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Abstract
Due to climate change, outbreaks of insect-vectored plant viruses have become increasingly unpredictable. In-depth insights 
into region-level spatio-temporal dynamics of insect vector migration can be used to forecast plant virus outbreaks in agri-
cultural landscapes; yet, it is often poorly understood. To explore this, we examined the incidence of beet curly top virus 
(BCTV) in 2,196 tomato fields from 2013 to 2022. In America, the beet leafhopper (Circulifer tenellus) is the exclusive 
vector of BCTV. We examined factors associated with BCTV incidence and spring migration of the beet leafhopper from 
non-agricultural overwintering areas. We conducted an experimental study to demonstrate beet leafhopper dispersal in 
response to greenness of plants, and spring migration time was estimated using a model based on vegetation greenness. We 
found a negative correlation between vegetation greenness and spring migration probability from the overwintering areas. 
Furthermore, BCTV incidence was significantly associated with spring migration time rather than environmental condi-
tions per se. Specifically, severe BCTV outbreaks in California in 2013 and 2021 were accurately predicted by the model 
based on early beet leafhopper spring migration. Our results provide experimental and field-based support that early spring 
migration of the insect vector is the primary factor contributing to BCTV outbreaks. Additionally, the predictive model for 
spring migration time was implemented into a web-based mapping system, serving as a decision support tool for manage-
ment purposes. This article describes an experimental and analytical framework of considerable relevance to region-wide 
forecasting and modeling of insect-vectored diseases of concern to crops, livestock, and humans.
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Introduction

Outbreak patterns of crop diseases and pests are becoming 
increasingly unpredictable in both space and time due to 
global environmental changes (e.g., climate change, biodi-
versity loss, and urbanization) (Knops et al. 1999; Johnson 

et al. 2010; Roossinck and García-Arenal 2015; Harvey et al. 
2020). Effective spatio-temporal forecasting of outbreaks 
and epidemiology of crop diseases and pests is needed to 
meet the demand of 60% increase in food production to feed 
10 billion people by 2050 (Fedoroff 2015; Ristaino et al. 
2021). Globally, crop diseases and pests cause significant 
yield losses in major food crops, including: wheat (21.5%), 
rice (30.0%), maize (22.5%), potato (17.2%), and soybean 
(21.4%) (Savary et  al. 2019). Plant-pathogenic viruses 
account for about 50% of plant disease epidemics world-
wide (Anderson et al. 2004; Jones and Naidu 2019). Most 
plant-pathogenic viruses are dependent on insect vectors for 
their ability to infect crops (Whitfield et al. 2015), and man-
agement of diseases caused by insect-transmitted viruses 
focuses primarily on management of the insect vectors (Per-
ring et al. 1999).

Predictive modeling approaches have been widely used 
to assess risks of plant-pathogenic viruses and to develop 
effective management strategies (Jones et al. 2010; Juroszek 
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and von Tiedemann 2015). Spatio-temporal modeling of the 
epidemiology of plant-pathogenic virus outbreaks is typi-
cally driven by ambient temperatures, as these are assumed 
to drive insect vector population dynamics and their dis-
persal propensity (Canto et al. 2009; Zeilinger et al. 2017; 
Donnelly and Gilligan 2022; Vasquez et al. 2022). However, 
prediction of transmission time of plant-pathogenic virus 
by insect vectors is crucial for optimizing the timing of 
pest management interventions. Furthermore, understand-
ing insect vector migration may provide valuable insight 
into dynamics of spatio-temporal patterns as insect vectors 
migrate over long distances and between agricultural and 
non-agricultural landscapes (Jeger et al. 2018).

