.

Approximation of certain components is done via extrap-

olation of the regression space. This implies strong

correlation between response and predictor variables,

which in general cannot be presumed due to the small set of

auxiliary variables. Therefore, we preferred to approximate

prediction variance by bootstrap resampling. It has to be

mentioned clearly, that the prediction variance obtained by

resampling is of limited evidence because of the unknown

amount of bias in nearest neighbour estimates. Therefore,

bootstrap variance can only provide approximations for the

variability of predictions.

Data

The study area is the municipal forest of Waldkirch, 13 km

north-east of Freiburg. The total forest area is 1,775.6 ha

and comprises 328 management units (stands). Delineation

of the forest stands was conducted in 2002 during forest

management planning. In the context of terrestrial surveys,

forest stands were stratified into eight stand types (ST) and

four treatment classes (TC) (young growth tending, thin-

ning I, thinning II, final harvesting). Each stand was

assigned a mean age recorded in 10-year age classes,

except for stand type ‘‘permanent forest’’. In addition, the

proportions of observed tree species were estimated. No

further features were recorded during forest management

planning.

In 2002 an airborne laser scanning was accomplished,

originally for the purpose of constructing a digital terrain

model (DTM). The lidar (light detection and ranging)

vegetation height has been determined by calculating the

difference between the elevation of the lidar vegetation

data (raw data) and the corresponding DTM raster bin

elevation (Breidenbach et al. 2007). For 1,741.9 ha (com-

prising 314 stands), equalling nearly the entire forest

enterprise, laser data are available. The mean area of the

forest stands is 5.5 ha (min: 0.2, 25%: 1.5, median: 3.9,

75%: 7.9, max: 30.6). The left graph of Fig. 1 displays a

histogram of the stand areas.

Field measurements for the forest inventory were carried

out between 1 September 2002 and 11 January 2003. The

collected data contains measurements on 875 plots in a

regular 200 m 9 100 m grid. The sample plots consist of

four concentric circles with radii of 2, 3, 6 and 12 m. Trees

with DBH up to 10 cm are measured, when their distance

to the plot centre is smaller than or equal 2 m; for

DBH \ 15 cm or DBH \ 30 cm the maximum distances

are 3 and 6 m, respectively. Trees with DBH C 30 cm are

measured in the circle of 12 m radius.

Laser data are available for 834 of the sample plots. For

72 forest stands with laser information no sample plots are

obtainable (see Fig. 1, right graph). Approximately 60% of

Eur J Forest Res (2009) 128:241–251 243

123



forest stands contain two or fewer sample plots. Since the

aim of this study is to test the general applicability of laser

data for an integral resource information system (IRIS), we

only consider stands and plots with laser information.

Methods

Forest stands are generally much larger than sample plots

and therefore contain more laser pulses. Accordingly,

auxiliary variables based on laser pulses will have different

variance decompositions of between- and within-units

variance components on the stand level, compared with the

plot level. By tessellating the forest stands into squared

subunits of nearly the same area (subunit area 452.1 m2) as

the sample plots, we are able to solve that compatibility

problem. Each subunit in each stand is only assigned the

observations for the target variables of one plot, namely

those from the nearest neighbour. In order to estimate the

stand values of the target variables for a certain stand, their

subunit values are averaged over all subunits.

According to Härdle et al. (2004, p. 86), we formulate

the non-parametric regression model as follows:

yhnr ¼ f ðxhnrÞ þ ehnr; E ½yjx� ¼ f ðxÞ
h ¼ 1; . . .;H strata: stand-type (ST)=

treatment-class (TC)

n ¼ 1; . . .;Nh forest stands in stratum h
r ¼ 1; . . .;Rn subunits in stand n

ð1Þ

The MSN approach (Moeur and Stage 1995) is based on

similarity measure between the auxiliary variables

observed in the target stands and on the reference sample

plots. As regressor covariates we apply:

• mean laser-derived vegetation height

• variance of the vegetation height

• mean age if stand type is not ‘‘permanent forest’’

• proportion of species with highest timber volume

In order to obtain predictions the observations of the

nearest sample plot are assigned to a certain subunit:

yhnr ¼ yhj with dhn;r:j ¼ min
k¼1;...;Kh

ðdhn;r:kÞ ð2Þ

Then all target variables in stand n of stratum h are

predicted by the area-weighted average:

ŷhn ¼
XRn

r¼1

ghnr � yhnr ð3Þ

Since the area of subunits at stand borders can be smaller

than 452.1 m2, the weight of the rth subunit ghnr is the

proportion of its area ahnr related to the total stand area Fhn:

ghnr ¼
ahnrPRn

r¼1 ahnr

¼ ahnr

Fhn
ð4Þ

For clearness, in our proceeding the stand level estimate is

not only based on one nearest neighbour, rather on several

sample plots, namely those with minimum distance to each

subunit obtained by the tessellation.

