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Abstract
Viral diseases like yellow fever, dengue, and Zika have an alarming impact on public health. These diseases can be trans-
mitted by Aedes mosquito species, such as Ae. albopictus, which is now found in many countries outside its original range. 
Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of insect-preying nematodes and are known to produce 
an array of natural products with various activities including larvicidal activity. In this study, the effects of natural products 
produced by four Xenorhabdus and one Photorhabdus bacteria on the ovipositional behavior of Ae. albopictus mosquitoes 
were assessed. Utilizing a binary choice assay in insect cages, gravid female mosquitoes were presented with two oviposition 
cups containing water supplemented with varying concentrations of bacterial supernatants (50–1% concentrations) versus 
control medium. After 72 h, the eggs deposited on filter papers were counted. The oviposition attractant index (OAI) feature 
of the bacterial supernatant was evaluated using the number of eggs laid in the cups. Notably, all tested supernatants exhib-
ited concentration-dependent deterrence of oviposition. Xenorhabdus cabanillasii displayed the strongest deterrent effect, 
inhibiting egg-laying at 50–5% concentrations (OAI: − 0.87 to − 0.35), followed by X. nematophila (50–10%, OAI: − 0.82 
to − 0.52). Xenorhabdus szentirmaii, X. doucetiae, and P. kayaii showed significant deterrence at ≥ 20% concentrations. 
Using promoter exchange mutants generated by the easyPACId approach, fabclavine from X. szentirmaii was identified as 
the bioactive compound with evident deterrent effects. Such deterrents targeting egg-laying could be valuable for controlling 
populations by disrupting their breeding in suitable habitats.
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Key message

•	 Nematode-associated bacteria produce natural products 
with various biological activities
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•	 Mosquitoes abstained from laying eggs in containers 
with Xenorhabdus and Photorhabdus metabolites

•	 Fabclavines are peptide–polyketide–polyamines from 
Xenorhabdus sp. with oviposition deterrent effects

•	 Such compounds could be useful in mosquito control 
programs

Introduction

Aedes albopictus (Diptera: Culicidae), distinguished 
by white bands on its legs and body, is a synanthropic 
Aedes species originally endemic to tropical and sub-
tropical regions of South Asia (Schaffner and Mathis 
2014; Laporta et al. 2023). Due to its invasive and highly 
adaptive nature, it is now widely distributed in at least 
30 countries throughout the tropics, subtropics, and tem-
perate regions of the world outside Asia (Benedict et al. 
2007; Fonseca et al. 2013; Touray et al. 2023). This spread 
has been greatly facilitated by rising temperatures due to 
climate change and transport of its immature stages (dia-
pausing eggs and larvae) which are capable of withstand-
ing cold conditions in temperate regions. These stages 
are transported in bamboo plants, used tires, and artificial 
containers during global shipping activities. Drastic devia-
tions in global climate have also made its establishment 
in new habitats easier (Kraemer et al. 2015; Faraji and 
Unlu 2016; Beaty et al. 2016; Messina et al. 2019). Impor-
tantly, Ae. albopictus is a daytime-biting species that can 
take blood meals from a variety of host including humans, 
domestic animals and wildlife and along with Ae. aegypti, 
is a prominent vector of Zika, Chikungunya, dengue, and 
yellow fever—viral diseases whose epidemic potential and 
incidence has increased globally since the 1950s (Godfray 
2013; Messina et al. 2019; Romanello et al. 2021; Bursali 
and Simsek 2023). Foremost among these arthropod infec-
tions, dengue is a predominantly urban disease of tropi-
cal and sub-tropical climates that has an alarming impact 
on public health with more than 3 billion people living 
in endemic areas and around 100 million cases, and at 
least 40.000 deaths occur annually in 195 countries (Zeng 
et al. 2021; Ahebwa et al. 2023). Symptoms include a 
characteristic skin rash, high fever, headache, muscle and 
joint pains. Severe cases may be life-threatening by caus-
ing serious bleeding and even death (Gubler 2002; Vos 
et al. 2015; Zeng et al. 2021). The economic cost related 
to Aedes diseases, particularly dengue, is estimated to at 
least US $87.3 billion between 1975 and 2020 (Roiz et al. 
2023) and funds dedicated to vector control and surveil-
lance programs ranged from $5.62–73.5 million (Thomp-
son et al. 2020).

