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Abstract
Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. 
These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between differ-
ent factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (Cacopsylla 
pyri Linnaeus) within pear (Pyrus communis L.) orchards, focusing on potential disruptions as a result of climate change. 
Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear 
production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control 
using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control 
have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing 
concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, 
warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and 
altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could 
occur, impacting pest populations. This review aims to evaluate current strategies used in C. pyri management, discuss trophic 
interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of C. pyri as 
a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence 
gaps and outlines areas of future research.
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Key message

•	 Cacopsylla pyri, is the dominant UK pear pest, with an 
estimated cost of £5 million per annum.

•	 Insecticide withdrawal and resistance is driving the need 
for alternative control methods.

•	 Climate change is likely to impact this agroecosystem, 
potentially altering phenological events.

•	 A whole ecosystem approach is recommended using con-
trol methods that consider all trophic levels.

Introduction

Historically, agricultural pest management was an over-
simplified process—an insecticide or biorational com-
pound has been applied and a reduction in the pest popu-
lation expected. The observed response is often far more 
complex—many pest species develop resistance to pes-
ticides, requiring the frequent development of new com-
pounds, in this evolutionary arms race (Chattopadhyay & 
Banerjee 2020; Le Page 2011). Secondary pest species can 
also become more problematic, filling vacant niches that 
insecticides had emptied (Ekström & Ekbom 2011; Hill 
et al. 2017). Broad spectrum insecticides are a particular 
problem, impacting non-target organisms such as natural 
enemies (El-Wakeil et al. 2013) and pollinators (Connolly 
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2013; Kumar et al. 2018), altering the delivery of eco-
system services. Finally, weather variables can alter the 
persistence and mobility of insecticides (Edwards 1975; 
Tiryaki & Temur 2010), with light intensity, temperature 
and soil moisture impacting their breakdown within the 
environment. As these issues and challenges increased, in 
1992, the United Nations Conference on Environment and 
Development stated that agrochemicals were the dominant 
form of pest control and that growers should transition to 
integrated pest management (IPM) (Ekström & Ekbom 
2011). This management strategy would aim to maintain 
healthy crop growth whilst minimising disruption to agro-
ecosystems, with focus on enhancing biological control 
(Moorthy & Kumar 2004). Since then, the whole ecosys-
tem approach has become a common concept when man-
aging agroecosystems; considering multiple trophic levels, 
abiotic processes and interactions between different factors 
(Jian & Jayas 2012; Jordan 2013).

The ecosystem approach can be applied to pear orchards, 
helping enhance pest management and biological control, 
whilst minimising synthetic chemical input. Pears are an 
economically important crop within the UK contributing 
to 2.74% of total fruit production; with a planted area of 
1,477 hectares and an economic value of £15.1 million in 
2022 (Defra 2023). This system has one main pest, the pear 
psyllid Cacopsylla pyri; thus, there are fewer ecological 
interactions to consider. Situated within the superfamily 
Psylloidea, there are over 4,000 described species of psyllid 
worldwide (Mauck et al. 2024), of these there are 24 spe-
cies known species of pear psyllid (Civolani et al. 2023). 
These phloem feeders have a significant impact on the pear 
industry, nymphs produce honeydew; a sugary secretion that 
encourages the growth of black sooty mould on pear fruit 
and leaves (Daniel et al. 2005), and adult C. pyri are a vec-
tor of the pathogen ‘pear decline’ (Candidatus Phytoplasma 
pyri); which reduces shoot and fruit growth and can lead to 
tree death (Carraro et al. 2001; Kucerová et al. 2007; Süle 
et al. 2007). In the past, pear growers have relied on syn-
thetic insecticides to control C. pyri (Civolani et al. 2023); 
however, over the last few decades, pear psyllid species have 
demonstrated resistance to multiple commonly available 
pesticides across the globe in particular in North America 
for C. pyricola (Harries and Burts 1965) and Europe for 
C. pyri (Atger 1979). In addition, three insecticides (thia-
cloprid, chlorpyrifos and spirodiclofen) commonly used for 
pear psyllid control have recently been withdrawn from UK 
use, with a fourth withdrawal planned for indoxacarb for 
2024 (Hertfordshire 2023; HSE 2023), whilst abamectin 
and spirotetramat are in the process of being phased out 
in Europe (Civolani et al. 2023). Therefore, integrated pest 
management (IPM) has become a priority for controlling 
pear psylla in UK orchards (Reeves et al. 2023; Shaw et al. 
2021).

Cacopsylla pyri have a number of natural enemies in 
UK pear orchards as in other parts of the world (Civolani 
et al. 2023; Horton et al. 2024). The anthocorid Anthocoris 
nemoralis (Fabricius) is perhaps the most documented bio-
logical control agent of C. pyri, whilst the European earwig 
Forficula auricularia (Linnaeus), is another key predator in 
orchards over the summer. Other natural enemies include: 
ladybird adults and larvae (Coccinellidae) (Fountain et al. 
2013; Prodanović et al. 2010), lacewing larvae (Neuroptera) 
(DuPont & Strohm 2020; DuPont et al. 2023), spiders (Ara-
neae) (Petráková et al. 2016), other species of anthocorid 
including A. nemorum (Sigsgaard 2010) and multiple Orius 
spp. (Vrancken et al. 2014). A few parasitoid species are 
also associated with pear psylla (Rieux et al. 1990; Cross 
et al. 1999; Jerinić-Prodanović et al. 2019), with Trechnites 
insidiosus (Crawford) commonly parasitizing nymphs in 
European pear orchards (Nguyen et al. 1985, Rieux et al. 
1990, Armand et al. 1991, Sanchez & Ortín-Angulo 2012; 
Tougeron et al. 2021), although only limited records exist 
in the UK. With multiple natural enemy species potentially 
contributing to biocontrol, it is vital to consider a whole eco-
system approach when managing pear psylla populations.

Weather variables are predicted to change significantly 
over the next 80 years with respect to climate change; UK 
Climate Projections (UKCP18) predict hotter, drier sum-
mers and warmer, wetter winters across the UK (Lowe et al. 
2018; Murphy et al. 2018). By 2070, summer temperatures 
could increase by as much as 5.1 °C under the high emis-
sions scenario, whilst becoming up to 45% drier (MetOf-
fice 2022), with more frequent and intense extreme weather 
events (MetOffice 2019). All three trophic levels (pear trees, 
pear psyllids and natural enemies) are sensitive to abiotic 
factors within agroecosystems; thus, changes in temperature, 
rainfall and extreme weather events could affect phenology, 
activity and behaviour, compromising biocontrol (Reeves 
et al. 2022). Climate change is likely to impact, development 
rates, generation times, oviposition, diapause, feeding and 
activity levels of insects (Karuppaiah & Sujayanad 2012), 
including pear psyllids and their natural enemies.

Phenological shifts are also a real concern for agroeco-
systems (Reeves et al. 2022) and are likely to alter pest 
population dynamics (Becker et al. 2015; Thomson et al. 
2010). Changes in climatic conditions can lead to shifts in 
the timing of phenological events, resulting in phenologi-
cal mismatches; where shifts in other trophic levels do not 
match the corresponding shift for pest species (Damien & 
Tougeron 2019). One example would be psyllid populations 
peaking earlier in the year due to earlier hatching time, but 
with this not coordinating with peak anthocorid or earwig 
emergence. In addition, climate change can lead to spatial 
shifts (Polce et al. 2014); altering the spatial distribution of 
pollinators, pests, pathogens and pear growing regions. An 
example of this is North America, where the pear growing 
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region shifted from the Eastern US to the Western US dur-
ing the mid-1900s. This geographic shift was largely due to 
difficulties in growing pear under the hot and humid sum-
mer conditions in Eastern US, which increased the risk of 
infection from fireblight Erwinia amylovora (Davis & Tufts 
1941; Elkins et al. 2007).

Taking these different aspects into consideration, this 
review aims to (1) describe the life history of pear psyllid, 
(2) outline current biological and agrochemical control strat-
egies used against them, (3) identify potential phenological 
and trophic mismatches that could occur as a result of cli-
mate change and (4) propose an ecosystem-based approach 
to build resilience into pear production systems so sustain-
able pest control can be maintained.

