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Abstract
In Europe, the recently reported plant pathogen Xylella fastidiosa subsp. multiplex affects several wild, ornamental, and 
cultivated trees causing scorch diseases. In 2018, the sequence type 87 was reported in Tuscany on Mediterranean shrubs 
and trees. Although spittlebugs (Hemiptera: Aphrophoridae) were already identified as main vectors of this bacterium in 
Europe, their role in the transmission of this subspecies has not been ascertained yet. In this study the ability of Philaenus 
spumarius and Neophilaenus campestris to acquire and transmit Xylella fastidiosa subsp. multiplex sequence type 87 from 
and to Rhamnus alaternus was evaluated in two-year semi-field experiments. To acquire the bacterium, insects were confined 
on wild, naturally infected R. alaternus shrubs for 120 h. Then, they were transferred to healthy plants and maintained in 
cages for 96 h. To follow the infection, plant samples were collected every two months for three times. Tested plants were 
destroyed at the end of experiments and roots, twigs and leaves were analysed. Philaenus spumarius showed a significantly 
higher survival rate than N. campestris. The infection status of both insects and plants was assessed through molecular 
analysis. P. spumarius and N. campestris were able to infect healthy plants although the acquisition rate and the estimated 
probability of transmission appeared to be low. These findings provide new accounts on the role of two polyphagous insect 
vectors in spreading a quarantine organism, which is lethal to a huge number of plant species. However, further studies are 
needed to disclose more specific interactions within this complex pathosystem.
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Key Message

• Spittlebugs are putative vectors of Xylella fastidiosa sub-
species multiplex in Mediterranean countries.

• P. spumarius and N. campestris, positive to X. fastidiosa 
multiplex, were found on Mediterranean vegetation.

• Semi-field acquisition and transmission tests were per-
formed using these two spittlebug species.

• R. alaternus was used as source and recipient plant in 
acquisition and transmission experiments.

• P. spumarius and N. campestris were able to infect 
healthy plants.
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Introduction

The plant-pathogen Xylella fastidiosa (Wells et al. 1987) is 
a Gram-negative bacterium, belonging to the family Xan-
thomonadaceae that colonizes the xylem of more than 600 
plant species, including ornamental, landscape and cul-
tivated herbs and trees (EFSA 2023). During its growth, 
the bacterium produces a biofilm and synthetizes several 
pathogenicity factors (Marques et al. 2002; Killiny et al. 
2013; Rapicavoli et al. 2018). This metabolic activity can 
lead to the occlusion of the xylem vessels and to the devel-
opment of scorch and dwarfing diseases in the infected 
plants (Janse and Obradovich 2010). In the Americas, X. 
fastidiosa severely affects grapevine causing the well-
known Pierce’s disease (PD) (Davis et al. 1978; Hopkins 
and Purcell 2002), as well as almond, peach, apricot, plum, 
pecan, blueberry, citrus, and coffee (EFSA 2018). Besides 
being pathogenic in more than 100 plant species (Rapi-
cavoli et al. 2018), the bacterium can latently remain in 
hosts which do not show disease symptoms, representing 
a reservoir of X. fastidiosa in the environment (Chatterjee 
et al. 2008; Sicard et al. 2018).

Xylella fastidiosa’s short range dispersion is mediated 
by insect vectors (Redak et al. 2004; Krugner et al. 2019), 
while its spread over longer distances is mostly due to 
the global plant trade (Sicard et al. 2018). Although all 
Hemipteran xylem sap feeders (Cicadoidea, Cercopoidea 
and Cicadellinae) could potentially acquire and trans-
mit the bacterium, their actual role as vectors has been 
assessed only for some species, mainly belonging to the 
subfamily Cicadellinae and to the family Aphrophoridae 
(Redak et al. 2004; Cornara et al. 2017; Cavalieri et al. 
2019; Krugner et al. 2019; Müller et al. 2021). On the 
contrary, cicadas (Hemiptera: Cicadidae) do not seem 
involved in the transmission of the bacterium, at least in 
Europe (Cornara et al. 2020; Mesmin et al. 2023).