Here, we describe a study of beet leafhopper, Circulifer 
tenellus (Baker) (Hemiptera: Cicadellidae), the only known 
vector of beet curly top virus (BCTV) (Geminiviridae) in the 
New World (Stahl and Carsner 1923). BCTV is an economi-
cally important plant-pathogenic virus in the western US 
infecting several crops, including tomato, Solanum lycoper-
sicum L. (Solanaceae), sugar beet, Beta vulgaris L. (Ama-
ranthaceae), pepper, Capsium annum L. (Solanaceae), com-
mon bean, Phaselous vulgaris L. (Fabaceae), and potato, S. 
tuberosum L. (Solanaceae) (Bennett 1971). In 2013 in the 
San Joaquin Valley of California, a BCTV outbreak caused 
~ $100 million loss in tomato production (Chen and Gil-
bertson 2016). Another major BCTV outbreak occurred in 
the Sacramento Valley in 2021 (Figure S1). In California, 
overwintering viruliferous (carrying BCTV) beet leafhop-
pers migrate from coastal mountain ranges (referred to here 
as “coastal foothills”), to crop fields in the spring (Lawson 
et al. 1951; Douglass and Cook 1954). Spring migrations of 
beet leafhoppers have been hypothesized as being elicited 
by host plant senescence in coastal foothills (Lawson et al. 
1951; Cook 1967), but this hypothesis has never been tested 
experimentally. We describe the first model-based forecast-
ing of beet leafhopper spring migrations from coastal foot-
hills into crop fields in the Sacramento and the San Joaquin 
Valleys (Figure S2). The over-arching hypothesis is that 
onset of spring migration by beet leafhoppers from coastal 
foothills is triggered by a combination of low greenness of 
natural vegetation (loss of food source) and ambient tem-
peratures above a specific threshold. To address this hypoth-
esis, individual plants from two species [sugar beet and red-
stem filaree, Erodium cicutarium (L.) L’Hér. (Geraniaceae)] 
were experimentally infested with beet leafhoppers. The 
relationship between plant greenness and beet leafhopper 
flight propensity was determined experimentally to evalu-
ate the greenness index as a potential predictor for spring 
migration. Temporal dynamics of spring migration of beet 
leafhoppers were monitored at three field sites during two 
seasons. Ambient temperatures and vegetation greenness 
(derived from freely available satellite imagery) were used 
as explanatory variables of spring migration timing. The 

spring migration model was implemented into a web-based 
mapping system at landscape scale as a forecasting tool of 
spatio-temporal dynamics of beet leafhopper migration. We 
investigated potential causative trends in spring migration 
timing and other environmental conditions for incidence of 
BCTV symptoms in tomato fields for the past 22 years. The 
model accurately predicted major BCTV outbreaks in 2013 
and 2021 as years with unusually early spring migration tim-
ing from coastal foothills.

Materials and methods

Plant greenness effects on flight propensity of beet 
leafhoppers

We measured departure rates from each host as an indicator 
of flight propensity of beet leafhoppers. Two host plants were 
selected: redstem filaree and sugar beet as an inferior and 
superior host plant, respectively. Redstem filaree seeds were 
collected from plants growing in coastal foothills in Kings 
County, California (36.038°N, – 120.115°W), and sugar 
beet seeds were obtained from commercial seed suppliers. 
Plants were watered daily and fertilized with 0.5% soluble 
N-P-K fertilizer (6:1:4) in 200 ml of water in a greenhouse 
(25 ± 5 °C and 80 ± 10% RH). Four weeks after emergence, 
we generated variations in plant greenness of redstem filaree 
(n = 60) and sugar beet (n = 59) by not watering the plants 
for various durations (0, 3, 6, and 9 days) at 35 °C and 50% 
RH in a Conviron E7 growth chamber (Conviron, Winnipeg, 
Canada). Inside a mesh dorm cage (61 × 61 × 61 cm, Meg-
aview Science, Taichung, Taiwan), four yellow sticky cards 
(15.2 × 20.3 cm) were placed around a plant and then ten 
adult beet leafhoppers were released. After 24 h, we counted 
beet leafhoppers on yellow sticky cards as an estimate of 
flight propensity. Subsequently, plant greenness was meas-
ured using a hyperspectral camera (PIKA L; www.​reson​on.​
com) as described in Nguyen and Nansen (2020) (Fig. 1a). 
Enhanced vegetation index (EVI) was calculated for aerial 
parts of the plant using the bands positioned at 850–880 nm 
(near-infrared), 640–670 nm (red), and 450–510 nm (blue). 
The equation and parameters for EVI calculation were the 
same as the moderate resolution imaging spectroradiometer 
(MODIS) EVI algorithm (Didan et al. 2015). We performed 
regression analysis to examine relationships between plant 
greenness and flight propensity for each plant species using 
a generalized linear model (GLM). Analysis of covariance 
(ANCOVA) was used to determine host plant species-spe-
cific effects on the relationship between EVI decrease and 
flight propensity. All statistical analyses were performed in 
R version 4.1.2 (R Core Team 2021) with α = 0.05.