Aside from yellow fever, these Aedes-transmitted dis-
eases have no vaccine or effective therapeutics (Smith 
et al. 2016; Huang et al. 2023); therefore, mosquito con-
trol professionals around the world monitor Aedes popu-
lations and evaluate novel control strategies to mitigate 
pathogen transmission (Schwab et al. 2018; Caputo and 
Manica 2020). A well-organized monitoring program aims 
to assess the occurrence, dispersal, and abundance of the 
target populations and includes inspections of potential 
breeding sites, employing ovitraps and adult traps, and 
human-landing-collections (Lühken et al. 2023). Control 
strategies include elimination of mosquito breeding sites 
or use of chemical larvicides in these breeding sites or 
insecticides against adult mosquitoes (Beaty et al. 2016; 
Weeratunga et al. 2017). Chemical adulticides (e.g., organ-
ophosphates such as malathion and naled, and pyrethroids 
such as prallethrin, etofenprox, pyrethrins, permethrin, 
resmethrin) are used. They are applied in indoor residual 
spraying, impregnated into bed nets or ultralow-volume 
aerial sprays in open areas using truck-mounted sprayers 
(Ochomo et al. 2024). Use of numerous insecticides is 
banned or restricted in most developed countries in Amer-
ica, Asia and Europe due to health and environmental 
issues, with exceptions granted only under strict conditions 
(Damico 2017). Nevertheless, Ae. albopictus mosquitoes 
are not well-controlled by the above strategies as location 
and complete elimination of breeding sites, especially arti-
ficial containers, in urban and poorly developed areas is 
often a challenging task (Faraji and Unlu 2016). Also, the 
effects of chemical insecticides are short-termed and con-
tinuous use of chemical insecticides has resulted in devel-
opment of resistance to insecticides in many countries and 
most insecticides have damaging impacts on the environ-
ment (Smith et al. 2016). These issues have encouraged the 
use of environmentally friendly biological alternatives like 
the fungus, Metarhizium anisopliae (Aguilar-Durán et al. 
2023; Perumal et al. 2023; Gomes et al. 2023) and the bac-
teria, Bacillus thuringiensis subsp. israelensis (Bti) and 
Lysinibacillus sphaericus as well as insect growth regula-
tors (methoprene, diflubenzuron, pyriproxyfen) in breed-
ing sites inspected for mosquito developing stages (Lacey 
2007; Scholte et al. 2007; Benelli et al. 2016). These bio-
control agents are eco-friendly, prevent water pollution, 
and do not harm humans and other useful organisms in the 
aquatic habitats (Pathak et al. 2022; Barathi et al. 2024). 
They have had successes in implemented countries and 
despite been used extensively for many years, there are no 
or few reports of reports of field resistance (Tetreau et al., 
2013; Ferreira and Silva-Filha 2013). Over the years, much 
effort has been invested in the search for many more.