Xylella fastidiosa is considered a genetically diverse 
species with three currently accepted subspecies named 
fastidiosa, multiplex, and pauca (Bull et al. 2012; Denancé 
et al. 2019), however, many strains have been described so 
far (Yuan et al. 2010; Giampetruzzi et al. 2015; Denancé 
et al. 2017; Saponari et al. 2019). Subspecies differ for 
the area of origin and for the host range, often showing 
a clear host-specificity also at strain level (Nunney et al. 
2013). Xylella fastidiosa subsp. fastidiosa is native to 
southern Central America and is the causal agent of the 
Pierce’s disease of grapevine, while X. fastidiosa subsp. 
pauca (XFP) originated in South America and infects 
mainly plants of the genera Citrus and Coffea (Almeida 
et al. 2008). However, in 2013 the sequence type (ST) 
53 of XFP was reported for the first time in Europe and 
ascertained as the causal agent of the Olive quick decline 

syndrome (OQDS), a severe vascular disease that has led 
to the death of thousands of olive trees in Apulia, south-
ern Italy (Saponari et al. 2013, 2017). After this first out-
break, XFP was also detected in France and in Balearic 
Islands (Denancé et al. 2017; Moralejo et al. 2019). Like 
XFP, X. fastidiosa multiplex (XFM) has recently spread in 
Europe, occurring in Central Italy (Tuscany and Latium), 
southern France, Corsica, Balearic Islands and mainland 
Spain (Alicante province), and Portugal (Denancé et al. 
2017; Marchi et al. 2018; Trkulja et al. 2022; EPPO 2022; 
Cunty et al. 2022; Loureiro et al. 2023). XFM has the larg-
est host range among the reported subspecies and is the 
only one native to the United States (Nunney et al. 2010). 
This subspecies is typically distributed in temperate zones 
and infects mainly tree species causing the Almond Leaf 
Scorch and other scorch diseases in wild and cultivated 
trees (Nunney et al. 2013). Almond trees are the most 
infected plants in Spain, while in France XFM primarily 
infects Polygala myrtifolia L. (Denancé et al. 2017; EFSA 
2023). In Italy, XFM was reported in 2018 in the area 
of the Monte Argentario promontory in Tuscany (Marchi 
et al. 2018), where a different ST was identified and named 
ST87 (Saponari et al. 2019). The Tuscan outbreak is char-
acterized by the infection of many Mediterranean land-
scape plants such as the Spanish broom (Spartium jun-
ceum L.), the Italian buckthorn (Rhamnus alaternus L.) 
and the hairy thorny broom (Cytisus laniger DC.) (EFSA 
2023; Fitosirt database, https:// fitos irt. regio ne. tosca na. it). 
This situation strongly resembles that of Corsica Island, 
where XFM prevails on XFP, infecting ornamental plants 
and wild species of the natural Mediterranean vegetation 
(Denancé et al. 2017; Cruaud et al. 2018; Cunty et al. 
2022). Although XFM does not currently affect crops in 
Italy, it could threaten agricultural areas, since it could 
also infect many cultivated trees like the olive tree (EFSA, 
2023). Moreover, its impact on the maquis, the native flora 
of the Mediterranean region, must not be overlooked.

As frequently underlined in previous studies, X. fastidiosa 
pathosystems may also be very different from one another, 
therefore overgeneralizing such acquired knowledge could 
lead to inaccurate conclusions (Sicard et al. 2018; Jeger and 
Bragard 2019; Desprez-Loustau et al. 2021). So far, spit-
tlebugs in the family Aphrophoridae, especially Philaenus 
spumarius (Linnaeus 1758), were assessed to be the main 
European vectors of X. fastidiosa (Cornara et al. 2016, 2017; 
Cavalieri et al. 2019). The role of P. spumarius in the epi-
demiology of the OQDS was evaluated and supported by 
numerous studies on the ecology and transmission efficiency 
of this species (Elbeaino et al. 2014; Saponari et al. 2014; 
Cornara et al. 2016, 2018). Moreover, the ability to trans-
mit XFP has been proved, under experimental condition, 
also for Neophilaenus campestris (Fallén 1805) and Philae-
nus italosignus Drosopoulos and Remane 2000 (Cavalieri 