Life history of Cacopsylla pyri

When taking a whole ecosystem approach to pest manage-
ment, it is important to have a good overview of the target 
pest’s life history (Bird et al. 2009; Thomas 1999), includ-
ing knowledge of oviposition, emergence time, migra-
tion, habitat preference and feeding habit. This allows for 
informed bottom-up and top-down control as well as pro-
viding insights into when, where and how they should be 

applied, to optimise the pest management strategy (Fig. 1). 
Cacopsylla pyri is currently the dominant pear psyllid spe-
cies in the UK and is especially prevalent in Kent, whereas 
Cacopsylla pyricola was previously more abundant dur-
ing the 1970–1980s (Nagy et al. 2008). Cacopsylla pyri 
has two adult morphotypes (Bonnemaison & Missonnier 
1955; Nguyen & Grasse 1985): a larger dark-orange black 
winterform (2.6–2.9 mm) with smoky-coloured wings and 
a smaller light-brown summerform (2.1–2.7 mm), which 
first appears in early May and has transparent wings. Dur-
ing September winterform adults begin to appear, some of 
which disperse from the orchard, dispersal peaks in late 
October or early -November, around the phenological stage 
of leaf fall (Civolani & Pasqualini 2003). Adults over-
winter in tree bark crevices (Næss 2016), during which 
reproductive diapause occurs, with ovarian development 
happening slowly throughout the winter (Bonnemaison & 
Missonnier 1955; Nguyen 1975; Lyoussoufi et al. 1994; 
Schaub et al. 2005). By mid-late winter, female ovaries 
are fully developed (Schaub et al. 2005) and egg laying 
starts in late February to early March (Næss 2016; Oz & 
Erler 2021), when temperatures reach > 10 ˚C. For UK, 
pear orchards average first oviposition date and other key 
phenological events are shown in Fig. 2, based on 10 years 
of monitoring data.

Fig. 1   Diagram outlining bottom-up and top-down control within a 
pear agroecosystem and the potential interaction with weather vari-
ables, with respect to climate change. With pear trees as the primary 

producer (Pyrus communis), pear psylla (Cacopsylla pyri) as the pri-
mary consumer and natural enemies (including Anthocoris nemora-
lis) as secondary consumers
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Cacopsylla pyri eggs begin to hatch in early spring 
(Sanchez & Ortín-Angulo 2012), going from a creamy-
yellow to orange when mature; the eyes are often visible 
prior to eclusion. Nymph emergence often coincides with 
bud opening, and there are five nymphal stages, each ending 
in a moult (Civolani et al. 2023). Early stage nymphs (1–3) 
are light yellow coloured, whilst older stages (4–5, hard-
shell nymphs) are dark-brown and larger in size, with more 
developed wingpads (Le Goff et al. 2021). The first peak in 
the pear psyllid population is seen around April–May when 
summerforms emerge; this is followed by a second-gener-
ation in early summer (Fig. 2). The following generations 
overlap throughout the summer and autumn (Civolaniet al. 
2023), with an average of 3–5 generations per year (Suele 
et al., 2007), although generation number can be temperature 
dependant (Kapatos and Stratopoulou 1999).

Pear psyllids use a pierce-sucking stylet to feed on phloem 
sap (Civolani et al. 2011), this sap is comprised mostly of 
two sugars (sorbitol and sucrose) and it also contains 17 
free amino acids (Le Goff et al. 2019). In order to obtain 
essential amino acids, psyllids consume large amounts of 
phloem sap, egesting a large proportion of sugars as honey-
dew (Le Goff et al. 2019). Nymphs egest larger quantities 
of honeydew than adults (Civolani et al. 2023). Honeydew 
can be particularly problematic in pear orchards, encour-
aging the growth of black sooty mould, which reduces the 
photosynthetic ability of leaves and reduces economic value 
of fruits (Daniel et al. 2005;). In addition, adults are a vec-
tor of pear decline phytoplasma (Candidatus Phytoplasma 
pyri) (Carraro et al. 2001; Suele et al., 2007); phloem sap 

is ingested by psyllids from an infected tree and transmit-
ted to other pear trees via salivation into cells or tissues 
when feeding ( Sugio & Hogenhout 2012; Cruz et al. 2018). 
Pear decline can lead to reduced foliation, leaf drop and tree 
death, although susceptibility can depend on rootstock and 
cultivar (Avinent et al. 1997; Carraro et al. 2001; Çağlayan 
et al. 2022). Indeed, it is estimated that pear psyllid costs the 
UK pear industry £5 million per annum due to crop damage 
and control costs (AHDB 2012).

Monitoring methods and abundance 
thresholds

Monitoring pear psylla is particularly important when con-
sidering the timing of control methods, as information on 
adult dispersal, spring oviposition and population densities, 
and structure is required for management decisions (Horton 
1999), making it necessary to monitor pear orchards regu-
larly throughout the year. Monitoring adults and eggs before 
budburst (late January onwards) is considerably important, 
as this is when psylla are more active in orchards and begin 
oviposition; thus, the application of kaolin is often neces-
sary (Pasqualini et al. 2002). Adults can be monitored either 
using beat tray sampling or yellow sticky traps (Burts & 
Retan 1973; Horton 1999; Marcasan et al. 2022). Eggs can 
also be counted by inspecting the budwood using a hand 
lens or by taking a small sample and counting eggs under 
a light microscope (Horton 1999). During spring and sum-
mer, it is also important to sample C. pyri nymphs, as these 

Fig. 2   The timing of key life stages for Cacopsylla pyri (eggs, 
nymphs and adults) and its natural enemies (anthocorids, earwigs 
and ladybirds) in Julian days. Events include first observation in the 
orchard, average first peak abundance date, average second peak 
abundance date and last observation in the orchard. Data were col-

lected from 17 different pear orchards in Kent, UK from 2012–2022, 
based on AHDB TF233 records. The dots represent the average time 
the event took place, lines represent standard deviation and the light 
blue rectangle is the average spread of flowering time for conference 
pear (Pyrus communis L.)
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produce large quantities of honeydew production leading 
to the growth of black sooty mould (DuPont et al. 2023; 
Nin, et al., 2012). Furthermore, under warmer temperatures 
adults more active and likely to fly away, so are more dif-
ficult to count via beat tray sampling (Horton 1994).

Chemical control strategies and biorational 
compounds

Although, IPM focuses on minimising the use of agrochemi-
cals, whilst conserving natural enemy populations (Wearing 
1988), the application of agrochemical sprays is sometimes 
necessary as a last resort (Deguine et al. 2021). IPM inte-
grates the use of chemicals in an agroecosystem by: con-
sidering spray timing (Fig. 3) and spraying when natural 
enemies are not yet present in orchards (Tang et al. 2010), 
selecting compounds that are specific to the target pest rather 
than broad spectrum insecticides (Zalucki et al. 2009), using 
biorational pesticides (pesticides made of natural products, 

with low environmental and mammalian risk) (Haddi et al. 
2020) or biological control agents as alternatives when pos-
sible (Matthews 1999) and rotating insecticide family usage, 
so that pests are less likely to develop resistance (Walker 
et al. 2001). In this section, we will discuss the pesticides 
and biorational compounds commonly used in the control 
pear psylla (Table 1), providing an overview of how these 
control methods could be impacted by climate change.

To highlight which control methods were most common 
in the UK, we compiled spray records from 20 different pear 
orchards. Nine different agrochemical or biorational com-
pounds were used in pear psyllid management, five involved 
in honeydew removal (including sulphur and magnesium 
sulphate for desiccation and soap to wash off honeydew), 
one surfactant used to enhance insecticide application and 
one biological control agent (Table  1). The most com-
mon insecticide used in C. pyri control between 2016 and 
2019 was thiacloprid (product name Calypso, used in 70% 
of orchards), with recommendation of use before flower-
ing. The active ingredient thiacloprid is a neonicotinoid 

Fig. 3   The inputs and outputs 
within a pear orchard that con-
stitute pest management. Inputs 
include biological control, 
chemical sprays, biorational 
compounds and cultural control. 
Outputs are the data that grow-
ers, agronomists and researchers 
collect which go back into the 
system to optimise the timing 
of different control methods, 
maximising the control of the 
pest, whilst minimising damage 
to natural enemies, pollinators 
and other non-target organisms
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Table 1   Biorational compounds, agrochemical sprays and biocontrol 
agents used within UK orchards. Based on AHDB TF233 records 
from 20 orchards in Kent during 2016, 2017, 2018 and 2021. Includ-
ing the name of the product used with its active ingredient in brack-
ets, the average first application date for the product, the average 
number of applications pear year in an orchard, a brief description of 

how the product targets pear psyllid and the percentage of growers 
surveyed that use the compound or used the compound before its ban. 
Compounds still approved for use in the UK are in bold, based on 
the description in the Health and Safety Executive (HSE) (HSE 2023) 
and the University of Hertfordshire Pesticide Properties DataBase 
(PPDB) (Hertfordshire 2023)

Product name Average 1st 
application

Average no. 
applications

Growers 
using 
(%)

Activity Approved/ Withdrawn

Agricolle (Natural polysaccha-
rides)

1st Jun 1 5.00 Immobilises insect and clogs 
sphericles, causing rapid death 
through asphyxiation (broad 
spectrum)

Approved

AnthoPAK 500 (Anthocoris 
nemoralis adults)

4th May 2.58 35.0 A natural enemy of pear psyllid 
that predates on its nymphs and 
eggs

Approved

Batavia (Spirotetramat) 9th Jun 1 20.0 Inhibits lipid biosynthesis in 
phloem sucking pests (broad 
spectrum)

Approved until (31/07/2029)

Bittersaltz/ Epso Microtop/ Kie-
serite (Magnesium sulphate)