Xenorhabdus and Photorhabdus (Fam: Morganellaceae) 
are enteric Gram-negative bacterial symbionts of soil-dwell-
ing and insect-preying nematodes in genera Steinernema and 
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Heterorhabditis, respectively (Hazir et al. 2022). These nem-
atode-bacteria complexes have a near-global distribution, 
and as biological control agents are applied to soil to con-
trol pestiferous arthropods that are a menace to agriculture 
and public health (Shapiro-Ilan et al. 2019). Xenorhabdus 
and Photorhabdus bacteria are known to produce a starling 
array of enzymes and natural products (NP) that can sup-
press insect immunity, rapidly kill host, and disintegrate 
tissue, as well as perform defense functions against com-
petitors and natural enemies through the use of polyketide 
synthases (PKSs) or non-ribosomal peptide synthetases 
(NRPS) (Bode 2009; Tobias et al. 2017; Cimen et al. 2022). 
So far, an important body of literature exists detailing the 
antimicrobial activities of these products from these bacteria 
against bacterial (Webster et al. 2002; Furgani et al. 2008), 
fungal (Fang et al. 2014; Shapiro-Ilan et al. 2014; Hazir et al. 
2016; Chacón-Orozco et al. 2020; Cimen et al. 2021; Otoya-
Martinez et al. 2023), and protozoal pathogens (Antonello 
et al. 2018, 2019; Gulsen et al. 2022) as well as insect and 
mite pests (Sergeant et al. 2006; Hinchliffe et al. 2010; 
Incedayi et al. 2021) of medical, veterinary and agricultural 
importance. For instance, several recent works (da Silva JLR 
et al. 2013; Wagutu et al. 2017; da Silva JLR et al. 2017; 
Vitta et al. 2018; Shah et al. 2021) have demonstrated the 
larvicidal efficacy of cell-free bacterial supernatants and/or 
bacterial cell suspensions of Xenorhabdus and Photorhab-
dus on different mosquito species. Attempts to identify the 
bioactive natural product as potential larvicidal agents from 
these bacteria are ongoing. Furthermore, the calliphorid 
fly, Chrysomya albiceps, did not lay eggs on treating lamb 
meat with P. luminescens supernatant (Gulcu et al. 2012). 
Additionally, Lobesia botrana laid 55–95% fewer eggs on 
grapes treated with X. nematophila and P. laumondii super-
natants when compared with untreated grapes (Vicente-Díez 
et al. 2023).

Ovipositing mosquitoes are fastidious creatures. After 
digesting a blood meal, gravid females seek out suitable 
aquatic habitats rich in nutrients for her offspring and 
devoid of potential predators based on the myriad of olfac-
tory, visual, gustatory, and tactile signals emanating from 
breeding sites as well as environmental factors that can influ-
ence ovipositional behavior (Bentley and Day 1989; Day 
2016; Parker et al. 2020; Baik and Carlson 2020; Girard 
et al. 2021). The literature on mosquito oviposition behav-
ior is vast and several studies have established that factors 
such as presence of con- and heterospecific immature stages, 
microbes, predators and chemical cues associated with 
these organisms attract, repel or deter gravid mosquitoes 
from depositing eggs (Eitam and Blaustein 2004; Afify and 
Galizia 2015; Russell et al. 2022). Application of potential 
deterrence compounds to breeding sites might influence the 
ovipositional behavior of mosquitoes. Numerous compounds 
obtained from plants have been reported to have oviposition 

deterrent activity against mosquitoes (Waliwitiya et al. 2009; 
Cheah et al. 2013; Dias and Moraes 2014). Development of 
deterrent compounds could be a powerful tool in mosquito 
control programs. Such deterrents can prevent breeding in 
certain habitats and as such help reduce mosquito population 
densities and dispersion in conducive areas (Cimen 2023).

The aim of this study was to assess the effects of metabo-
lites of Xenorhabdus and Photorhabdus on the ovipositional 
behavior of Ae. albopictus. We investigated the effects of 
cell-free supernatant (CFS) of Xenorhabdus and Photorhab-
dus on mosquito ovipositional behavior and aimed to iden-
tify bioactive deterrence compounds.