https://fitosirt.regione.toscana.it
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et al. 2019). The presence of these three spittlebug species 
was reported also for Tuscany (Mazzoni 2005; Panzavolta 
et al. 2019; Gargani et al. 2021), although P. italosignus 
appears to be restricted only to the coastal area of the Prov-
ince of Grosseto (Southern Tuscany) and may be absent in 
the Monte Argentario promontory (Gargani et al. 2021). 
In the latter area, P. spumarius and N. campestris are the 
two most abundant spittlebugs and some specimens of both 
species were found positive to XFM ST 87 (Gargani et al. 
2021). Even though P. spumarius and N. campestris were 
also found positive to the other Xylella ST reported in Cor-
sica, France, and Spain (Cruaud et al. 2018; Generalitat 
Valenciana 2020), their involvement in the transmission of 
the bacterium in natural areas populated by Mediterranean 
shrubs has never been assessed.

This study is aimed at evaluating the ability of P. spu-
marius and N. campestris to acquire and transmit XFM from 
infected to healthy plants. Their efficiency as vectors has 
been verified in semi-field trials, using the Italian buckthorn 
as experimental plant species. Then, the role of these spit-
tlebugs in the transmission of X. fastidiosa in natural areas 
is discussed.

Materials and methods

Acquisition and transmission experiments were carried out 
in the demarcated area of Monte Argentario (Ministerial 
Decree 13/02/2018 and subsequent amendments). The entire 
procedure was repeated two times: from June 2020 to Febru-
ary 2021 and from June 2021 to February 2022. Rhamnus 
alaternus was chosen as test plant because it was one of the 
species of the Mediterranean maquis most frequently found 
infected in the Monte Argentario area (Fitosirt database 
https:// fitos irt. regio ne. tosca na. it) and for its availability in 
nurseries as small plants fitting the size of our experimental 
cages.

Collection of insects

Adults of P. spumarius and N. campestris were collected in 
June in two Xylella-free areas in the province of Florence 
(Tuscany) using sweeping nets. Specimens of both spe-
cies were collected from herbaceous plants and Cupressus 
sempervirens L. trees in vineyards and their surroundings. 
Overall, more than 230 P. spumarius and 230 N. campes-
tris specimens were collected in both experimental periods. 
Each specimen was individually placed in 1.5 mL micro 
vials and brought to the laboratory for the taxonomical iden-
tification. Spittlebugs were identified under a stereomicro-
scope, according to the most common taxonomic keys (Bie-
dermann and Niedringhaus 2009; Drosopoulos and Remane 
2000; Holzinger et al. 2003; Kunz et al. 2011; Wilson et al. 

2015). In addition, morphological identifications were con-
firmed by DNA sequencing performed on randomly selected 
specimens using the 5’ region of mitochondrial cytochrome 
oxidase I gene as follows: DNA was extracted from dissected 
head using QIAmp DNA extraction Kit (QIAGEN) follow-
ing the manufacturer instructions; the final elution step 
was performed in 50 μL of AE buffer supplied with the kit. 
Amplification was obtained using LCO1490 and HCO2198 
(Folmer et al. 1994) primers for Neophilaenus sp. and LCO-
Philaenus (5’-TCT ACT AAT CAC AAA GAT ATCGG-3’; 
this work) and HCO2198 (Folmer et al. 1994) primers for 
Philaenus sp. PCR reaction was performed in 50.0 μL total 
volume containing 25.0 μL of DreamTaq Hot Start PCR 
Master Mix (2X) (ThermoFisher Scientific), 0.6 μM of each 
primer and 50 ng of DNA. The resulting amplicons were 
purified and sequenced using SeqStudio genetic analyser 
(Applied Biosystems) following the suggested protocol.

After the species identification, insects were transferred 
to Monte Argentario keeping them in two separated Bug-
dorm© cages containing potted non-infected plants supplied 
as food source.

Acquisition and transmission tests

Before setting acquisition-transmission tests, 20 P. spu-
marius and 20 N. campestris were randomly chosen among 
those collected in field and analysed by qPCR (EPPO 2019; 
Harper et al. 2010, Erratum 2013) to confirm the absence 
of the bacterium.