http://www.resonon.com
http://www.resonon.com
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Beet leafhopper spring migration modeling

Seasonal dynamics of beet leafhopper flights, and tim-
ing of spring migration in particular, was monitored from 
January 2019 to June 2020 at the base of coastal foothills 
in Fresno (36.629°N, – 120.641°W), Kings (36.038°N, 
– 120.115°W), and Kern (35.124°N, – 119.509°W) coun-
ties in California. At each site, ten yellow sticky cards 
(15.2 × 20.3 cm) were deployed 1 m above the ground. 
Yellow sticky cards were replaced biweekly (every two 
weeks), and beet leafhoppers on the cards were counted 
using a binocular stereomicroscope (Olympus SZ51; 
Olympus, Tokyo, Japan). To compare spring migration 
timing among study sites and years, numbers of migrating 
beet leafhoppers were transformed into cumulative propor-
tions. EVI values of the study sites were extracted from 
16-day composites MODIS EVI (MOD13Q1 from Terra) 
at a spatial resolution of 250 m (Didan 2015). The rela-
tionship between cumulative proportion of migrating beet 
leafhoppers and EVI value was modeled using a Weibull 
function:

where f(t) and EVIt are the cumulative proportion of migrat-
ing beet leafhoppers and the EVI values at Julian day t, 
respectively. The parameters, a and b, determine the scale 
and shape of the Weibull function, respectively. All param-
eters were estimated with a least-squares method and itera-
tive process of Gauss–Newton using R version 4.1.2 (R Core 
Team 2021).

f (t) = 1 − exp

[

−

(

EVIt

a

)b
]

Surveys for BCTV symptoms in tomato fields

The incidence of BCTV symptoms was surveyed 2,196 
commercial tomato fields in California from 2013 to 2022 
(Table S1). In some years and regions, surveys were not 
carried out due to the COVID-19 pandemic or low levels 
of threat. The surveys were conducted each year from April 
to October, with staggered planting schedules establishing 
the timeline. An entire tomato field was broken down into 
blocks, and a survey was conducted in randomly selected 
6–8 blocks per field. A large portion of a block was walked 
in a zig-zag pattern, inspecting 100 plants at random during 
each walk-through. Plants were examined for BCTV symp-
toms such as leaf curling, stunted growth, early fruit onset, 
purple leaves and veins, and yellow or light green discol-
oration. The incidence of BCTV symptoms was assigned 
to each block of the field based on the number of damaged 
plants out of the inspected plants. The overall incidence for 
the field was calculated as the average of logit transformed 
incidences across the inspected blocks. For each region, a 
one-way ANOVA and pairwise comparisons (Tukey’s HSD 
test) were conducted to test whether the incidence of BCTV 
symptoms differed significantly by year.

Annual trends in winter environmental conditions 
and spring migration timing

We evaluated mean winter environmental conditions over 
the areas in coastal foothills categorized as shrubland, grass/
pasture, and fallow/idle lands by the National Agricultural 
Statistics Service (NASS) (Boryan et al. 2011). The level 
III ecoregion classification from the US Environmental 