Material and method

Maintenance of Aedes albopictus colony

Adult Ae. albopictus were reared in insect cages 
(40 × 40 × 40 cm) in a controlled insectary with a tempera-
ture of 30 °C, 70 ± 10% relative humidity and a 12 h light: 
12 h dark photoperiod. Mosquitoes were fed every 2–3 days 
on defibrinated sheep blood using an artificial blood feeder 
(Shah et al. 2021). Sugary water (10%) was available at all 
times. Mosquitoes laid eggs on filter papers in water filled 
cups. Eggs were hatched in tap water in small plastic con-
tainers (10 × 15 × 15 cm). Emerged larvae fed on crushed 
fish scales (TetraMin®) and maintained at 24 ± 1 °C. Newly 
emerged adults (~ 1 week old) were used in the experiments.

Preparation of Xenorhabdus and Photorhabdus 
supernatants

Xenorhabdus cabanillasii JM26-1, X. doucetiae DSMZ 
17909, X. nematophila ATCC 19061, X. szentirmaii 
DSMZ16338 and Photorhabdus kayaii DSMZ 15194 were 
used in this study. Cell free supernatants of these bacteria 
were obtained as described in Hazir et al. (2017). Briefly, 
bacteria were cultured on Luria–Bertani (LB) (10 g peptone, 
5 g yeast extract, 5 g NaCl) agar (Merck, Darmstadt, Ger-
many) for 24 h at 28 °C, and then, a single colony was inocu-
lated into a fresh LB broth (20 ml) to prepare an overnight 
culture. One ml of this overnight culture was then inoculated 
into a fresh 100 ml LB medium which was incubated at 
28 °C for 72 h. These cultures were then centrifuged (Eppen-
dorf AG 22331, Germany) at 10.000 rpm at 4 °C for 10 min 
and the supernatants were separated into new Falcon tubes.

Generation of Xenorhabdus spp. Δhfq pCEP‑KM 
promoter exchange supernatants

To identify bioactive ovipositional deterrent compound(s) in 
the bacterial supernatants, Δhfq promoter exchange mutants 
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of Xenorhabdus bacteria were used (Table 1). These mutants 
were generated using the easyPACId approach (easy Pro-
moter Activated Compound Identification) (Bode et al. 2019, 
2023) and have been used in previous studies (Incedayi et al. 
2021; Cimen et al. 2021; Gulsen et al. 2022). Briefly, X. 
szentirmaii Δhfq mutants were generated which results in 
no NP production, and subsequently, the native promoter 
regions of selected NP BGCs listed in Table 1 were replaced 
with a chemically inducible promoter PBAD via the inte-
gration of the plasmid pCEP-KM; the biosynthesis of the 
selected BGC and subsequent selective (over) production of 
the associated single natural product (NP) compound class 
can be activated by the addition of l-arabinose (Bode et al. 
2015, 2019, 2023; Tobias et al. 2017). HPLC/MS analysis 
of mutant cultures shows higher production of the selected 
compounds as compared to wildtype cultures. Detailed 
information about this mutant generation technique can be 
found in Bode et al. (2023).

Generated mutants were first cultured in LB agar + kana-
mycin (50 μg/ml final concentration) and incubated at 30 °C 
for 48 h according to Cimen et al. (2021). Then, a single 
colony was transferred into 10 ml LB medium + kanamycin 
(50 μg/ml final concentration) and incubated at 150 rpm and 
30 °C to obtain an overnight culture which was transferred 
into 100 ml fresh LBs and the final optical density (OD600nm) 
was adjusted to 0.1. These newly inoculated cultures were 
incubated for 1 h at 30 °C and afterward induced with 0.2% 
l-arabinose (Wenski et al. 2020). These induced cultures 
were incubated for 72 h at 150 rpm and 30 °C, and then, 
CFS was obtained and used in the oviposition experiments.