For both P. spumarius and N. campestris, acquisition tri-
als were performed by confining the spittlebugs on branches 
of naturally infected R. alaternus wild shrubs, located in the 
municipalities of Porto Ercole (42.37701N, 11.18620E) and 
Porto Santo Stefano (42.431764N, 11.141622E) (Fig. S1). 
The infection status of these plants had been assessed by the 
Regional Health Plant Service (RHPS—Tuscany) during the 
annual surveillance program, and the presence of X. fastidi-
osa in the selected branches was confirmed by molecular 
analysis according to PM7/24 (4) (EPPO 2019; Harper et al. 
2010, Erratum 2013).

The procedure to determine the Acquisition Access 
Period (AAP) and the Inoculation Access Period (IAP) was 
adopted from Cavalieri et al. (2019) with a few modifications 
to optimize the acquisition and transmission efficiencies: (a) 
120 h instead of 96 h AAP; (b) a higher number of speci-
mens per test plant in IAPs.

For each branch, 35 spittlebugs were caged in a fine mesh 
net sleeve for an AAP of 120 h. Overall, a total of 175 speci-
mens for both P. spumarius and N. campestris (35 spittle-
bugs × 5 branches) were used for the AAP in both years. 
The infected plants were destroyed at the end of the AAP, 
as requested by current legislation.

https://fitosirt.regione.toscana.it
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Ten R. alaternus potted plants were tested for the absence 
of X. fastidiosa using the qPCR protocol reported in PM7/24 
(4) (EPPO 2019) and used as receiving host for the trans-
mission tests. Each plant was individually placed in a Bug-
dorm© cage with the insects previously exposed to the AAP, 
as shown in the Tables 1 and 2. Different numbers of caged 
specimens were due to the natural mortality occurred dur-
ing the AAP.

Five cages for each spittlebug species were set up and 
maintained at room temperature and natural lighting. Rham-
nus alaternus plants were watered once a week at field 
capacity. Insects were allowed to feed freely on tested plants 
for 96 h as IAP. In total 159 P. spumarius (ranging from 29 
to 35 specimens per cage) and 140 N. campestris (from 18 
to 35 specimens per cage) were used for the inoculation test 
in 2020, while 124 P. spumarius (from 21 to 32 specimens 
per cage) and 118 N. campestris (from 21 to 27 specimens 
per cage) were used in 2021. In all the IAP experiments, a 
higher number of insects per test plant was used respect to 
the procedure by Cavalieri et al. (2019), to increase the prob-
ability of transmitting the bacterium.

At the end of the IAP, both dead and alive insects were 
removed from the cages and stored individually in 96% 
ethanol. DNA was extracted from insect heads follow-
ing the same protocol previously described (EPPO 2019; 
Harper et al. 2010, Erratum 2013). Every two months 
leaves and branches were pruned from the four sides of 

each R. alaternus plant until the end of the experiment, 
when plants were destroyed and roots, stem, twigs, and 
leaves were separately collected. All these plant portions 
were analysed for assessing the presence of the bacterium. 
In the 2021 experiment, the final sampling of plant organs 
was brought forward to December 2021 instead of Feb-
ruary 2022 for plants tested with P. spumarius, since all 
the plants were dead. For this reason, some samples were 
taken from dead plants. DNA from plant material was 
extracted using DNeasy Plant Kit (QIAGEN) following 
the protocol suggested by the manufacturer. The final elu-
tion step was performed in 200 μL of AE buffer supplied 
with the kit.

Insects and plants were analysed performing qPCR and 
assuming 32 and 35 cycles as cut-off threshold limits for 
plants and insects respectively (EPPO 2019; Gargani et al. 
2021). Plants were considered infected by the bacterium 
when at least one of the examined portions gave positive 
results. The quantification of bacterial load in insects and 
plants was not assessed through qPCR due to the lack of 
a bacterial culture of XFM. Limitations in the temporary 
laboratory’s equipment and its set up hampered the isola-
tion of the bacterium. Moreover, XF could not be provided 
by authorized laboratory due to concomitant COVID-19 
restrictions.

All the experimental procedures are shown as a work-
flow in the Fig. 1.