18th May 4.88 85.0 Primarily used as a fertiliser but 
can also help remove honeydew 
from leaves

Approved

Calcifert/ Lime (Calcium carbon-
ate)

10th May 1 25.0 Primarily used as a fertiliser but 
can also help remove honeydew 
from leaves and strengthen leaf 
against feeding

Approved until (31/08/2024)

Calypso (Thiacloprid) 25th Mar 1.17 70.0 Disrupts the insect’s nervous 
system by stimulating nicotinic 
acetylcholine receptors (broad 
spectrum)

Withdrawn (31/03/2020)

Chlorpyrifos (Chlorpyrifos) 21st Mar 1 15.0 Impacts the insect’s nervous 
system by inhibiting the break-
down of the neurotransmitter 
acetylcholine (broad spectrum)

Withdrawn (01/04/2016)

Envidor (Spirodiclofen) 3rd Jul 1 65.0 Inhibits lipid biosynthesis in 
phloem sucking pests (broad 
spectrum)

Withdrawn (31/01/2022)

Explicit/ Steward (Indoxacarb) 4th Jun 1.40 40.0 Blocks insect sodium ion chan-
nels, dysregulating neuron firing 
(broad spectrum)

Withdrawal planned (31/10/2024)

Headland Magnesium (Magne-
sium)

29th May 1 15.0 Primarily used as a fertiliser but 
can also help remove honeydew 
from leaves

Approved

Headland Sulphur (Sulphur) 10th Apr 5 85.0 Primarily used as a scab and mil-
dew treatment but can also help 
remove honeydew from leaves

Approved

Karamate (Mancozeb) 21st May 2.69 45.0 Primarily a fungicide but has also 
been shown to have insecticidal 
properties on pear psylla

Approved until (31/01/2024)

Mainman (Flonicamid) 10th May 1 5.0 Disrupts potassium ion channels, 
inhibiting the release of honey-
dew and saliva, leading to the 
cessation of feeding (specific to 
phloem feeders)

Approved until (31/08/2026)

Soap (Sodium hydroxide) 9th Jun 1.67 15.0 Removes honeydew from leaves Approved
Surround (Kaolin) 30th Mar 1 25.0 A mineral-based particle film, 

that forms a protective barrier, 
repelling pests and reducing 
movement, feeding and oviposi-
tion

Approved (31/08/2024)
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insecticide which targets the nicotinic acetylcholine receptor 
and interrupts transmissions of synaptic signals, resulting in 
paralysis of insects (Bangels et al. 2010). Although effective 
in controlling the first generation of C. pyri (Bangels et al. 
2009), the approval for the UK usage was withdrawn in early 
2020 (Bellis & Suchenia 2022), due to toxicity to non-target 
organisms including multiple bee species (Claus et al. 2021; 
Orčić et al. 2022), natural enemies (Van de Veire & Tirry 
2003) and soil invertebrates (De Lima e Silva et al., 2017). 
In total, three insecticides (thiacloprid, chlorpyrifos and 
spirodiclofen) commonly used for pear psyllid control have 
been withdrawn for the UK usage, with a fourth withdrawal 
planned for the active ingredient indoxacarb (Table 1). With 
the recent withdrawal of multiple insecticides used to target 
pear psylla, reliance on other insecticides and biorational 
compounds may become more common. Currently, spiro-
tetramat (Batavia) is approved for use in the UK orchards 
(HSE 2023), it is a systemic insecticide that is translocated 
throughout the xylem and phloem, inhibiting lipid biosyn-
thesis in sucking pest species (Brück et al. 2009; Nauen 
et al. 2008). Studies suggest that spirotetramat is particu-
larly effective against psyllid nymphs (Civolani et al. 2015) 
and does not adversely impact European earwig (Shaw & 
Wallis 2010) or A. nemoralis populations when applied in 
orchards (Pasqualini et al., 2002), although there is some 
concern about its impact on predatory mites (DuPont & John 
Strohm 2020).

In addition, the use of the biorational compound Kaolin 
has become more frequent (Pasqualini et al. 2002; DuPont 
et al. 2021). This finely powdered clay can be sprayed onto 
plant surfaces, creating a non-toxic particle film (Erler & 
Cetin 2007). The porous white barrier can deter adult psylla 
from colonising orchards, reduce oviposition and impair 
movement via the attachment of heavy particles to the bodies 
of psylla (Erler & Cetin 2007; Saour et al. 2010). Pre-bloom 
application (February – April) of kaolin is recommended, 
when adult psylla are actively recolonising orchards, impact 
on natural enemies is minimal and spray coverage is optimal, 
without impacting photosynthesis as foliage is not yet pre-
sent (DuPont et al. 2021). Oils are also effective biorational 
compounds used to suppress pear sucker during the pre-
bloom stage (Civolani 2023; Emami 2023; Erler 2004a, b), 
interfering with colonisation of orchards and egg deposition 

(Pasqualini et  al.  2002). One study by Pasqualini et  al. 
(2002) found that in early spring C. pyri, egg numbers were 
3.2 times lower on buds treated with mineral oil, compared 
to the untreated control. Whilst Erler (2004a, b) found that 
cotton seed oil, fish-liver oil, neem oil and summer oil all 
promoted C. pyri oviposition deterrence, with fish-liver oil 
and summer oil exhibiting 100% deterrence in winterforms 
over the 3-week treatment period; however, there is the issue 
of allergens in some oil types.

Reflective mulches have been demonstrated to suppress 
C. pyricola populations (Nottingham & Beers 2020; Not-
tingham et al. 2022). These are ground covers that reflect 
solar light into the orchard canopy (Shimoda & Honda 
2013). Insects are particularly sensitive to UV light, ambi-
ent UV can promote flight behaviour (Nottingham & Beers 
2020), whilst direct UV can damage eggs and nymphs 
(Beard 1972). Nottingham & Beers (2020) found signifi-
cantly fewer first-generation (during May) pear psylla adults, 
eggs and nymphs in reflective-mulch treatments compared to 
black-mulch and no mulch treatments. However, the second-
generation (June–July) of pear psylla was not supressed by 
reflective-mulch. This could be due to the fact that multiple 
natural enemy groups (important for summer psyllid control) 
were also reduced in the reflective mulch treatment, as UV 
impacts multiple insect species. Therefore, using reflective 
mulch during the early season may be more effective for pear 
psyllid control, as natural enemies are less abundant.

Pest monitoring and mating disruption through the use of 
pheromone lures are deployed for multiple pest species in 
particular Lepidoptera (Ganai et al. 2017). To date the sex 
pheromone of the pear psyllid species, C. bidens (Soroker 
et al. 2004) and C. pyricola have been identified, isolated 
and synthesised (Guédot et al. 2009; Yuan et al. 2021). Fur-
thermore, there is also evidence for increased levels of the 
same compound in cuticular extracts of adult C. pyri females 
(Ganassi et al. 2018). Ganassi et al (2018) showed that male 
C. pyri displayed a significant preference for odours from 
female conspecifics and female cuticular extracts in Y-tube 
olfactometer assays, suggesting that a similar female-pro-
duced pheromone is likely present in C. pyri. Visual and 
acoustic signals have the potential to enhance mating dis-
ruption (Jocson 2023; Krysan & Horton 1991). Cacopsylla 
pyri have a preference for green visual cues (525 to 537-nm) 

Table 1   (continued)

Product name Average 1st 
application

Average no. 
applications

Growers 
using 
(%)

Activity Approved/ Withdrawn

Wetcit (Alcohol Ethoxylate) 8th May 3 20.0 A wetting aid surfactant, that 
improves the spread and 
penetration of insecticides and 
other agrochemical sprays

Approved substance without 
pesticidal activity
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(De Jorge et al. 2023), which can be used in sticky traps 
for psylla monitoring and control. There is also potential 
to supplement these traps with pheromone lures (Guédot 
et al. 2009; Yuan et al. 2021) to increase catch rate. Acoustic 
signals have an important role in psyllid mate choice (Percy 
et al. 2006; Liao et al. 2022); Eben et al. (2015) were first 
to describe the male and female acoustic signals for a pear 
psyllid (C. pyri). Jocson (2023) found that the playback of 
white noise and male psyllid song reduced offspring number 
compared to the control treatment, due to mating disrup-
tion. However, interactions between visual, acoustic and 
chemical signals involved in pear psyllid mate choice are 
under-researched.