A detailed description of the MSN approach (Moeur and

Stage 1995) is provided in the appendix.

Sample plots are located in approximately 77% of the forest

stands. Therefore, additional information on prior observa-

tions is available for these forest stands. This information can

then be used for calibrations of nearest-neighbour estimates.

The predictions of the non-parametric regression model

in Eq. 1 can be calibrated by means of prior observations

and the a posteriori knowledge about the variances within

and between the forest stands. For this purpose, we for-

mulate a random parameter model for the observed

response variables on sample plot q = 1,…,qhn in stand n:

yhnq ¼ f ðXhnÞ þ bhn þ �hnq ð5Þ

Hereof f (Xhn) is assumed to be an approximatively unbi-

ased non-parametric regression model. bhn is a random

parameter on stand level comprising the observed mean

deviation on the sample plots from the prior non-
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parametric predictions. Its prediction b̂hn is obtained by

BLUPs according to Henderson (1963) and Harville (1976)

as referred to by Vonesh and Chinchilli (1996, p 252).

With

ŷ�hn ¼ ŷhn þ b̂hn ð6Þ

we receive the final calibrated nearest neighbour predic-

tions for the attributes in stand n. For methodical details see

Appendix.

By now the prediction error of ŷ�hn was not considered.

For both, the statistician and the practitioner the knowledge

about possible prediction error is important. Unfortunately,

no closed-form expressions for variance estimation of

nearest-neighbour models exist. Therefore, the regression

space would have to be extrapolated for approximation via

the partitioning approach of Stage and Crookston (2007).

Yet, having only a moderate number of auxiliary variables,

this procedure might be problematic in our case. Thus, we

apply a bootstrap resampling in order to approximate the

prediction variance. By running a loop of 200 simulations,

we draw subsamples without replacement, which amount

to a proportion 1 - exp (-1) = 0.632 (Harrell 2001, p 88)

of all sample plots. As mentioned above nearest neighbour

estimates are generally biased. Thus, the estimated pre-

diction variance might be optimistic because of the

unknown amount of bias. The bootstrap variance is rather

treated as a measure of the variability of the predictions.

First, the impact of the calibration approach in stage 2

on the prediction error shall be assessed. After this we

evaluate the range of the confidence intervals approxi-

mately obtained by the bootstrap resampling. For that

purpose we compare the bootstrap errors with design-based

sampling errors of mean estimations. We use the estima-

tions of the within-stand variance c [Eq. (11), Appendix]

from the linear mixed model in Eq. 5 for constructions of

reference levels t 1� a
2
; df ¼ K � N

� �
�
ffiffiffiffiffi
c2

qhn

q
: Due to the

mere approximative unbiasedness of the MSN predictions,

the confidence intervals should be interpreted with caution.

The software R (R Development Core Team 2007) was

used for computations.

In order to achieve consistency between the added up

results from the non-parametric CNN predictions and the

Horvitz–Thompson estimates for the user of the forest

inventory calculation software we provide a global bias

correction in the optional stage 3. The method is based on

the derivation of heuristic global multipliers. The predic-

tions by nearest-neighbour models are generally biased,

whereas the Horvitz–Thompson estimates are unbiased, but

much less precise at the stand level. Still, for the purpose of

mean predictions for the entire forest enterprise, the Hor-

vitz–Thompson estimates are not only unbiased but also of

very high precision. Therefore, it is promising to use the

ratio of these global Horvitz–Thompson estimates and the

respective non-parametric predictions, which are obtained

by stand area-weighted averages over all stands, as a bias

correction factor for the presumable global bias of nearest

neighbour predictions. For details of this optional proce-

dure see Eqs. 22–25 in Appendix.

Results

The goal of our study was to estimate data for polygons

(forest stands) based on sample plot data. Therefore, results

regarding the estimations of target variables for the indi-

vidual forest stands are presented in the form of maps,

which are easily accessible for the forest planning service

and management. Figure 2 displays the estimations for

selected target variables. Before planning timber harvests

and their selling, it is crucial to know the standing timber

volume (a), belonging to each species (c, d) and each

assortment (e, f). In order to save expenses in reforestation,

the forester needs information on the extent of regeneration

area under shelter of mature woods (b).