Table 1  Summary of the results obtained from June 2020 to February 
2021: number of insects positive to Xylella fastidiosa subsp. multiplex 
ST87 and respective  Ct values assessed after the inoculation access 

period in each experimental cage;  Ct values of the same bacterium ST 
obtained from different portions of Rhamnus alaternus and infection 
status of the whole plant

A  Ct value of 35 and 32 was assumed as cut-off limit respectively for insects and plants positivity to the bacterium. Plants were considered 
infected when at least one of the analysed portions gave positive results

2020–2021 trial Insects Rhamnus alaternus plants

Spittlebug species Cage label N Positive 
specimens

Assessed  Ct in plant organs Resulting plant 
infection status

N Ct Aug Oct Jan Feb

Branches and leaves Roots Stem Twigs Leaves

Philaenus spumarius A 34 0 – – – – – – – – No
C 35 3 33.79 – – – – – – – No

33.87 – – – – – – –
28.56 – – – – – – –

E 30 0 – – – – – – – – No
G 29 0 – – – – – – – – No
I 31 1 28.21 – – – – – – – No

Neophilaenus campestris B 35 1 24.03 28.50 26.90 27.37 34.04 33.79 – 29.31 Yes
D 23 0 – – – – – – – – No
F 34 1 27.33 26.04 25.80 23.42 – 32.10 – 27.90 Yes
H 18 0 – – – – – – – – No
L 30 0 – – – – – – – – No
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Data analysis

Data collected during the two experimental years were cumu-
lated for statistical analysis. The Chi-square test (Yates’ cor-
rection for continuity) was performed to compare the survival 
and the acquisition rate observed for the two spittlebug species 
at the end of the IAP. Statistical significance was accepted for 
p-values < 0.05 level.

Since, a multiple-vector transfer experimental design was 
applied in this study, the Swallow’s formula p̂ = 1 − (1 − H)

1

k 
was used to estimate the probability of transmission of X. fas-
tidiosa by a single vector ( ̂p ). This probability depends on the 
proportion of infected plants (H) and on the number of tested 
vectors per plant (k) (Swallow 1985). Finally, the Chi-square 
test was used also to compare the probability of transmission 
estimated for P. spumarius and N. campestris. Statistical analy-
ses were performed using PAST 4.0 (Hammer et al. 2001).

Results

At the end of the IAP, most of P. spumarius specimens 
were alive, with a survival rate of 90.81%; while only the 
56.59% of N. campestris specimens survived, showing a 

significant difference in the viability of the two spittlebug spe-
cies (χ2 = 81.398; df = 1; p < 0.05).

Both insect species were able to acquire and transmit the 
bacterium XFM ST87 from infected to healthy R. alaternus 
plants, as shown in Table 1 and Table 2, with acquisition 
rates of 4.24% for P. spumarius and 1.16% for N. campestris 
(Table 3). There was no significant difference in mean acquisi-
tion rates for these two spittlebug species (χ2 = 3.669; df = 1; 
p = 0.05).

Five out of ten R. alaternus plants were found infected after 
the exposition to AAP-P. spumarius, while AAP-N. campestris 
infected three of the ten tested plants. The estimated prob-
ability (Table 3) of transmission by a single P. spumarius ( ̂p 
= 0.024 ± 0.001) was higher than that expected for N. campes-
tris ( ̂p = 0.014 ± 0.001); nevertheless, no statistically signifi-
cant differences in the mean transmission probabilities were 
observed between the two spittlebug species (χ2 = 35.007; 
df = 1; p > 0.05).

Table 2  Summary of the results obtained from June 2021 to February 
2022: number of insects positive to Xylella fastidiosa subsp. multiplex 
ST87 and respective  Ct values detected after the Inoculation Access 

Period in each experimental cage;  Ct values of the same bacterium ST 
obtained from different portions of Rhamnus alaternus and infection 
status of the whole plant

A  Ct value of 35 and 32 was assumed as cut-off limit respectively for insects and plants positivity to the bacterium. Plants were considered 
infected when at least one of the analysed portions gave positive results
a The final sampling of plant organs was brought forward to December 2021 for plants tested with Philaenus spumarius since all the plants were 
dead
b The sample was taken from a dead plant

2021–2022 trial Insects Rhamnus alaternus plants

Spittlebug species Cage label N Positive 
specimens

Assessed  Ct in plant organs Resulting plant 
infection status

N Ct Aug Oct Dec Dec  2021a or Feb 2022

Branches and leaves Roots Stem Twigs Leaves

Philaenus spumarius A 32 1 28.76 27.04 – – b – b 30.74 b – b Yes
B 21 4 26.11 28.62 25.71 – b – b 29.87 – b Yes