Effects of wild‑type and mutant bacterial 
supernatants on the ovipositional activity of Aedes 
albopictus

Experimental design was based on (Kramer and Mulla 
1979) using a binary choice design with 10 newly blood-
fed female mosquitoes in insect cages. After blood feeding, 
females were transferred to new cages from stock colonies 
using an aspirator and blood digestion and ovarian develop-
ment was allowed for 4 days post-blood meal. Sugary water 
(10%) was available at all times. For the two choice experi-
ments, two 100 ml-plastic cups with 40 ml distilled water 
containing CFS of wild-type X. szentirmaii, X. cabanillasii, 
X. nematophila, X. doucetiae or P. kayaii) or LB (control) 
were introduced into the cages. Bacterial supernatants were 
tested at 50, 20, 10, 5 and 1% concentrations. Edges of the 
cups were lined with Whatman No. 2 filter papers as a sub-
strate for collection of deposited eggs. These plastic cups 
were placed equidistant from each other at the corner of the 
cages, and their positions were alternated between replicates. 
The cages were placed in the insectarium at 27 ± 1 °C tem-
perature, 70% relative humidity and 12 h photoperiod. After 
72 h, the filter papers in each plastic cup were collected, 
and the eggs deposited on filter papers were counted under 
a stereomicroscope. Each treatment had four replicates and 
the experiments were conducted three times (n = 12).

Besides, commercial larvicidal compounds were com-
pared with distilled water to determine if they have any 
ovipositional deterrent activity. The active ingredient in the 
larvicides used was Spinosad, Lysinibacillus sphaericus, or 
Bacillus thuringiensis subsp. israelensis (Table 2). These 
larvicides were added to distilled water at doses recom-
mended by the manufacturer (Table 2), and then, 40 ml of 
prepared solution was added to oviposition cups used in the 
experiments. Field-collected water was also assessed against 
distilled water.

The oviposition attractant/deterrence feature of the bacte-
rial supernatant was evaluated by calculating the oviposition 
activity index (OAI) using the number of eggs laid in the 
cups (Kramer and Mulla 1979; Hwang et al. 1982). The OAI 
was determined using the formula.

And the scores were used for analysis of variance 
(p = 0.05). An OAI score close to −1 shows a high deter-
rence, between +0.3 and −0.3 shows neutrality, and + 1 
shows a strong attraction (Hwang et al. 1982). The same 
method was used with cell-free supernatants obtained from 
promoter exchange mutants shown in Table 1 to identify the 
compound responsible for the attractant/deterrence activity. 
Different derivatives of the bioactive compound obtained 
from different bacteria (i.e., X. hominickii, X. cabanillasii, X. 

OAI =
(Number of eggs in treated water − number of eggs in control)
(Number of eggs in treated water + number of eggs in control)

Table 1   Xenorhabdus szentirmaii Δhfq pCEP-KMxy mutants used in 
this study

Bacteria species Mutant name Compound name

X. szentirmaii Wildtype DSM 16338 –
Δhfq_pCEP_KM_3460 Szentiamid
Δhfq_pCEP_KM_3680 Xenobactin
Δhfq_pCEP_KM_3942 Rhabduscin
Δhfq_pCEP_KM_fclC Fabclavine
∆hfq pCEP-KM-0377 PAX-short
Δhfq PCEP 3663 Xenoamicin
Δhfq Pcep-KM-5118 Pyrollizixenamide

X. cabanillasii Δhfq_128-129 Fabclavine
X. hominickii Δhfq_130-131 Fabclavine
X. budapestensis Δhfq_pCEP_fclC Fabclavine
X. stockiae Δhfq_pCEP_fclC Fabclavine
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budapestensis, X. szentirmaii, X. bovienii, and X. stockiae) 
were also assessed using the binary choice method.

Performance of bioactive oviposition deterrent 
compounds

After identifying the bioactive compound/s, multiple choice 
experiments were also conducted. In this case, four plastic 
cups (100 ml) with the components below were added to 
cages with 10 female mosquitoes (a week old):

Choice experiment-1 (baseline experiment) cup A-Field 
collected water, cup B-clean water, cup C-distilled water 
with 10 larvae (3rd stage), and cup D-LB-water (control).

Choice experiment-2 cup A-Field collected water with 
supernatant (20%) from Fabclavine producing X. szentirmaii 
(Δhfq_pCEP_KM_fclC), cup B-clean water, cup C-distilled 
water with 10 larvae, and cup D-LB-water (control).