Fig. 1   Plant greenness depend-
ent beet leafhopper flight pro-
pensity. a Hyperspectral imag-
ing system for measuring plant 
greenness. b Enhanced vegeta-
tion index (EVI) (mean ± SEM) 
changes in redstem filaree 
(gray dots) (n = 60) and sugar 
beet (open dots) (n = 59) plants 
according to drying period. 
c Relationships between EVI 
value and flight propensity of 
beet leafhoppers on redstem 
filaree and sugar beet. Linear 
regressions for redstem filaree 
(gray dashed line) and sugar 
beet (black dashed line)
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Protection Agency (USEPA) was used to geographically 
select coastal foothills in California (https://​www.​epa.​
gov/​eco-​resea​rch/​level-​iii-​and-​iv-​ecore​gions-​conti​nental-​
united-​states). Mean winter environmental conditions were 
calculated from January to March between 2001 and 2022. 
Over the selected regions, mean values of daily temperature, 
monthly total precipitation, and 16-day EVI were obtained 
from MODIS product MOD11A1 (Terra daily 1 km) (Wan 
et al. 2021), (Daly et al. 2008) and MOD13Q1 (Terra 16-day 
250  m) (Didan 2015), respectively. In addition, spring 
migration probability over coastal foothills was calculated 
using the spring migration model based on the EVI value of 
each pixel with 15.56 °C as the minimum threshold tempera-
ture for flight activity (Lawson et al. 1951). At each pixel, 
we considered spring migration to occur when the migration 
probability reached 0.5. The annual trends in spring migra-
tion timing for the Sacramento Valley and the San Joaquin 
Valley were described using a logistic function:

where f(x) is the proportion of spring migration-occurred 
area at x Julian day, and k and x0 are estimated parameters 
representing the steepness and the midpoint of the curve, 
respectively. The midpoints of individual logistic curves 
(x0) were considered median spring migration times and 
compared to estimate variations in annual spring migration 
timing. We performed regression analysis to examine the 
relationship between the winter environmental conditions 
(i.e., temperature, precipitation, and EVI) and the median 
spring migration times (i.e., x0) with surveyed incidence of 
BCTV symptoms in tomato fields using a GLM.

Results

Flight propensity of beet leafhopper

For this highly controlled experiment (controlled drought 
regimes, experimental infestations of individual plants with 
beet leafhoppers, and optical sensing under controlled/arti-
ficial lighting) to be relevant to the study hypothesis, hyper-
spectral optical sensing data needed to be converted into a 
measurement of vegetation greenness that would be avail-
able via satellite imagery. There is ample evidence support-
ing the notion that leaf reflectance features can be used to 
detect plant responses to biotic and abiotic stressors (Jackson 
1986; Nansen and Elliott 2016). From preliminary assess-
ments of normalized difference vegetation index (NDVI) and 
EVI, the latter index was found to provide the most consist-
ent response to imposed drought regimes and was therefore 
selected. Both redstem filaree (inferior host) and sugar beet 

f (x) =
1

1 + e−k(x−x0)

(superior host) plants showed decreased EVI values as a 
function of experimentally simulated drought (Fig. 1b) (all 
P values < 0.001). Flight propensity of beet leafhoppers 
on each plant species was negatively correlated with EVI 
values (all P values < 0.001) (Fig. 1c). Negative slopes of 
linear regressions of plant greenness as a predictor of beet 
leafhopper flight propensity were not significantly different 
between the two plant species (P = 0.105), suggesting that 
decreasing plant greenness of host plants, regardless of host 
plant species, may be considered a reliable indicator of flight 
initiation and possibly flight propensity more generally by 
beet leafhoppers.