28.00
29.72
26.95

C 23 1 26.04 – – – b – b 31.50 b – b Yes
D 24 1 28.63 27.61 28.74 – b – b – b – b Yes
E 24 1 26.99 26.16 – – b – b – b – b Yes

Neophilaenus campestris F 21 0 – – – – – – – – No
G 27 0 – – – – b – b – b – b – b No
H 22 0 – – – – – – – – No
I 27 1 25.81 – 29.79 – 31.77 27.07 – 30.82 Yes
L 21 0 – – – – – – – – No
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Fig. 1  Materials and methods workflow. Experimental procedures were repeated twice, from June 2020 to February 2021 and from June 2021 to February 2022
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Discussion

The sequence type 87 of XFM was reported in Monte Argen-
tario area primarily on Mediterranean shrubs and trees 
(Marchi et al. 2018; Saponari et al. 2019). Among these 
plants, the Italian buckthorn represents one of the species 
most frequently found infected after the outbreak was dis-
covered (Fitosirt database https:// fitos irt. regio ne. tosca na. it).

Recent faunistic studies on the Auchenorrhyncha of 
Monte Argentario stated that P. spumarius and N. campestris 
were the two most abundant potential vectors occurring in 
this area (Gargani et al. 2021). Moreover, these are the only 
two species that have been found positive to the X. fastidi-
osa strain causing scorch diseases in Tuscany (Gargani et al. 
2021; Fitosirt database https:// fitos irt. regio ne. tosca na. it). In 
the present study, the competence of P. spumarius and N. 
campestris in the acquisition and transmission of the XFM 
ST87 from and to R. alaternus plants was evaluated in semi-
field experiments. While, the ability of both spittlebugs to 
transmit XFM ST87 to healthy plants was evidenced, results 
highlighted a low transmission efficiency for both species.

P. spumarius showed a significantly higher rate of sur-
vival on R. alaternus plants than N. campestris. The meadow 
spittlebug is well-known to be highly polyphagous, with 
hundreds of plant species reported as hosts (Weaver and 
King 1954; Yurtsever 2000; Cornara et al. 2018). On the 
other hand, N. campestris displays a narrower host range 
than that of P. spumarius: juveniles are primarily associ-
ated to monocots, while adults show a marked preference 
for conifers (Whittaker 1971; Nickel 2003; Mazzoni 2005; 
Lago et al. 2021). The high mortality of N. campestris may 
be explained by a possible unsuitability of R. alaternus as 
food plant for this spittlebug species. However, the sur-
vival rate observed in N. campestris is quite comparable 
to those recorded on Olea europaea L., P. mirtyfolia L., 
and Catharanthus roseus G. Don (Cavalieri et al. 2019). 
Low acquisition rates (< 5%) were observed for both P. spu-
marius and N. campestris in our experiment, even though 
the ability of the two spittlebugs to acquire the bacterium 
from R. alaternus was demonstrated. For these insect species 
the acquisition of XFM seems to be less efficient than that 
recorded for XFP infecting other source plants, even if the 

duration of the AAP in this study was longer in comparison 
to the research by Cavalieri et al. (2019). As a matter of 
fact, P. spumarius showed an acquisition rate > 15% when 
field-grown olive plants were used as source of XFP (Cava-
lieri et al. 2019). Likewise, N. campestris’s performance in 
the same experimentation was much better (acquisition rate 
> 5%) than the rate recorded in our study for XFM infecting 
wild R. alaternus trees. Again, higher acquisition rates by 
P. spumarius were observed after 48 h AAP on C. roseus 
(19.6%) and P. mirtyfolia (21.6%) infected by XFP (Bodino 
et al. 2022).

It has already been documented that the transmission effi-
ciency of a vector species can vary depending on the bac-
terium strain and source plants. For instance, P. spumarius 
showed a higher efficiency in transmitting X. fastidiosa to 
grapevine and almond when it acquired the bacterium from 
grapevine instead than from almond (Purcell 1980). Another 
X. fastidiosa vector, the glassy-winged sharpshooter Hom-
alodisca vitripennis (Germar 1821), appeared to be more 
efficient in the transmission of X. fastidiosa subsp. fastidi-
osa to grapevine than to almond, thus playing a major role 
in the epidemiology of the Pierce’s disease of grapevine in 
comparison to the spread of Almond Leaf Scorch (Almeida 
and Purcell 2003). Moreover, this sharpshooter successfully 
transmitted XFM from almond to almond, but not to grape-
vine (Lopes et al. 2009). Finally, considerable differences 
in the transmission efficiency of X. fastidiosa subsp. fastidi-
osa by H. vitripennis were observed also according to the 
sequence type of the bacterium (Lopes et al. 2009).