The amount of prediction variance is exposed by way of

bootstrap resampling. In order to assess the benefit of the

calibration method in stage 2, we compare the empirical

distributions of confidence intervals for standwise predic-

tions after calibration (stage 2) with those for pure MSN

predictions (stage 1). As exemplified by the results in Fig. 3,

calibration by means of sample plot observations in stage 2

significantly reduces the prediction limits. Even calibrations

by the use of only one or two sample plots per stand decrease

prediction variance. As expected, the precision improves

with the increasing number of sample plots within the forest

stands. Applying only the pure non-parametric MSN pre-

dictor in stage 1, we achieve a mean confidence interval

range for total timber volume predictions to the amount of

124.9 m3/ha. Stage 2 calibration (CNN prediction) reduces

this figure down to 103.6 m3/ha. This means an improvement

by 17%. If prediction errors of stands comprising only sample

plots are considered the mean prediction error on 10%-niveau

decreases from 119.1 to 92.2 m3/ha (23%). Furthermore, this

calibration approach proves to be beneficial for other target

variables, e.g. the number of stems per ha (19% reduction of

the mean error for all stands) and the fraction of regenerated

area under the shelter of old stands (17% reduction).

Because of high within-stands variance components, the

prediction variance itself can only be a rough indicator for

assessing the prediction quality. Nieschulze (2003) carried

out extensive field measurements for collecting evaluation

data. In some stands he created more than 20 large area

sample plots (radius = 15 m). Nevertheless, a 20% target

precision for mean estimations (on a = 0.05-level) could

not be hold. In mixed stands, consisting of beeches and
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(a) total volume (b) regeneration 

N N

(c) volume spruce (d) volume beech 

N N

(e) spruce/fir L2-assortment (f) spruce/fir L4,L5,L6-assortment 

N N

Fig. 2 Predictions of selected target variables in management units. a total volume (m3/ha), b regeneration (%), c volume spruce (m3/ha), d
volume beech (m3/ha), e spruce/fir L2-assortment (m3/ha), f spruce/fir L4, L5, L6-assortment (m3/ha)
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spruces, Nieschulze (2003) observed variation coefficients

as high as between 50 and 250%.

With this in mind, a claim for 10% precision must be

discarded a priori as utopistic. It is not surprising that

bootstrap resampling based on subsamples from inventory

plots also shows high absolute variation. Rather, it is more

interesting to ask whether the simulation variance is sub-

stantially larger than the estimated variance within forest

stands. In response to this question, Fig. 4 displays inter-

percentiles ranges from simulations against the number of

sample plots in forest stands for the target variable total

timber volume per ha. The design-based sampling error of
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Fig. 3 Prediction errors from

bootstrap resampling as box-
plots of inter-percentile-ranges

for selected variables. White
boxes errors for pure MSN

predictions. Grey boxes errors

for random parameter calibrated

MSN predictions (CNN)
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mean estimation is shown as grey dashed reference curve. It

becomes clear that prediction errors for most stands, as

derived by bootstrap simulations, are smaller than the

design-based error of the mean estimate. The more sample

plots are available for calibration, the more precise the CNN

predictions become compared to the pure non-parametric

predictions. In addition to the absolute prediction error, also

the relative error because of its higher practical expres-

siveness must be acknowledged. The mean relative

prediction error is calculated as ratio of the half 90% con-

fidence-interval range to the mean estimate. The mean

relative error for total volume per ha achieved by the pure

MSN prediction in stage 1 averages 18.7%, and is reduced

to 16.6% by the calibration. The gainful impact of the

calibration approach in stage 2 proves to be even stronger

for further target variables, e.g. the number of trees per ha,

the area of regeneration and the amount of specific timber

assortments (Fig. 5). As pointed out above, the confidence

limits might be not exact because of the biased non-para-

metric predictions. Due to the unknown statistical

properties of the heuristic global bias correction in the

optional stage 3, the above-described statistical analysis has

been carried out only for stage 1 and stage 2 predictions.

Discussion and conclusions

The model developed in our study enables simultaneous

predictions of several forest variables. Target variables

have been predicted for forest stands as polygons, on the

basis of inventory data from sample plots. Instead of

applying design-based estimators, the non-parametric CNN

approach has been used in order to obtain reliable predic-

tions, even with a small number of sample plots in a forest

stand or even none.