Biological and cultural control strategies

Natural or biological control strategies encompass bottom-
up or top-down control (Fig. 1). Top-down control can be 
defined as a predator mediated process, when higher trophic 
levels influence levels below them, by altering prey behav-
iour or reducing pest populations through consumption of 
prey (Daugherty et al. 2007; Hayward et al. 2019). Top-
down control is key to biological control methods used 
in IPM of pear sucker, either through conserving natural 
enemy populations, increasing recruitment of predators and 
parasitoids into orchards or artificially releasing biocontrol 
agents (Daugherty et al. 2007). The anthocorid A. nemora-
lis is the dominant predator of C. pyri in the UK, with the 
average female estimated to consume approximately 5000 
psyllid eggs in its lifetime (Yanik & Ugur 2004). Adult 
anthocorids migrate into orchards April–May from sur-
rounding hedgerows (Reeves et al. 2023). Eggs are laid and 
anthocorid populations peak mid-summer, allowing for the 
effective control of pear sucker (Nagy et al. 2008; Scutar-
eanu et al. 1999). However, natural anthocorid populations 
do not always establish quickly enough to keep C. pyri 
populations at an economically viable level (Civolani 2012; 
Sigsgaard et al. 2006b). Therefore, it has become common 
practice in some UK orchards to mass release A. nemora-
lis (Augmentative biological control) rather than relying on 
enhancing natural populations alone (Conservation biologi-
cal control). This review found that 35% of the orchards sur-
veyed used AnthoPAK 500 (Table 1), a product containing 
500 adult A. nemoralis in a dispersing material (Bioplanet 
2023), available from multiple biological control compa-
nies. Sigsgaard et al (2006b) suggest between 1000 and 1500 
adult A. nemoralis should be released hectare at 5–6 points 
within a pear orchard. Furthermore, timing is critical for 
artificial releases of A. nemoralis, with evidence of success-
ful releases during early-mid May (Sigsgaard et al. 2006a).

In addition to A. nemoralis, many other species of natural 
enemy are involved in pear psyllid management (DuPont 

et al. 2023; Nottingham et al. 2023), among them are spiders 
(Araneae) (Sanchez & Ortín-Angulo 2012), European ear-
wigs (Forficula auricularia) (Fountain et al. 2013) ladybird 
adults and larvae (Coccinellidae) which are generalist preda-
tors (Fountain et al. 2013; Prodanović et al. 2010), lacewing 
larvae (Neuroptera) (DuPont & John Strohm, 2020; DuPont 
et al. 2023) and the parasitoid Trechnites insidiosus (Sanchez 
& Ortín-Angulo 2012). European earwigs are common 
in pear orchards; stage four earwig nymphs are arboreal, 
appearing in pear trees in late spring and peaking in June, 
whilst adult populations peak in mid-July (Gobin et al. 2008; 
Moerkens et al. 2011). Earwigs are effective predators of C. 
pyri (Gobin et al. 2008; Lenfant et al. 1994), and unlike A. 
nemoralis migrations, their abundance in orchards is less 
dependent on C. pyri density. A study by Lenfant et al (1994) 
found that arboreal F. auricularia nymphs ate a daily maxi-
mum of 10 mg of psyllid prey (1000 psylla eggs), highlight-
ing their efficiency as biological control agents. Although 
earwigs are omnivorous and sometimes consume plant mate-
rial, damage to top-fruit is minimal (Solomon et al. 2000).

To date no biological control company rears F. auricu-
laria for mass release, thus the reliance on enhancing earwig 
populations and providing refugia is common in top-fruit 
orchards (Shaw et al. 2021). One such refuge is the Wignest; 
a wooden shelter preloaded with a food attractant, avail-
able from the biocontrol company Russel-IPM (Russel-IPM 
2023; Shaw et al. 2021). Artificial refuges can also be con-
structed using straws or corrugated cardboard in a bottle 
attached to a tree (Hansen et al. 2005; Solomon et al. 1999). 
Furthermore, dried cat-food is often placed in refuges as a 
prey supplement (Shaw et al. 2021). The benefits of using 
refuges in the tree canopy are that earwigs are housed arbo-
really and therefore more likely to forage on insects in the 
tree canopy when they emerge to feed at night.

Hedgerows (Nagy et al. 2008; Scutareanu et al. 1999), 
nettles (Shaw et al. 2021), cover crops (Horton et al. 2009) 
and wildflower strips (Balzan et al. 2014; Mateos-Fierro 
et al. 2021) can also enhance natural enemy populations, 
providing refuges and alternative resources for predators 
before they migrate or “spillover” into nearby orchards (Hor-
ton 2024). Scutareanu et al (1999) found that the first peak 
of adult anthocorids in pear orchards was always later than 
the first peak in hedgerows, indicating that anthocorids use 
hedgerows as refugia before migrating into orchards when 
psyllid populations increase. Furthermore, hawthorn was 
the dominant source of A. nemoralis for migration to psylla 
infested trees. This is supported by Nagy et al (2008), who 
found high numbers of adults on hawthorn, goat willow and 
stinging nettle during mid-April to May.

Surrounding land-use has also influences both pear psylla 
and their natural enemies (Miliczky & Horton 2005; Ren-
don et al. 2021; Shaltiel & Coll 2004); surrounding vegeta-
tion can act as a source or sink for pests and beneficials 
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throughout the year, especially between growing seasons 
(Rendon et al. 2021). Impacts on pest populations can be 
dependent on land-use type (Karp et al. 2018), land-use 
diversity (Veres et al. 2013), size of surrounding land area 
and distance from orchard (Miliczky & Horton 2005). Ren-
don et al (2021) found that pear orchards surrounded by high 
cherry orchard cover had a negative correlation with preda-
tor abundance and higher pear psylla abundance, this could 
indicate that cherry is a less important source of pear psyllid 
predators, compared to more heterogeneous landscapes.

Bottom-up control is important for IPM of pear psylla 
(Daugherty et al. 2007); this is a resource mediated pro-
cess (Fig. 1), where plant quality and chemical defences 
can influence pest populations, impacting prey abundance 
for predators (Han et al. 2022). Nutrient inputs have a sig-
nificant impact on plant quality but can also influence pest 
populations (Daugherty et al. 2007; Kocourek et al. 2021); 
nitrogen is a limiting factor in the diets of pear psylla, 
as there are low levels of amino acids in phloem sap (Le 
Goff et al. 2019); thus, the addition of nitrogen fertiliser 
can remove this limiting factor and increase the amount of 
nutritious new foliage for nymphs and adults to feed upon 
(Daugherty et al. 2007; McMullen & Jong 1977). Daugherty 
et al (2007) found that pear trees given a high nitrogen fer-
tiliser treatment had a significantly lower C:N ratio (higher 
N) in leaf samples and a significantly higher abundance of 
pear psylla (eggs, nymphs and adults) in mid-July, compared 
to low N treatments. Thus, controlling fertiliser inputs to 
provide just enough for fruit set (Civolani 2012; Daugherty 
et al. 2007; Nin et al. 2012), alongside an effective prun-
ing method (Francke et al. 2022; Fuog 1983), is important 
for IPM of pear psylla. Franke et al. (2022), recommends 
removing watersprouts (soft vertical shoots) between late 
May—early June in a period of low rainfall, as an effective 
method of controlling psylla populations and reducing tree 
vigour.

Host resistance is another method of minimising damage 
from pear psylla populations (Ninet al., 2012; Shaltiel‐Har-
paz et al., 2014). Resistant phenotypes may exhibit antixeno-
sis (pest deterrence) (Bell & Puterka 2003; Nin et al. 2012), 
or antibiosis (when plants have a deleterious effect on a pest) 
(Peterson et al. 2017), reducing a pest’s longevity, develop-
ment rate or reproductive potential (Shaltiel‐Harpaz et al., 
2014). A resistant cultivar can be selected by monitoring 
pest oviposition rates, pest mortality, feeding and develop-
ment rates and nymphal weight gain (Bell & Puterka 2003; 
Berrada et al. 1995; Pasqualini et al. 2006). Based on the UK 
horticulture statistics, Conference pear (Pyrus communis cv. 
Conference) is the most common pear cultivar in the UK, 
accounting for 84.01% of total planted area of pears (Defra 
2023). However, cv. Conference alongside other common 
UK pear cultivars including Comice, Concorde and Wil-
liams Bon Chretien are susceptible to C. pyri (Berrada et al. 

1995; Nin & Bellini 2000). Hybridisation of susceptible 
species with resistant ones can be successful in increasing 
host plant resistance (Harris 1973; Nin et al. 2018). Multi-
ple intraspecific pear hybrids demonstrate high resistance 
to C. pyri infestations (Robert & Raimbault 2004). How-
ever, the fruit quality of hybrids is often a concern within 
breeding programmes (Ninet al., 2012; Robert & Raimbault 
2004), highlighting the need to consider resistance, yield 
and fruit quality during cultivar selection. This challenge 
can be solved with the DNA marker (Dondini et al. 2015; 
Montanari et al. 2015).