Choice experiment-3 cup A-Field collected water, cup 
B-clean water with supernatant (20%) from Fabclavine pro-
ducing X. szentirmaii (Δhfq_pCEP_KM_fclC), cup C-dis-
tilled water with 10 larvae, and cup D-LB-water (control).

Choice experiment-4 cup A-Field collected water, cup 
B-clean water, cup C-distilled water with larvae (10) treated 
with supernatant (20%) from Fabclavine producing X. sze-
ntirmaii (Δhfq_pCEP_KM_fclC), and cup D-LB-water 
(control).

The total liquid volume in each cup was 40 ml. The plas-
tic cups insides lined with filter paper were placed in the 
four corners of the insect cages. Eggs were counted after 
3 days, and the OAI was calculated as described previously. 
The position of the cups was rotated daily during the experi-
ments. These experiments had 5 replicates, and the experi-
ments were conducted twice. This multiple choice design 
allows mosquitoes to choose between options, reflecting 
natural behavior (choosing oviposition sites).

Statistical analyses

Analysis of variance with Tukey’s test (p = 0.05) was used 
to compared OAI as well as a number of eggs laid in mul-
tiple choice experiments in the statistical analysis using 
SPSS program (version 23).

Results

Effects of wild‑type and mutant strain bacterial 
supernatants on the ovipositional activity of Aedes 
albopictus

The oviposition deterrence activity of CFS from different 
wild-type Xenorhabdus and Photorhabdus bacteria against 
Ae. albopictus is presented in Fig. 1. All bacteria super-
natants effectively deter oviposition of female mosquitoes 
in a concentration-dependent manner with significant dif-
ference between all treatments (F = 9.328; df = 29,303; 
p < 0.001). Supernatant from X. cabanillasii displayed 
deterrent effects at concentrations 50–5%. Oviposition 
activity index values ranged between −0.87 and −0.35. 
Index values for X. nematophila were −0.82, −0.85, and 
−0.52 at 50, 20 and 10% concentrations, respectively. 
Xenorhabdus szentirmaii, X. doucetiae, and P. kayaii were 
effective at concentrations ≥ 20%. Among the controls, the 
mosquitoes only abstained from treatments with L. spha-
ericus with an OAI of −0.47. Aedes albopictus females 
were neutral to effects of B. thuringiensis israelensis and 
Spinosad on egg laying. Field collected water was signifi-
cantly more attractive than distilled water (Fig. 1).

Various mutants generated from X. szentirmaii were 
used to identify the respective deterrent compounds pre-
sent in supernatants. Fabclavine (OAI = −0.72) as the only 
compound with evident deterrent effects in X. szentirmaii 
(Figs. 2, 3).

The OAI of fabclavine derivatives obtained from X. 
hominickii, X. cabanillasii, X. budapestensis, X. sze-
ntirmaii, X. bovienii, and X. stockiae on Ae. albopictus 
were −0.89, −0.88, −0.86, −0.75, −0.57 and −0.53, 
respectively. There was a statistical difference only in the 
deterrent effects between X. hominickii and X. stockiae 
(F = 3.266; df = 5, 46; P = 0.14) (Fig. 4).

Performance of bioactive ovipositional deterrent 
compounds

There was a statistically significant difference in the number 
of eggs laid by Ae. albopictus females in the multiple-choice 
experiments with 4 different containers that had either field 

Table 2   Commercial larvicidal 
products used in the study

SC suspension concentrate, WDG water-dispersible granule

Larvicide Commercial product Recommended concen-
tration

Formulation

Bacillus thuringiensis subsp. 
israelensis

Vectobac® 12AS 0.19 ml/L SC

Spinosad Moskill 120SC 3.3 ml/L SC
Lysinibacillus sphaericus Vectolex WDG 5 g/L WDG
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collected water, supernatant (treated), water with larvae (10), 
LB-water (control) or clean water (Fig. 5). In the first com-
bination (choice experiment-1), which served as a control, 
field water was found to be the most attractive breeding site 
for the female with at least 140 eggs laid here. In choice 
experiments 2 and 4, females were observed to abstain from 
containers where fabclavine had been added (Fig. 5), even 
reducing the attractiveness of field collected water. The num-
ber of eggs laid in the containers with field collected water 
and fabclavine in the choice experiment-3 was nearly halved 
(73 eggs) compared to the other combinations.