By constructing a random parameter model, we have

been able to calibrate the prior predictions by means of

sample plot observations in each stand. However, sample

weights of the nearest neighbours have not been calibrated

as suggested by Deville and Särndal (1992) as well as

Lappi (2001). Instead, the response variables have been

calibrated directly with a posteriori knowledge about

variances within and between the forest stands. Neglecting

the potential bias of nearest neighbour estimates, the results

of the bootstrap resampling show, for most forest stands,

prediction errors to be smaller than the error of mean

estimates. The subsequent calibration of non-parametric

predictions by means of sample plot observations in each

stand proves to be superior to pure MSN predictions.

The nearest-neighbour approach does not necessarily

lead to unbiased predictions. However, the comparison of

results for the entire area based on the Horvitz–Thompson

estimators and the non-parametric nearest-neighbour esti-

mators yields reliable estimations for the bias on the global

level of the entire forest enterprise. The consistency of

aggregated estimation results, being an important demand

of practitioners, can easily be established by the application

of global multipliers in the optional last data-processing

step.

Unfortunately only a sparse set of auxiliary variables

was available for our study. Due to high costs, terrestrial

measurement of additional variables is impracticable.
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Fig. 4 Prediction errors from bootstrap resampling. Circles predic-

tion errors for the pure MSN predictions. Dotted black line smoother

based on robust locally linear fits for prediction errors of the pure

MSN predictions (Venables and Ripley, 2002). Crosses errors for
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based error of mean estimation
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Fig. 5 Smoothed mean relative prediction errors from bootstrap

resampling against the number of sample plots in stands. Dashed lines
pure MSN prediction. Solid lines CNN predictions (calibrated MSN

predictions)
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Therefore, we have used estimations of species proportions

obtained in the cruising process of the forest management

planning. Persson et al. (2004) and Ørka et al. (2007)

present solutions for tree species classification from laser

data in Scandinavia. The forest service of Baden–Würt-

temberg plans to collect high-density laser scanning data.

Thus, it can be expected that in future more accurate data

will be available.

The presented model approach allows for predictions of

forest variables in management units without the need to

conduct additional and expensive field measurements.

Recent aerial surveys with low-resolution airborne laser

scanning generate costs to the amount of 1€ per ha. The

systematic random sampling scheme of the underlying

forest inventory in the study region of Waldkirch is not

optimal with regard to costs and precision. In our future

research we will aim at reducing the total survey costs. To

this end, the construction of double sampling for stratifi-

cation would be a convenient approach rendering higher

efficiency (Nothdurft et al. 2009).

Anttila (2002) shows opportunities to reduce costs by

using old inventory data for k-NN estimators of timber

volume in small private forests. Going even a step further,

it is also possible to use off-site inventory data. In this

manner, additional costs induced by laser scanning can be

compensated by reducing expenditure for field

measurements.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Appendix

Stage 1: Most similar neighbour predictions

Similarity is defined by a quadratic distance function

(Moeur and Stage 1995). The distance of subunit r in stand

n of stratum h to sample plot k is given by:

dhn;r:k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxhnr � xhkÞTVhðxhnr � xhkÞ

q

h ¼ 1; . . .;H strata ST=TCð Þ
k ¼ 1; . . .;Kh sample plots in stratum h:

ð7Þ

Hereof xhnr and xhk are column vectors with p = 4 elements

for the regressor covariates.

The predictions of the t = 2 design attributes total

timber volume per ha ðm3=haÞ and number of trees per ha

require the highest accuracy. The weighting matrix Vh in

Eq. 2 is derived by canonical correlation analysis, which

seeks for s = min (p, t) linear combinations

u1 ¼ Xha1; v1 ¼ Yhb1

..

.
; ..