A more recent approach to bottom-up control is through 
activating plant defence pathways using plant defence elici-
tors (PDEs) (Orpet et al. 2021; Saour et al. 2010; Civolani 
et al. 2022). One example is the Harpin 44-kDa protein, 
encoded by the hrpN gene from the bacterium Erwinia 
amylovora, which activates the salicylic acid, ethylene and 
jasmonic response pathways, stimulating plant growth and 
defence (Saour et al. 2010). A study by Saour et al. (2010) 
found numbers of C. pyri nymphs was significantly lower 
in the Harpin treatment compared to the untreated control 
and had a higher fruit load. However, other studies have 
only found partial or variable pear psyllid suppression using 
PDEs (Cooper & Horton 2017; Orpet et al. 2021; Civolani 
et al. 2022), suggesting that PDEs should be used alongside 
other control methods. Weather dependence of control meth-
ods is also important in pear psyllid management (Civolani 
2012). Rainfall is perhaps the most disruptive to chemical 
and biorational methods, with the ability to wash insecti-
cides and particle films off foliage and plant material (Erler 
& Cetin 2007) and disrupt pheromones or other chemical 
cues (Johnston et al. 2022). Whilst temperature may have 
more of an impact on biological control methods impacting 
feeding, development and oviposition of natural enemies. 
Potential disruptions to IPM with respect to weather vari-
ables are considered throughout this review.

Phenological shifts and mismatches 
within agroecosystems

Multiple studies suggest that temperature significantly influ-
ences budburst and flowering phenology (Amano et al. 2010; 
Auffret 2021; Fitter & Fitter 2002). Fitter & Fitter (2002) 
highlights that flowering time has advanced rapidly in the 
UK over the past few decades; with first flowering time aver-
aging 4.5 days earlier compared with the previous 40 years. 
Whilst Amano et al (2010) predicted first flowering to be 
an average of 5.0 days earlier for every 1 °C of warming, 
with February—April temperatures being most closely cor-
related to flowering phenology. This phenological advance-
ment depending on temperature has been noted in several 
tree-fruit species including apples (Guédon & Legave 2008), 
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plums (Cosmulescu et al. 2010), cherry (Sparks et al. 2005) 
and pear (Chitu & Paltineanu 2020). Many fruit trees go 
into a dormancy phase over the winter, a period of restricted 
growth that protects them from cold temperatures and frost 
damage (Campoy et al. 2011). A minimum amount of chill-
ing time (a certain number of hours below a particular 
temperature), followed by forcing time (a certain number 
of hours above a particular temperature) is then required 
to stimulate vegetative growth and flowering (Guo et al., 
2014). Chilling periods are often accumulated between 
October–December, whilst forcing times are accumulated 
from January–April (Drepper et al. 2020), although this can 
be location dependent.

Warmer forcing periods are likely to accelerate flowering 
due to faster heat accumulation (Ruiz et al. 2007), whilst 
warmer chilling periods can delay flowering due to insuf-
ficient chilling time (Guo et al., 2014). Reeves et al (2022) 
found that January–April temperatures had a significant 
effect on pear (P. communis) flowering time, with warmer 
temperatures associated with earlier flowering for 12 differ-
ent pear cultivars and four phenological stages. Furthermore, 
this phenological advancement was predicted to continue, 
with full flowering becoming 18.5 days earlier under the 
highest emissions scenario (RCP 8.5) by 2080, providing 
chill requirements were met. Earlier budburst and flower-
ing could have significant bottom-up impacts for this model 
system. Pear psylla nymphs often take shelter within rolled-
leaves and flower buds, from natural enemies and adverse 
weather conditions (Reeves et  al. 2022; Solomon et  al. 
1989), which could provide more protection for psyllids 
earlier in the year. In addition, adult females also increase 
oviposition rate when green foliage is present compared 
to dormant budwood (Horton 1990b); thus, if leaf flush is 
earlier, oviposition may also shift. With respect to spraying 
regimes, it is likely that pre-bloom sprays will need to shift, 
to account for earlier budburst, it is imperative that kao-
lin is applied pre-bloom to provide optimal spray coverage 
(Nottingham & Beers 2020). For anthocorid releases, this is 
dependent on how pest populations respond to earlier flow-
ering. If psyllid oviposition and nymph emergence peaks 
earlier, then release of biological control should also shift, 
especially if natural anthocorid migrations do not follow 
this. This emphasises the importance of psyllid monitoring 
for growers, to optimally time sprays and mass releases.

Phenological monitoring is important within an agri-
cultural ecosystem, allowing growers to decide when to 
apply different biological, chemical and cultural control 
methods (Fig. 3). A phenological model for C. pyri has 
been developed for the first and second-generation of pear 
psylla; this considers multiple variables including; termi-
nation of diapause, egg and nymph development, the pre-
oviposition period and air temperature (Schaub et al. 2005). 
The model is now used in the SOPRA information system, 

for monitoring fruit pests in Switzerland, informing grow-
ers when to psylla are likely to emerge, when to monitor 
for them and the optimal time period to apply treatments 
(Samietz et al. 2007, 2011). However, this model has not 
been applied to UK regions, only considers the pest and 
looks air temperature rather than impacts of other weather 
variables. Thus, applying a pest forecasting system to UK 
pear orchards, which considers the phenology of pear, pear 
psylla and natural enemies with respect to weather variables 
would be optimal.

Development and voltinism

Pear psylla and their natural enemies are poikilotherms 
(Reeves et al. 2023), meaning their body temperature fluc-
tuates with their environment (Régnière & Powell 2013; 
Wojda 2017). Thus, the rate of development of poikilo-
therms is dependent on ambient temperature; developmen-
tal rate can also influence other variables such as voltinism 
(generations per year), fecundity and mortality (Culos & 
Tyson 2014). Insect development occurs between a criti-
cal thermal minima (CTmin) and a critical thermal maxima 
(CTmax) (Rebaudo & Rabhi 2018). Above CTmin develop-
ment rate increases slowly with temperature at first, then 
linearly before it reaches an optimum (Topt). Once Topt is 
reached, there is a rapid decrease in development rate before 
the CTmax is reached. Temperature dependent development 
is evident in pear psylla (Kapatos & Stratopoulou1999); it is 
estimated that pear psylla have a CTmin of 10˚C for ovipo-
sition and egg development (Civolani 2012) and a CTmax 
of below 32.2 ˚C (McMullen & Jong 1977). However, the 
CTmax is based on C. pyricola, as the CTmax of C. pyri has 
not been recorded (Kapatos & Stratopoulou 1999; Schaub 
et al. 2005). Other authors have reported minimum tempera-
tures that allow egg and nymphal development as 2–4 °C for 
C. pyri (Beránková & Kocourek 1994; Kapatos & Stratopou-
lou 1999; Schaub et al. 2005) and unsurprisingly changed 
with time of year due to temperature and changes in host 
quality (Civolani et al. 2023).

Studies predict that the number of generations per year is 
likely to increase in multivoltine insect species, due acceler-
ated development resulting in the earlier completion of life 
cycles (Karuppaiah & Sujayanad 2012; Tobin et al. 2008). 
For C. pyri, the number of generations per year does differ 
spatially, likely due to climatic differences; with two genera-
tions per year recorded in Norway (Næss 2016), 3–4 genera-
tions in Switzerland (Daniel et al. 2005) and 5–6 generations 
in Greece (Stratopoulou & Kapatos 1992b). Furthermore, 
nymphs in Sicily overwinter alongside adults, as winters 
are far milder (Nin et al. 2012). Voltinism of C. pyricola 
also shows a substantial latitudinal gradient, with earlier 
maturation of eggs postdiapause and additional generations 
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depending on latitude (Civolani et al. 2023). Thus, with 
UK summer temperatures predicted to increase (MetOffice 
2022), elevated development rates could lead to an increased 
generation number. Differences in generational number have 
also been found for natural enemies of pear psylla; the mul-
tivoltine parasitoid T. insidiosus, completes 2–3 generations 
per year in France and Spain, whilst in Syria, six generations 
have been reported, due to higher temperatures in this region 
(Tougeron et al. 2021). A. nemoralis also varies in genera-
tion number, with two generations in the UK (Solomon & 
Fitzgerald 1990), which can vary from 1 to 3 generations 
depending on location and host plant (Dempster 1963; Sau-
lich & Musolin 2009).

Increased voltinism could have mixed effects for natu-
ral enemies depending on synchrony (Gaytán et al. 2022; 
Thomson et al. 2010), for parasitoids additional generations 
of hosts could provide a greater resource and increased time 
for population build-up (Horgan 2020). Alternatively, if host 
stage is asynchronous to the parasitoid, then there may be 
less hosts available to oviposit in or less time to complete its 
lifecycle. Furthermore, there is concern whether univoltine 
parasitoids and predators will have the plasticity to become 
multivoltine (Tougeron et al. 2020). Although there is evi-
dence of multiple taxa shifting from univoltine to bivoltine 
lifecycles; for example, the spruce bark beetle Ips typogra-
phus is usually univoltine in Norway, Sweden and Finland; 
however, during warm summers, the species becomes bivol-
tine (Lange et al. 2006). Similar shifts have been found for 
the lawn ground cricket, Polionemobius mikado, which is 
bivoltine in southern Japan and univoltine in the north; how-
ever, this bivoltine lifecycle has slowly shifted northwards 
with respect to rising temperature (Matsuda et al. 2018).