Discussion

Our data show that Ae. albopictus abstained from laying 
eggs in containers with supernatants of Xenorhabdus and 
Photorhabdus. All bacteria supernatants effectively deterred 
oviposition of female mosquitoes in a concentration-depend-
ent manner.

Several reports have highlighted the importance of the 
bioactive natural product of Xenorhabdus and Photorhabdus 
as potential larvicidal agents on different mosquito species 
(da Silva JLR et al. 2013; Wagutu et al. 2017; da Silva JLR 

Fig. 2   Activity of different secondary metabolites from Xenorhabdus szentirmaii on the ovipositional behavior of Aedes albopictus. An OAI 
score close to − 1 shows a high deterrence, between + 0.3 and −0.3 shows neutrality, and + 1 shows a strong attraction

Fig. 3   Ovipositional deter-
rence effects of fabclavine from 
Xenorhabdus szentirmaii on 
Aedes albopictus females



	 Journal of Pest Science

Fig. 4   The percentage deterrent effects of different fabclavine derivatives from different Xenorhabdus spp. An OAI score close to − 1 shows a 
high deterrence, between + 0.3 and −0.3 shows neutrality, and + 1 shows a strong attraction

Fig. 5   Deterrent effects of fabclavine from Xenorhabdus szentirmaii on Aedes albopictus females in the multiple-choice experiments. Letters 
above boxplots indicate differences according to analysis of variance (p = 0.05)
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et al. 2017; Vitta et al. 2018; Shah et al. 2021; Subkrasae 
et al. 2022; Yüksel et al. 2023). Our study, as a first, dem-
onstrates that Xenorhabdus and Photorhabdus spp. produce 
highly effective ovipositional deterrent compounds against 
mosquito Ae albopictus. The easyPACId method showed 
clearly that the bioactive deterrent compound was fabcla-
vine, a non-ribosomally synthesized peptide/polyketide 
with polyamine moieties and broad-spectrum bioactivities 
(Wenski et al. 2020; Duan et al. 2024). Studies have shown 
that derivatives from different species can differ greatly in 
structure and bioactivity, e.g., X. bovienii produces deriv-
atives with only the polyamine part (Wenski et al. 2020, 
2021). An important body of literature exists detailing the 
possible application of fabclavines against various bacterial 
(Donmez Ozkan et al. 2019), fungal (Cimen et al. 2021; 
Yuan et al. 2023), and protozoal organisms (Gulsen et al. 
2022) of medical, veterinary, and agricultural importance. 
Fabclavines are produced to kill adversaries of the EPN-
bacteria complex and help maintain a monoxenic environ-
ment within the infected host (Fuchs et al. 2014; Wenski 
et al. 2020, 2021).