.

us ¼ Xhas; vs ¼ Yhbs

ð8Þ

for the Kh 9 p-matrix Xh of indicator attributes and the

Kh 9 t-matrix Yh of design attributes by maximising the

coefficient of correlation between the u and the v under

the constraint of s uncorrelated linear combinations. In our

case the number of possible pairs is s = 2. According to

Moeur and Stage (1995) we fill the weighting matrix Vh

with the product of the squared canonical coefficients C
and their canonical correlation coefficients K

Vh ¼ C K2 CT

p� p p� s s� s s� p
ð9Þ

Stage 2: Random parameter calibration

The random parameter model for the observed response

variables on sample plot q = 1,…,qhn in stand n is formu-

lated by:

yhnq ¼ f ðXhnÞ þ bhn þ �hnq ð10Þ

Therein f (Xhn) is a non-parametric regression model at Xhn,

which contains xhnr for all Rn subunits. bhn is a random-

effected deviation in stand n and ehnq is a random deviation

on plot q in stand n. For the random parameters we assume

Gaussian distributions and independence by:

bhn�Nð0;dÞ; �hnq�Nð0; cÞ; Cov½bhn; �hnq� ¼ 0

yhnq�N½f ðXhnÞ;dþ c� ð11Þ

In matrix notation we formulate the model as

yhn ¼ f nðXhnÞ þ Zhnbhn þ �hn ð12Þ

where Zhn = 1qhn is a qhn 9 1-column vector containing

1-values, fn (Xhn) = f (Xhn)�1qhn and bhn is a scalar with the

random parameter on plot level. The expected value given

the random parameter is

E½yhnjbhn� ¼ f nðXhnÞ þ Zhnbhn ð13Þ

with variance

Var ½yhnjbhn� ¼ Rhn ¼ diag f c; . . .; cg ð14Þ

The expected value of the response variable is

E½yhn� ¼ E½E½yhnjbhn�� ¼ E½f nðXhnÞ þ Zhnbhn�
¼ f nðXhnÞ ¼ lhn ð15Þ

with variance

Var ½yhn� ¼ Vhn ¼ ZhnDZT
hn þ Rhn ð16Þ

In our case D = d is a scalar. The matrix Zhn is the design

matrix of Eq. 12, and Rhn = cI is a qhn 9 qhn diagonal matrix.

According to Vonesh and Chinchilli (1996, p. 362), the

random parameter value given yhn can be expected:
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E½bhnjyhn� ¼ DZT
hnðZhnDZT

hn þ RhnÞ�1ehn ð17Þ

with

ehn ¼ ðyhn � lhnÞ ¼ yhn � f nðXhnÞ
¼ ðyhn1; . . .; yhnqhn

ÞT � f nðXhnÞ ¼ Zhnbhn þ �hn ð18Þ

being a column vector comprising the entire deviation from

the mean vector of the non-parametric nearest-neighbour

estimates. We use the prior predictions in Eq. 3 as an

estimator for f (Xhn):

df ðXhnÞ ¼ ŷhn ð19Þ

The variance parameters d and c are estimated by using

restricted maximum likelihood (REML) techniques.

By means of observations yhn ¼ ðyhn1; . . .; yhnqhn
ÞT on qhn

sample plots in stand n, the stand-level random parameters

can be predicted via BLUPs according to Henderson (1963)

and Harville (1976) as referred to by Vonesh and Chinchilli

(1996, p 252):

b̂hn ¼ D̂ZT
hnðZhnD̂ZT

hn þ R̂hnÞ�1êhn

¼ D̂ZT
hnðZhnD̂ZT

hn þ R̂hnÞ�1ðyhn � ŷhn � 1qhnÞ

¼ qhn

ĉ
þ 1

d̂

� ��1
Pqhn

q¼1 ðyhnq � ŷhnÞ
ĉ

¼ d̂

d̂þ ĉ
qhn

ð�yhn � ŷhn � 1qhnÞ ð20Þ

where �yhn ¼
1

qhn

Xqhn

q¼1
yhnq

with

ŷ�hn ¼ ŷhn þ b̂hn ð21Þ

we receive the final predictions for the attributes in stand n.

Stage 3: Global bias correction

For the entire forest enterprise we obtain with

�̂y� ¼ 1
PH

h¼1

PNh

n¼1 Fhn

XH

h¼1

XNh

n¼1

Fhnŷ�hn ð22Þ

the mean prediction, weighted by stand area (Fhn), for the

target variables by the calibrated non-parametric regression

model.

Based on the sample plot data we also receive the respec-

tive mean prediction by the Horvitz–Thompson estimator:

�̂y0 ¼ 1
PH

h¼1 Kh

XH

h¼1

XKh

k¼1

yhk ð23Þ

For each attribute we derive multipliers

c ¼ �̂y0

�̂y�
ð24Þ

for bias corrections

ŷ
�ðcÞ
hn ¼ cŷ�hn ð25Þ
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