Model for estimating spring migration probability

Time series of beet leafhopper trap counts were acquired at 
three study sites (Fresno, Kern, and Kings counties) from 
2019 to 2020. Fluctuations in these time series were used 
to detect what was considered spring migration peaks. In 
2019, one simultaneous peak of migration was observed at 
all study sites, but in 2020, broad and indistinct peaks were 
observed (Fig. 2a and b). In 2019, EVI values of natural 
vegetation in coastal foothills derived from satellite imagery 
showed similar temporal trends among the three study sites 
(Fig. 2c). In 2020, temporal series of EVI values at the Kern 
site were comparatively lower during winter and spring com-
pared to the other sites (Fig. 2d). In 2019 and 2020 and 
at all three study sites, spring migrations of beet leafhop-
pers initiated when EVI values declined to 0.2–0.3. Cumu-
lative proportion of migrating beet leafhoppers increased 
with decreasing EVI values (Fig. 2e). The relationship 
between EVI values and cumulative proportion of migrat-
ing beet leafhoppers was modeled using a Weibull func-
tion. Estimated Weibull parameters for a and b were 0.1667 
(SE = 0.0035) and – 5.5953 (SE = 0.8926), respectively 
(F[46,1] = 234.1, P < 0.001). Finally, the spring migration 
model was implemented into a web-based mapping system 
(https://​hyslee.​users.​earth​engine.​app/​view/​beet-​leafh​opper-​
migra​tion-​in-​ca) as a decision support tool for BCTV man-
agement (Figure S3).

BCTV symptoms field survey

BCTV incidence in tomato fields in California was sur-
veyed from 2013 to 2022 (Fig. 3 and Table S1). In the Sac-
ramento Valley, highest incidence was observed in 2021 
(F4,570 = 25.5, P < 0.001), with a few outbreaks observed 
in both 2016 and 2022. In the San Joaquin Valley, the 
most severe BCTV outbreak was in 2013 (F7,1613 = 121.7, 
P < 0.001), and localized outbreaks were observed during 
most of the years examined in this study. BCTV is consid-
ered an important plant-pathogenic virus predominantly 

https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://hyslee.users.earthengine.app/view/beet-leafhopper-migration-in-ca
https://hyslee.users.earthengine.app/view/beet-leafhopper-migration-in-ca
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affecting tomatoes in the San Joaquin Valley, and average 
incidence was higher there than in the Sacramento Valley.

Winter environmental conditions

Annual trends in winter environmental conditions (i.e., 
temperature, precipitation, and EVI) in coastal foothills 
in both the Sacramento Valley and the San Joaquin Val-
ley were examined from 2001 to 2022. Although mean 
winter temperatures in BCTV outbreak years (2021 for 

the Sacramento Valley and 2013 for the San Joaquin 
Valley) were higher than the 22-year average, they were 
not the warmest years recorded in either the Sacramento 
Valley or the San Joaquin Valley (Fig. 4a, b). Similarly, 
mean winter precipitation and EVI values were lower than 
the 22-year average, but were not the lowest recorded in 
either the Sacramento Valley or the San Joaquin Valley 
(Fig. 4c–f). Mean values of winter environmental condi-
tions in BCTV outbreak years were within ± 2 SD of the 
22-year averages.

Fig. 2   Field monitoring of beet 
leafhopper migration. Field 
observation (mean ± SD) of 
migrating beet leafhoppers in 
coastal foothills in Califor-
nia in 2019 (a) and 2020 (b). 
Remotely sensed enhanced 
vegetation index (EVI) at the 
study sites in 2019 (c) and 2020 
(d). e The relationship between 
EVI values and cumulative 
proportion of migrating beet 
leafhoppers. The observation 
data were fitted to a Weibull 
function (adjusted R2 = 0.76) 
(dashed line)
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Trends in spring migration

Temporal trends in spring migration timing were exam-
ined regionally by estimating increases in coastal foothill 
areas where migration occurred and median times at which 
spring migration occurred in 50% of coastal foothills in the 

Sacramento Valley and the San Joaquin Valley from 2001 
to 2022. Temporal trends were well described by a logistic 
function (Figure S4 and Table S2 for the Sacramento Valley 
and Figure S5 and Table S3 for the San Joaquin Valley). 
Spring migration started earlier in the San Joaquin Val-
ley than in the Sacramento Valley in most years (Fig. 5a, 
b). In particular, spring migration began earlier in years in 
which BCTV outbreaks developed in both the Sacramento 
Valley and the San Joaquin Valley. In the Sacramento Val-
ley, onset of spring migration was in May, but in 2021, a 
year with major BCTV outbreak, spring migration started 
in April (Figure S6). In addition, spring migration started 
in March in 2013 about a month earlier than most other 
years (Figure S7). This was also evident in the median spring 
migration time, which occurred more than 25 days earlier in 
2013 than the 22-year average in the BCTV outbreak years 
(Fig. 5c).