Fecundity, mortality and diapause

From late September onwards, winterform C. pyri adults 
begin to emerge (Bues et al. 1999). Winterform females 
are in reproductive diapause; where ovaries are still imma-
ture and experience a slow but constant development 
over the winter months (Lyoussoufi et al. 1994), whereas 
males have active sperm in the in the spermatheca (Civ-
olani 2012; Hodkinson 2009). However, there is discus-
sion whether rising temperatures will reduce the length 
of diapause (Karuppaiah & Sujayanad 2012; Kaur et al. 
2023). For C. pyri, diapause is induced by short photo-
periods in late summer, early autumn and low tempera-
tures (Hodkinson 2009; Stratopoulou & Kapatos 1995; 
Tougeron et al. 2021). Studies show that young nymphs 
(L1-L3) reared under short-day length (LD 12:12) and 
low temperature (< 15 °C) produce diapausal winterform 
adults (Hodkinson 2009; Nguyen 1972). For the duration 
and termination of diapause, temperature becomes a more 

important environmental cue as diapause progresses. Hod-
kinson (2009) states that diapause is termination for C. 
pyri when exposed to temperatures above 25 °C, irrespec-
tive of photoperiod. However, the minimum temperature 
for diapause termination is dependent on location and 
photoperiod. Thus, it is likely that climate change could 
impact the duration of C. pyri diapause, with milder winter 
temperatures resulting in advanced emergence of adults 
from shelters and earlier egg laying (Civolani 2012). Mul-
tiple natural enemies of C. pyri enter diapause overwinter, 
including anthocorids (adults diapause under short-day 
conditions (Saulich & Musolin 2009), earwigs (enters a 
post-reproductive diapause under short photoperiods and 
low temperatures) (Goodacre 1998) and the multivolt-
ine parasitoid T. insidiosus (Tougeron et al. 2021). For 
T. insidiosus, larvae overwinter inside C. pyri mummies; 
however, the photoperiodic or thermal cues required to 
induce this are unknown, highlighting an area of further 
research.

Mortality overwinter is particularly high for C. pyri 
adults, likely due to adverse weather conditions, limited 
resources and active winter predators (Horton et al. 1992; 
Kapatos & Stratopoulou 1996; Petráková et al. 2016). Kapa-
tos & Stratopoulou (1996) found that on average, only 23.2% 
of C. pyri females survived overwinter, until the beginning 
of the oviposition period. Furthermore, rainfall and tempera-
ture have been shown to significantly impact psyllid mortal-
ity over winter (Horton et al. 1992; McMullen & Jong 1977), 
alongside habitat complexity (number of overwintering shel-
ters) (Michalko et al. 2017) and predator abundance/activity 
(winter-active spiders such as Anyphaena and Philodromus 
can help to control psyllid populations) (Petráková et al. 
2016); thus, milder winters could reduce psyllid mortality. 
In addition, temperature has a significant impact on sum-
merform mortality, McMullen & Jong (1977) found that 
mortality rates of C. pyricola eggs and nymphs were lowest 
at 21.1 °C, with a higher longevity of summerform adults 
at lower temperatures compared to elevated temperatures. 
Furthermore, longevity under elevated temperatures signifi-
cantly differed depending on morphotype, with summerform 
adults surviving significantly longer than winterforms (for 
temperatures > 30 °C). Higher temperatures also influenced 
fecundity in this study, with maximum fecundity at 21.1 °C 
(444.9 eggs per day), and significantly reduced oviposition 
rates at 35.0 °C (2.8 eggs per day). Once again optimum 
fecundity temperature depended on morphotype and was sig-
nificantly lower for winterform females (15.6 °C). However, 
studies are lacking for C. pyri on fecundity and mortality, 
unlike the wide range of temperature regimes McMullen & 
Jong (1977) use for C. pyricola. Thus, it is difficult to con-
firm whether there are any temperature specific differences 
between C. pyri and C. pyricola. Further exploration of how 
RH impacts mortality and development is required, as young 
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nymphs and eggs are vulnerable to desiccation under high 
temperatures and low humidity (Wilde 1964), suggesting 
these factors could interact synergistically.

Feeding rates and functional responses

Climate change is predicted to have mixed effects on the 
feeding rates of sap-sucking insects (Evans & Borowicz 
2015; Kenneth & Jayashankar 2020). Firstly, elevated CO2 
levels could increase the C:N ratio in crops due to the fer-
tilisation effect (Gifford 2004; González de Andrés, 2019); 
currently the rate of photosynthesis is limited as both CO2 
and O2 compete for the active site of the rubisco enzyme 
used in photosynthesis. However, climate change may lead 
to higher levels of CO2 saturating rubisco’s active site; 
increasing amount of carbon fixation (McGrath & Lobell 
2013). Thus, as nitrogen is already a limiting factor in the 
diet pear psylla (Le Goff et al. 2019; Pfeiffer & Burts 1984), 
the higher C:N ratio could result in increased compensatory 
feeding for phloem feeders to obtain essential amino acids 
(Ryan et al. 2010). Pfeiffer & Burts (1984) found that pear 
psylla had increased feeding rates and honeydew production 
on pear trees with lower nitrogen content, supporting this 
hypothesis. On the other hand, the upregulation of carbon-
based chemical defence compounds may be enhanced under 
elevated CO2 (Robinson et al. 2012; Ryan et al. 2010). A 
meta-analysis by Robinson et al (2012) found a significant 
increase in tannins and overall leaf toughness under elevated 
CO2. However, increased leaf toughness may be more det-
rimental to folivores compared to phloem feeders; further-
more, trichrome hairs which provide a physical barrier for 
phloem feeders were not found to increase in density under 
elevated CO2, suggesting minimal impacts for sap-sucking 
insects with respect to plant defence.

Climate change may also alter transpiration rates of 
plants, depending on temperature, water stress, RH and 
CO2 level (Kirschbaum 2004; Mahato 2014). Furthermore, 
many factors interact synergistically (Reynolds-Henne et al. 
2010; Schulze et al. 1973). Schulze et al (1973) found higher 
temperatures increased stomatal conductance; however, 
higher temperatures coupled with water stress significantly 
reduced stomatal conductance. Decreased transpiration rates 
can reduce plant vigour and accessibility to nutrients in the 
phloem for sap-sucking insects (Evans & Borowicz 2015). 
However, intermittent drought stress may be beneficial for 
phloem feeders, due to the pulsed stress hypothesis; where 
periods of stress, followed by the recovery of turgor, result in 
stress-induced increases in plant nitrogen (Huberty & Denno 
2004). Therefore, it is important to consider interactions 
between weather variables, as well as their intensity and 
duration when predicting psyllid feeding rates with respect 
to climate change.

A functional response can be defined as the consumption 
rate of a predator depending on prey density (Holling 1965; 
Real 1977). It consists of attack rate; the rate at which a 
predator encounters a prey item and handling time; the time 
taken for a predator to consume the prey item (Juliano 2020; 
Real 1977). Functional responses are temperature dependent 
(Englund et al. 2011; Hassanzadeh-Avval et al. 2019); attack 
rates and handling times have been shown to vary with tem-
perature in a hump-shaped manner (Uszko et al. 2017) and 
are often maximised at intermediate temperatures (Uiter-
waal & DeLong 2020). Reeves et al (2022) demonstrated 
that anthocorid A. nemoralis did not significantly alter its 
attack rate or overall consumption rate of C. pyri nymphs 
depending on temperature, for current and predicted summer 
temperatures by 2080. However, this study concentrates on 
a small temperature range (18—23 °C) based on predicted 
UK average temperatures; for a larger temperature range sig-
nificant differences may be evident. Hassanzadeh-Avval et al 
(2019) found significantly higher attack rates for Anthocoris 
minki Dohrn predating upon Psyllopsis repens Loginova at 
30 °C compared to 15 °C, which may be relevant for maxi-
mum and minimum summer temperatures; however, these 
intervals have not tested for A. nemoralis. Temperature also 
interacts with other weather variables, impacting functional 
response; Yanik (2011) suggests that the combined effect 
of temperature and humidity had a significant impact on 
the consumption rate of Ephestia kuehniella Zeller eggs by 
A. nemoralis, whilst neither variable was significant alone.

Behaviour, activity and spatial distribution

Dispersal of C. pyri winterform adults from orchards begins 
in September, peaking late October to early November (Civ-
olani & Pasqualini 2003). The timing of this phenological 
event is dependent on temperature, humidity, precipitation 
and leaf fall (Horton et al. 1994). Civolani & Pasqualini 
(2003) showed that early C. pyri dispersal was correlated 
with early leaf fall and temperature. Thus, if leaf fall shifts 
with respect to climate change, psyllid dispersal may follow 
suit. Additionally, the field experiment highlighted that A. 
nemoralis sort refuge when maximum temperature dropped 
below 10 °C, demonstrating sheltering behaviour. Similar 
findings were seen for Coccinellidae spp. but for a higher 
maximum temperature. Furthermore, Horton et al (1994) 
demonstrated for C. pyricola that warmer and drier autumns 
lead to earlier dispersal and increased psyllid flight activity 
compared to those that were cool and wet.