At the end of our experiment, a few spittlebugs (of both 
species) that have acquired X. fastidiosa were able to infect 
healthy R. alaternus plants. Interestingly, when a single N. 
campestris was positive to the bacterium the infection of 
the recipient plant always occurred. This pattern was not 
observed for P. spumarius. We cannot exclude that this 
situation is due to the low number of compared specimens, 
so further tests could increase statistical robustness. How-
ever, the estimated probability to transmit the bacterium 
appeared to be low and did not significantly differ between 
P. spumarius (2.4%) and N. campestris (1.4%). Overall, 
the transmission probability for P. spumarius appears 
lower than that observed for the transmission of XFP to 

Table 3  Acquisition and 
transmission rates observed 
for Philaenus spumarius and 
Neophilaenus campestris 

Only plants exposed to infected vectors were considered for transmission. p̂ = Estimated probability of 
transmission by a single insect according to Swallow (1985) ± variance. Each test plant was considered as 
exposed to a mean number of specimens (respectively: PS = 28.3; NC = 25.8)

Spittlebug species Acquisition Transmission p̂*

Total 
speci-
mens

Positive 
specimens

Rate % Plants 
exposed

Positive 
plants

Rate %

Philaenus spumarius 283 12 4.24 7 5 71.4 0.024 ± 0.001
Neophilaenus campestris 258 3 1.16 3 3 100 0.014 ± 0.001

https://fitosirt.regione.toscana.it
https://fitosirt.regione.toscana.it
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olive trees, where the probability reached 7.2% (Cavalieri 
et al. 2019). On the other hand, it seems that there is a 
higher possibility of N. campestris infecting R. alaternus 
than infecting olive trees (Cavalieri et al. 2019). In any 
case, estimated probabilities for both P. spumarius and 
N. campestris seem to be lower than those calculated for 
other proved vectors of XFM, which are the sharpshooter 
vectors of the Plum Leaf Scald (Müller et al. 2021).

In conclusion, P. spumarius and N. campestris can 
transmit the XFM ST87, albeit the efficiency of P. spu-
marius seems to be lower than that recorded in the trans-
mission of XFP ST53. In the case of N. campestris, this 
difference does not appear particularly remarkable.

In addition to the previously discussed factors, the 
number of bacterial cells in infected xylem vessels could 
affect the efficiency of the vector (Almeida et al. 2005; 
Lopes et al. 2009; Daugherty et al. 2010). Although the 
infection status of tested insects and plant material was 
assessed during our experiments, the content of bacte-
rial cells in infected samples was not quantified. So, we 
cannot exclude that the low acquisition rate and the low 
transmission probability observed in our material resulted 
from a small quantity of bacterial cells in source plants 
and tested spittlebugs. As a matter of fact, acquisition and 
inoculation trials from and to grapevine demonstrated 
that a higher amount of X. fastidiosa in the source plant 
induced a greater percentage of transmission success by 
sharpshooter leafhoppers (Hill and Purcell 1997).

This work constitutes the first assessment of P. spu-
marius and N. campestris ability to transmit XFM ST87, 
detected in Tuscany, to R. alaternus, a common bush in 
the Mediterranean scrub. Although these findings are not 
conclusive, they are relevant for the ongoing X. fastidiosa 
outbreaks in Italy and Europe as well as in United States 
and worldwide. As a matter of fact, our results provide 
new accounts on the role of two polyphagous insect vec-
tors in spreading a quarantine organism which is lethal to 
a huge number of wild and cultivated plant species. Not-
withstanding these preliminary outcomes, further studies 
are necessary to evaluate the roles played by the source 
and the recipient plant species, as well as the relationship 
between pathogen isolate—vector species—host plant in 
order to better understand the X. fastidiosa pathosystem 
involving the subsp. multiplex.
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