Vector migration timing associated with incidence 
of BCTV symptoms

Regional median times of spring migration and winter 
environmental conditions were correlated with incidence 
of BCTV symptoms surveyed in tomato fields in the Cen-
tral Valley. Incidence of BCTV symptoms was negatively 
correlated with the regional median spring migration times 
for the Sacramento Valley and the San Joaquin Valley 
(slope: – 0.013 for the Sacramento Valley, – 0.037 for the 
San Joaquin valley; both P values < 0.01) (Fig. 6), but most 
winter environmental conditions were not directly correlated 
with BCTV incidence (Figures S8 and S9). Therefore, we 
conclude that timing of spring migration is more critical 
than high beet leafhopper population density in coastal foot-
hills as a predictor of BCTV outbreak risk.

Fig. 3   Incidence of beet curly 
top virus symptoms in tomato 
fields. Surveyed incidence of 
beet curly top virus symptoms 
(i.e., leaf curling, stunted 
growth, early fruit onset, purple 
leaves, and veins, and yellow 
or light green discoloration) 
(mean ± SEM) in tomato fields 
in the Sacramento Valley (a) 
and the San Joaquin Valley 
(b). In total, 2,196 tomato 
fields were surveyed in 2013, 
2016–2022. Different letters 
represent significant differences 
at P < 0.05 (one-way ANOVA 
with Tukey’s post hoc test)
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Fig. 4   Winter environmental conditions from 2001 to 2022. Trends 
in mean winter temperature (a, b), precipitation (c, d), and enhanced 
vegetation index (EVI) (e, f) in coastal foothills in the Sacramento 
Valley (yellow lines) and the San Joaquin Valley (gray lines). Broken 
lines are the average values over the entire period. Red dots are the 
data points for the beet curly top virus outbreak years (i.e., 2021 for 
the Sacramento Valley and 2013 for the San Joaquin Valley)
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Discussion

In this study, we experimentally manipulated drought 
regimes of individual plants and acquired optical sens-
ing data to directly associate drought stress with plant leaf 
reflectance features. Plant reflectance profiles were used to 
generate standardized indices of greenness (i.e., EVI), so 
that individual plant data could be extrapolated and used to 
develop a region-wide GIS model based on satellite imagery. 
Plants were placed inside cages and experimentally infested 
with beet leafhoppers. Yellow sticky cards inside cages were 
used to trap dispersing beet leafhoppers, and we found a 
significantly negative correlation between EVI and flight 
propensity in two plant species. Furthermore, regression 
slopes for two different plants were not significantly differ-
ent. Using freely available satellite imagery from two tomato 
growing seasons, spring migration timing was closely linked 
with a decrease in EVI-based greenness of natural vegetation 
in coastal foothills. Based on spring migration model predic-
tions, we found a significant negative correlation between 
timing of spring migration and regional incidence of BCTV 
symptoms in the Central Valley of California. Examining 
temporal trends in spring migrations across ten growing sea-
sons, major BCTV outbreaks were observed in years with 
early beet leafhopper spring migration.

The spring migration timing of beet leafhoppers varies 
annually and has become increasingly unpredictable due to 
climate change. However, predicting this timing is essential 
due to its significant impact on BCTV outbreaks. Migrat-
ing insects are either obligatory migrants (i.e., occurring 