The spatial distribution of pear psylla within the tree 
canopy impacts their activity and varies throughout the 
year (Horton 1994; Stratopoulou & Kapatos 1992a). Strat-
opoulou & Kapatos (1992a) monitored the spatial distribu-
tion of C. pyri within pear trees (eggs and young nymphs); 



Journal of Pest Science	

their findings indicated that during spring psylla density 
was higher in the upper canopy, especially south or west 
facing; however, later in the year, numbers increased in 
the lower canopy. This could suggest that areas exposed 
to more sunlight were actively chosen as oviposition sites, 
to meet temperature requirements for development; how-
ever, later in the year, it may be more optimal to oviposit 
lower down in the canopy to reduce desiccation of eggs. 
Moreover, females displayed an oviposition preference 
for flowerbuds; 93.8% of eggs and nymphs were found in 
flowerbuds compared to leafbuds. This may be because it 
is more optimal for nymphs to develop inside flowers, as it 
provides more shelter from weather conditions and natural 
enemies (Reeves et al. 2022; Solomon et al. 1989). With 
respect to rising temperature, it is important to explore 
whether oviposition in the lower canopy increases dur-
ing the summer, leading to spatial shifts in the psyllid 
population.

Spatial shifts in prey density under warming temperatures 
may lead to corresponding shifts for predators (Schmitz & 
Barton 2014). For example, climatic warming could lead 
to higher temperatures in the upper part of a plant canopy, 
prey respond by moving down to the lower canopy. Preda-
tors and parasitoids may also shift spatially due to rising 
temperature or to follow the distribution of prey (Barton 
& Schmitz 2009). For example, aphids often move down-
wards, occupying more shaded leaves in the lower canopy 
due to high summer temperatures (Dixon & Hopkins 2010). 
Aphid parasitoids also been shown to follow the distribu-
tion of aphids; a field-study monitoring pecan aphids found 
that the parasitoid Aphelinus perpallidus (Gahan) was most 
abundant in the lower canopy, where the population of pecan 
aphids were highest during the summer (Slusher et al. 2022).

However, when multiple predators are present the inter-
actions can become more complex, with respect to climatic 
warming (Barton & Schmitz 2009; Schmitz & Barton 2014). 
Predators that usually occupy separate spatial niches within 
the plant canopy may overlap, leading to interference com-
petition (when one predatory species reduces prey capture 
for a second predator species) or intraguild predation (IGP, 
where different predators consume each other, in addition 
to their target prey) (Jonsson et al. 2017). Therefore, it is 
important to identify natural enemies of C. pyri that could 
resort to IGP if niches overlap, as well as predicting spatial 
shifts of pest populations within the plant canopy. F. auricu-
laria has a varied diet of insect, animal and plant material 
(Helsen et al. 1998); however, they are nocturnal (Suckling 
et al. 2006), so are less likely to interact with other natural 
enemy species. IGP has been documented between lady-
bird and lacewings (Karami-jamour et al. 2018; Zarei et al. 
2020) and between A. nemoralis and multiple coccinellid 
species (Batuecas et al. 2022), indicating an avenue for fur-
ther research.

VOCs and trophic signalling

Pear psylla rely on a range of cues and signals resumed 
in Civolani et al. (2023); including chemical cues for host 
choice and oviposition (Gallinger et al. 2023; Horton & 
Krysan 1991), substrate-borne acoustic signals used in 
mate location (Eben et al. 2015; Jocson et al. 2023), tac-
tile cues used when depositing eggs (Horton 1990a) and 
visual cues used to locate host plants (Adams et al. 1983; 
De Jorge et al. 2023). Abiotic factors have the ability to 
disrupt or alter cues and signals; acting as environmental 
noise, so it more difficult for the receiver to understand 
them (Lawson & Rands 2019; Lawson et al. 2017). Rain-
fall, temperature, light intensity, wind, humidity, CO2 and 
tropospheric ozone all have the ability to disrupt signals or 
create environmental noise (Lawson & Rands 2019; Yuan 
et al. 2016). Signal disruption may be further exacerbated 
by climate change (Fig. 4); via altered signal production, 
impacted transmission and changes in receiver perception 
(Becker et al. 2015; Yuan et al. 2009). Thus, it is vital 
to monitor how vulnerable pears, pear psyllid and their 
natural enemies are to signal disruption with respect to 
climate change.

One important set of infochemicals used in multitrophic 
communication is volatile organic compounds (VOCs) 
(Abbas et al. 2022; Yuan et al. 2009). In response to her-
bivory, plants often release herbivore-induced plant vola-
tiles (HIPVs), which can recruit natural enemies (Allison 
& Daniel Hare 2009; Valle et al. 2023), repel pests (Turl-
ings & Ton 2006) and can be used for plant–plant com-
munication, resulting in increased upregulation of defence 
genes for receivers (Ninkovic et al. 2021). However, abi-
otic factors may influence VOCs; elevated temperature 
has been shown to alter the rate of transmission, emission 
and composition of VOCs (Helmig et al. 2007; Yuan et al. 
2009). Isoprene is enhanced under climate warming and 
emission rates are positively correlated with temperature 
(Guenther et al. 1993; Loivamäki et al. 2008). A free-air 
carbon dioxide enrichment (FACE) experiment by Gall-
inger et al (2023) indicated that pear trees cultivated under 
elevated CO2 differed in their release of VOC compounds 
compared to ambient controls. Despite altered VOC emis-
sion, C. pyri females did not have a significant prefer-
ence between trees grown in ambient or elevated CO2, in 
olfactometer or binary choice oviposition assays. However, 
whether the detection of HIPVs by natural enemies was 
altered, it was not investigated. This suggests an avenue of 
further research, especially as HIPVs can result in attrac-
tive responses for both anthocorids (Drukker et al. 2000; 
Scutareanu et al. 1997) and lacewing larvae (Valle et al. 
2023). Climate change may also impact insect pheromonal 
communication; temperature has been shown to increase 
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volatility and diffusion rates of semiochemicals, impacting 
transmission rate (Boullis et al., 2016). The pear psyllid 
pheromone is a long chain cuticular hydrocarbon (13-Me 
C27) with a low volatility, so the pheromone is likely to 
act at close range or is contact based (Civolani et al. 2023). 
Therefore, the impact on transmission rate may be less 
important, although further research on the relationship 
between 13-Me C27 and temperature is required.

Acoustic signals used for mate location and courtship can 
be temperature dependent (Larson et al. 2019; Yang et al. 
2021; Jocson et al. 2023). Different components of acous-
tic signals can be thermally sensitive, including the pulse 
frequency, duration and interval between pulses (Larson 
et al. 2019; Walker & Cade 2003). An experiment by Joc-
son et al., (2023) demonstrated that song frequency of male 
pear psylla was temperature dependent, displaying a positive 
linear relationship with temperature (ranging from 180 to 
1900 Hz). However, no significant relationship was found 
between pulse interval, pulse length and number of pulses 
and temperature. Whether higher frequency calls were more 
attractive to female psyllids, it was not assessed, making it 
unclear if temperature is likely to disrupt mating. On the 
other hand, rainfall is more pronounced in its disruption of 
acoustic communication, generating high-frequency vibra-
tions of 3–4 kHz, acting as environmental noise for Hom-
optera (Tishechkin 2013). Psyllids usually cease to produce 

signals entirely in the presence of wind and rainfall to reduce 
energy consumption, in the generation of disrupted signals 
(Liao et al. 2022; Tishechkin 2013). Thus, alongside its abil-
ity to remove VOCs, increased rainfall can be disruptive to 
insect mating.

Future outlooks

Pear psylla (Cacopsylla pyri) are a still a key pest of UK 
pear orchards, causing damage especially through the pro-
duction of honeydew by nymphs, resulting in the growth 
of black sooty mould on shoots, foliage and fruit (Civolani 
et al. 2023). With the diminishing number of approved pesti-
cides to control C. pyri and the resistance to previously used 
agrochemicals (Civolani et al. 2023), it is clear that biora-
tional compounds, biological control and cultural control 
methods are being adopted by the UK pear growers, focus-
ing on both top-down and bottom-up control. With applica-
tion of the particle film kaolin and release of the biocontrol 
agent A. nemoralis, in several surveyed orchards (Table 1). 
It should be noted that multiple pesticides commonly used 
in pear psyllid management have been withdrawn over the 
past seven years (Hertfordshire 2023; HSE 2023), with a 
the withdrawal of a fourth compound (indoxacarb) cur-
rently planned for 2024. This review recommends applying a 

Fig. 4   Signals and cues used within tri-trophic interactions between 
pears, pests and natural enemies, and the weather variables with the 
potential to alter or disrupt them. Cues and signals are used in a range 
of ways: HIPVs (herbivore-induced plant volatiles) can be used by 
plants to recruit predators and parasitoids and signal to conspecifics 

to upregulate genes for plant defence. However, plant VOCs (vola-
tile organic compounds) can be eavesdropped upon by pests to detect 
hosts. Pheromones, acoustic and visual signals can be used to attract 
mates and detect conspecifics for insects. These signals can also be 
eavesdropped upon by natural enemies to locate prey
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whole ecosystem approach to pear psyllid management that 
utilises regular pest monitoring, uses cultural and biological 
control methods and biorational compounds as alternatives 
to chemical sprays when possible and considers application 
timing depending on weather variables and phenological 
events.