Female mosquitoes are highly sensitive to environmen-
tal factors. They can sense the myriad of olfactory, visual, 
gustatory, and tactile signals emanating from breeding 
sites using the sensilla in antennae, maxillary palps, pro-
boscis, and taste organs including tarsal segments of the 
legs (Baik and Carlson 2020; Girard et al. 2021). Oviposi-
tional behavior is also influenced by various environmental 
factors such as fluctuations in temperature, rainfall, rela-
tive humidity (Bentley and Day 1989; Day 2016; Parker 
et al. 2020; Girard et al. 2021). Mosquitoes generally seek 
out suitable aquatic habitats rich in nutrients for their off-
spring and devoid of potential predators (Bentley and Day 
1989; Day 2016; Baik and Carlson 2020). These flies can 
even sense the presence of con- and heterospecific imma-
ture stages and predators and chemical cues associated 
with these organisms, and they are attracted, repelled or 
deterred from depositing eggs in such sites (Afify and 
Galizia 2015; Russell et  al. 2022). Our study demon-
strates that the application of fabclavine and L. sphaeri-
cus influences the ovipositional behavior of mosquitoes. 
The effects of B. thuringiensis israelensis and spinosad 
were neutral. Likewise, Nazni et al. (2009) showed that Ae. 
albopictus females have not been repelled from Bti treated 
containers. However, we detected that the females did not 
lay eggs or laid a few in containers where fabclavine had 
been added. Fabclavine derivatives obtained from X. homi-
nickii, X. cabanillasii, X. budapestensis, X. szentirmaii, 
X. bovienii, and X. stockiae had varied deterrent activi-
ties on Ae. albopictus. Fabclavine from X. szentirmaii 
even reduced the attractiveness of field collected water. 

Mosquitoes landing on the wet filter papers on the sides of 
treated containers likely sensed fabclavines, a highly polar 
and water-miscible compound, through sensilla in tarsal 
segments of their legs, prompting them to abstain from egg 
laying and move away. The mode of action of fabclavine 
on female mosquitoes needs to be elucidated.

Interestingly, despite lacking the biosynthesis gene clus-
ter responsible for fabclavine production X. nematophila, 
X. doucetiae and P. kayaii bacteria still exhibit oviposition 
deterrence activity (Fig. 1) (Tobias et al. 2017). This sug-
gests the presence of another, yet unidentified, deterrent 
compound.

As far as we are aware this is the first report of the ovipo-
sition deterrent effects of bacterial secondary metabolite on 
mosquitoes. Poonam et al. (2002) investigated the effects of 
CFS of Azospirillum brasilense, B. cereus, B. megaterium, 
Pseudomonas fluorescens, B. thuringiensis var. israelen-
sis and B. sphaericus, on the oviposition activity of Culex 
quinquefasciatus females. They observed that depending 
on concentration CSF of these bacteria exhibited attract-
ancy comparable to p-cresol, a known oviposition attract-
ant. On the other hand, numerous compounds mainly from 
plants have been reported to have ovipositional deterrent 
activity against mosquitoes (Waliwitiya et al. 2009; Cheah 
et al. 2013; Dias and Moraes 2014). Waliwitiya et al. (2009) 
reported that Ae. aegypti laid fewer eggs in cups with euge-
nol, pulegone, thymol, trans-anithole or citronellal extracted 
from rosemary (OAI ranged between −0.5 and −0.8). Stud-
ies show that essential oils from Piper marginatum leaves, 
stems, and flowers exhibit moderate oviposition deterrence 
against Ae. Aegypti (OAI = −0.4) (Autran et al. 2009).

In conclusion, this study clearly demonstrated that bacte-
rial metabolites from Xenorhabdus and Photorhabdus spe-
cies are potent deterrents for oviposition in Aedes albopictus. 
Specifically, supernatants from these bacteria, particularly X. 
cabanillasii and X. nematophila, exhibited strong concentra-
tion-dependent inhibition of egg-laying by the mosquitoes. 
Notably, fabclavine isolated from X. szentirmaii was iden-
tified as the key bioactive compound responsible for this 
deterrent effect. Development of compounds with deterrence 
effects could be useful in mosquito control programs as 
such compounds can prevent gravid mosquito females from 
breeding in certain habitats. Choice of breeding site can 
greatly influence mosquito species establishment, population 
densities and dispersion in conducive areas. Use of oviposi-
tion deterrent compounds in specific sites would make the 
mosquitoes find other oviposition sites; these attractive sites 
can be used for target killing, hence reducing the amount of 
pesticides used.
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