Fig. 5   Beet leafhopper spring 
migration time. Annual trends 
in beet leafhopper migration 
time in the Sacramento Valley 
(a) and the San Joaquin Valley 
(b). Red lines represent logistic 
regression lines of the outbreak 
years (i.e., 2021 for the Sacra-
mento Valley and 2013 for the 
San Joaquin Valley). c Annual 
median migration times in both 
the regions from 2001 to 2022. 
Each point represents each 
year, jittered for visibility. Red 
dots are the median migration 
time for the beet curly top virus 
outbreak years
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Fig. 6   Association of migration timing and incidence of beet curly 
top virus (BCTV) symptoms. The relationship between the median 
spring migration time of beet leafhoppers and mean incidence of 
BCTV symptoms each year in the Sacramento Valley (yellow dots) 
and the San Joaquin Valley (gray dots). The Sacramento Valley data 
are from 2016 to 2022, excluding 2019 and 2020. The San Joaquin 
Valley data are from 2013 to 2022, excluding 2014 and 2015. The 
broken lines denote the linear regression lines determined by the 
least-squares method (P < 0.01 for both)
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independently of habitat or environmental factors) or fac-
ultative migrants (i.e., migration determined by habitat or 
environmental conditions) (Jyothi et al. 2021). Accordingly, 
experimental and in-depth analyses of environmental trig-
gers of migration are essential. Historical data on various 
abiotic factors and vegetation conditions (e.g., greenness 
and plant phenology) at habitats can be estimated through 
long-term accumulated satellite data (Zeng et al. 2020). 
Therefore, by utilizing environmental conditions estimated 
through remote sensing data, we can enhance our ability to 
predict the migration of various insect vectors with faculta-
tive migration and develop more sustainable and effective 
management strategies.

Abiotic conditions (i.e., temperature, precipitation) 
have been described as important factors influencing beet 
leafhopper population dynamics (Lehnhoff and Creamer 
2020). Notably, beet leafhoppers in California overwinter 
in unmanaged coastal foothills, where winter environmental 
factors play a crucial role in their population growth (Lee 
et al. 2022b). While it has been suspected that high den-
sity of insect vectors leads to plant-pathogenic virus out-
breaks (Zeilinger et al. 2017; Lehnhoff and Creamer 2020; 
Gilbertson et al. 2021), we did not observe any significant 
correlation between incidence of BCTV symptoms and 
environmental conditions during winter months. Thus, we 
hypothesized that individual abiotic factors and associated 
beet leafhopper density did not appear to directly explain the 
risk of BCTV outbreaks.

Younger tomato plants are more susceptible to viral infec-
tions (Duffus and Skoyen 1977), and this phenomenon has 
been described as age-related resistance (Kus et al. 2002; 
Bruns et al. 2022). Early spring migration would expose 
young tomato plants to BCTV infection, resulting in more 
severe BCTV outbreaks (Wang et al. 1999; Wintermantel 
and Kaffka 2006). Additionally, as most tomato plants in 
California are mechanically transplanted (Hartz et al. 2008), 
initial stress on seedlings makes them more vulnerable to 
BCTV infection. Across all seasons examined, onset of 
spring migrations was about one month later in the Sacra-
mento Valley compared to the San Joaquin Valley (Fig. 5). 
Tomato transplanting typically begins in March in the San 
Joaquin Valley and April in the Sacramento Valley, so 
regional synchrony between beet leafhopper spring migra-
tion and transplanting could be critical for BCTV outbreaks 
(see Figures S6 and S7).

Spatio-temporal dynamics of BCTV outbreaks can also 
be influenced by tri-trophic interactions (plant-pathogenic 
virus, insect vector, and host plant). Host preference of beet 
leafhoppers may impact spatial spread of BCTV (Lee et al. 
2022a), especially considering the diverse range of crop 
plants cultivated in the Central Valley. Although tomato 
plants are not preferred host plants by beet leafhoppers 
(Thomas 1977), BCTV has a potential to manipulate the 

relative attractiveness of tomato plants for this insect vec-
tor (Lee et al. 2022a). Furthermore, there are 11 identified 
strains of BCTV (Creamer 2020), and their symptom sever-
ity is specific to both BCTV strain and host plant species 
(Stenger et al. 1990). Future research is needed to investi-
gate the possible influence of other factors contributing to 
the interactions leading to BCTV outbreaks, including the 
prevalence of specific BCTV strains and co-infection with 
multiple strains.