The enhancement of natural enemies should be further 
encouraged by growers; A. nemoralis is a well-known natu-
ral enemy of C. pyri, currently mass released as a biocontrol 
agent in pear orchards (Sigsgaard et al. 2006a); however, 
other methods are recommended to enhance wild natural 
enemies populations (Shaw et al. 2021), rather than rely-
ing solely on mass released biocontrol. Refugia are key to 
cultural control methods within pear orchards to increase 
natural enemy populations within the tree canopy (Solomon 
et al. 1999). This includes artificial refuges such as corru-
gated cardboard in a bottle (Hansen et al. 2005; Solomon 
et al. 1999) or wooden Wignests loaded with food attractant 
(Russel-IPM 2023; Shaw et al. 2021) and natural refugia 
like native hedgerows (Nagy et al. 2008; Scutareanu et al. 
1999), nettles (Shaw et al. 2021), cover crops (Horton et al. 
2009) and wildflower strips or margins (Balzan et al. 2014; 
Mateos-Fierro et al. 2021). Furthermore, with the predicted 
surge in extreme weather events (MetOffice 2019), shelter 
for natural enemies may become increasingly important.

Exploration of rearing of other natural enemies aside 
from A. nemoralis is recommended; although A. nemoralis 
is likely to be an effective predator under predicted UK tem-
peratures (Reeves et al. 2023), studies indicate that diverse 
predator assemblages can be more effective at controlling 
pest populations (Tylianakis & Romo 2010), providing that 
there is niche separation. Earwigs have a lower dispersal dis-
tance, so need to be released at multiple points in an orchard 
(Moerkens et al. 2010); however, they have good potential as 
biocontrol agents (Booth et al. 1992); thus, rearing and mass 
release within pear orchards should be further explored, 
alongside factors that influence their abundance within and 
between orchards. Trechnites insidiosus is a parasitoid wasp 
of interest, specific to pear psylla, with the ability to oviposit 
in all five nymphal instars (with a preference for third and 
fourth instars) (Le Goff et al. 2021; Tougeron et al. 2021). 
Tougeron et al (2021) proposed the release of T. insidio-
sus alongside other psyllid bicontrol agents during spring, 
although emphasises the need for further research into mass 
rearing to make the strategy cost-effective. However, there 
is a lack knowledge on the UK T. insidiosus populations, 
highlighting the need for parasitoid monitoring in the UK 
orchards.

The use of a combination of methods as an alternative 
to chemical insecticides is recommended to suppress pear 
psylla below economic thresholds (Shaw et al. 2021). Thus, 
the use and further development of biorational compounds 
and cultural control methods are advocated alongside 

biological control. In addition to kaolin, there are several 
methods currently absent from surveyed orchards that have 
potential for psyllid control. Firstly, oils can be an effec-
tive oviposition deterrent and repellent for C. pyri adults 
during the pre-bloom stage (Civolani 2012; Emami 2023; 
Erler 2004a, b). Effective oils include mineral (Civolani 
2000), cotton seed, fish-liver, neem ( Erler 2004a, b) and 
peppermint oil (Li & Tian 2020), although some oils con-
tain allergens making them unsuitable for the UK approval. 
Reflective plastic mulch is effective in psyllid population 
suppression (Nottingham & Beers 2020; Nottingham et al. 
2022), reflecting solar light into the tree canopy (Shimoda 
& Honda 2013), promoting adult flight behaviour (Notting-
ham & Beers 2020) and damaging psylla eggs and nymphs 
(Beard 1972). However, there are concerns that elevated UV 
could impact natural enemies (Nottingham & Beers 2020), 
highlighting a need for further field trials. Plant defences 
elicitors are a potential approach to bottom-up control via 
activating plant defence pathways (Orpet et al. 2021; Saour 
et al. 2010; Civolani et al. 2022); however, studies have 
found variable pear psyllid suppression using PDEs (Cooper 
& Horton 2017; Orpet et al. 2021; Civolani et al. 2022), 
suggesting that PDEs should be used alongside other control 
methods. Finally, the discovery of a sex pheromone, pro-
duced by C. pyri females, is promising (Ganassi et al. 2018); 
this could be valuable as a pheromone lure for monitoring, 
trapping or mating disruption (Guédot et al. 2009). Acoustic 
signals also share this potential (Jocson 2023; Jocson et al. 
2023); however, further field trials are required to evaluate 
their proficiency in mating disruption.

Climate change is likely to alter multiple processes 
within this agroecosystem; pear flowering phenology has 
advanced significantly over the past 60 years in the UK with 
respect to rising air temperature (Reeves et al. 2022), whilst 
insect pests and their natural enemies are poikilothermic 
(Régnière & Powell 2013; Wojda 2017); thus, develop-
ment rate (Rebaudo & Rabhi 2018), voltinism (Karuppaiah 
& Sujayanad 2012), functional response (Englund et al. 
2011; Hassanzadeh-Avval et al. 2019), mortality, oviposi-
tion (Culos & Tyson 2014) and even call frequency (Jocson 
2023) can be temperature dependent. Furthermore, climatic 
warming can lead to spatial shifts in prey density (Schmitz & 
Barton 2014); predators can also shift their position within 
the plant canopy under higher temperatures, potentially 
resulting niche overlap, IGP and interference competition 
with other predator species (Barton & Schmitz 2009). A 
large proportion climate change-related studies focus solely 
on temperature, rather than other abiotic factors (Barton & 
Schmitz 2009; Clusella-Trullas et al. 2011; Kollberg et al. 
2015). However, other abiotic factors such as precipitation, 
humidity, CO2 levels (Montoya & Raffaelli 2010), ozone, 
nutrient availability (Agathokleous et al. 2020; Yuan et al. 
2009) and frost days (Sunley et al. 2006) should also be 
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considered, as they can significantly impact trophic interac-
tions and ecosystem services, with the potential to interact 
additively, synergistically or antagonistically.

Phenological mismatches are a particular concern for 
agroecosystems, as not all species respond equally to climate 
change (Damien & Tougeron 2019; Renner & Zohner 2018). 
Although phenological models have been created for pear 
psylla and natural enemies, they are often look at the organ-
ism in isolation rather than its interaction with other trophic 
levels (Moerkens et al. 2011; Schaub et al. 2005). These 
interactions could be particularly important, for example 
how pear budburst corresponds with pear psyllid oviposition 
or how anthocorid migration into pear orchards depends on 
psyllid population density, making it imperative to consider 
primary producers, pests and natural enemies when creat-
ing phenological models, as the shifting of one level could 
create mismatches for others. An App to record phenologi-
cal monitoring data for multiple trophic levels (pear tree, 
pear psylla and natural enemies) would be beneficial for UK 
pear growers, allowing the input of data and guidance of 
when to apply certain control methods based on phenologi-
cal stage and pest abundance. It would also provide data for 
researchers, allowing them to link key phenological events to 
weather variables and help model pear psyllid populations, 
for a year-on-year basis and under future climate scenarios.

Conclusion

This review proposes a whole ecosystem-based approach 
for pear psyllid management; that considers cultural, bio-
logical and chemical control methods, application timing, 
habitat management and abiotic processes that may disrupt 
pest management. There are a diverse range of methods 
currently used to control pear psylla. However, with the 
reduction in insecticides approved for the UK use and the 
potential disruption to trophic interactions as a result of 
climate change, the timing of these control methods may 
need to shift or alternative methods may need to be applied. 
Climate change has the potential to alter both bottom-up 
and top-down processes within ecosystems. Abiotic fac-
tors such as temperature, humidity, rainfall, drought, light 
intensity, ozone and CO2 could impact bottom-up control 
by affecting nutrient uptake, availability and plant defence, 
as well as top-down control impacting predator activity, 
IGP, interference competition and functional responses. 
Changes in phenology, feeding, oviposition and activity are 
all important factors that must be monitored in respect to 
climate change to inform effective and timely interventions. 
For monitoring tri-trophic interactions, signalling responses 
should be considered, including VOCs and pheromones for 
chemical signalling, tactile signals herbivores use for ovi-
position, acoustic and visual signals used to attract mates 

and gustatory cues to differentiate between hosts and non-
hosts. The need for phenological data in monitoring trophic 
interactions is vital, few growers and agronomists regularly 
monitor their orchards and record this information. These 
data could be used to help make decisions on spray timing or 
natural enemy release, as well as inform phenological mod-
els that predict pest populations and natural enemy emer-
gence based on weather variables. Thus, an easily accessible 
App and collective database is recommended for the UK pest 
monitoring and control in pear orchards.
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