Drought leads to various morphological and physiologi-
cal changes in plants, including plant greenness (Xu et al. 
2011), reduced leaf size (Toscano et al. 2014), decreased 
chlorophyll contents (LI et al. 2006), and increased produc-
tion of secondary metabolites (Fàbregas and Fernie 2019). 
The response to drought stress is also influenced by species-
specific drought tolerance (Engelbrecht and Kursar 2003; 
Matías et al. 2012). However, we found no significant differ-
ence between redstem filaree and sugar beet in stimulating 
flight behavior of beet leafhoppers depending on changes 
in plant greenness although the average greenness differed 
among plant species. As a result, we determined that EVI 
was suitable for measuring relative quality of plants and 
developing a predictive model. EVI is commonly employed 
to mitigate the influence of soil-induced noise and periodi-
cally measured globally by various satellites (e.g., Landsat, 
Sentinel, and PRISMA), allowing us to consistently monitor 
changes over time (Villamuelas et al. 2016). In addition, 
several other vegetation indices (VIs) have been developed 
for diverse purposes, including estimating plant phenology 
(Motohka et al. 2010) and determining the abundance and 
richness of specific insect species (Eklundh et al. 2009; 
Edward D. Deveson 2013; Huang et al. 2021). Moreover, as 
vegetation indices are archived in diverse digital reposito-
ries encompassing multiple temporal and geospatial scales, 
various web implementations leveraging these data are fea-
sible. VIs hold potential for various applications, such as 
predicting regional hotspots of BCTV and beet leafhoppers 
by estimating the density and species composition of plants, 
which directly impact their population growth.

High temperatures and spring drought are significant 
factors that contribute to the early-season vegetation 
depletion in coastal foothills. Predictions indicate that 
global warming and the El Niño/Southern Oscillation 
(ENSO) will likely lead to an increase in the frequency 
of extreme climatic events (Cai et al. 2015). California, in 
particular, has been grappling with a rise in frequency and 
intensity of severe weather events (Williams et al. 2020). 
This, coupled with noticeable temperature increases and 
severe spring drought in recent years, has resulted in ear-
lier spring migration of beet leafhoppers (see Figures S4 
and S5). In addition, California is expected to experience 
increasing ambient temperatures and declining precipi-
tation in autumn (Jones et al. 2022). Following the end 
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of crop growing seasons in the fall, suitable habitats for 
overwintering can be limited and scattered in coastal 
foothills, which influences the density and distribution of 
overwintering leafhopper populations. However, abiotic 
factors have complex interactions with vegetation condi-
tions (Jones et al. 1989). Therefore, directly quantifying 
the vegetation condition through VIs would be essential 
in association with extreme climatic events. Given the 
expected persistence of interannual extreme events, there 
is a considerable need for decision support tools to fore-
cast spatio-temporal risks of outbreaks by major crop dis-
eases (Jeger et al. 2018).

BCTV resistant varieties are not available in tomato. 
Current management strategies for plant-pathogenic 
viruses rely almost exclusively on prophylactic insecti-
cide applications, some cultural practices, and sanitation 
(Gilbertson et al. 2021). The California Department of 
Food and Agriculture (CDFA) operates the Curly Top 
Virus Control Program (CTVCP), which conducts sweep 
net surveys for beet leafhoppers and sprays insecticides 
in coastal foothills when beet leafhopper densities exceed 
certain thresholds. However, BCTV outbreaks have 
occurred in spite of CTVCP efforts in some years, and 
the effectiveness of the program in reducing BCTV inci-
dence remains unclear. This mapping system can serve as 
a decision support tool to optimize existing beet leafhop-
per management strategies and mitigate the incidence of 
BCTV. The integration with the cloud platform allowed 
the output to remain up to date with the latest satellite 
observations. This capability empowers stakeholders to 
assess the probability of beet leafhopper migration in spe-
cific areas of interest. Because remote sensing data can 
cover large geographic areas, this platform has the poten-
tial to be used in developing decision support tools for 
managing other insect pests and diseases in both forest 
and agricultural systems, as well (Calderón et al. 2013; 
Pettorelli et al. 2014; Dash et al. 2017).
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