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Abstract
Lepidopteran borers stand out as the most destructive pests in sugarcane, leading to reductions in stalk weight, juice qual-
ity and sugar recovery. Presently, integrated pest management (IPM) systems are utilized for sugarcane borer management, 
employing diverse methods encompassing cropping system, chemical pesticides, behavioral manipulation, biological agents 
and the selection of resistant varieties. However, the effectiveness of this strategy remains controversial due to concerns about 
harmful residues, formulation limitations, environmental variability, labor shortages and increased input costs. Currently, 
multiple lines of transgenic sugarcane expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been 
developed globally, offering the prospect of increases production with reduced pesticides application, thereby eliminating 
the negative effect of IPM. In Brazil, the first genetically modified sugarcane cultivars resistant to the sugarcane borer have 
been approved and released for commercial cultivation, shedding a bright light on a viable solution for sugarcane borers. This 
paper reviews borer species and distribution, the significant damage caused by sugarcane borers, current control approaches 
and the future effective control strategies. Additionally, this work provides comprehensive understanding on Bt sugarcane, 
serving as an additional tool to complement conventional sugarcane borers control resistance programs.
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Sugarcane borers species, distribution, 
damage worldwide

Sugarcane encounters a spectrum of biotic stressors, each 
with the potential to exert a substantial influence on its 
growth and yield. Among these stressors, lepidopteran bor-
ers are the foremost destructive pests in the major sugarcane-
growing regions, including Brazil, India, China, the USA, 
South Africa, Indonesia, Reunion Island, Mexico, Iran, 
Colombia and Papua New Guinea (Nikpay et al. 2015). To 
better protect sugarcane from borer attacks, understanding 
the species, distribution and damage worldwide is of para-
mount importance.

Sugarcane borers species

Globally, sugarcane is susceptible to attacks by various 
insects from orders such as Lepidoptera, Homoptera, 
Coleoptera, Hemiptera, Orthoptera, and Isoptera (Yoseph 
and Desmond 2009). Lepidoptera borers represent 
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significant pests in almost all sugarcane-planting coun-
tries. Approximately 50 species of Lepidoptera borers, 
including the genera Chilo, Diatraea, Sesamia, Argyro-
ploce, Tryporyza, Scirpophaga, Eoreuma, Telchin and 
Eldana, have been documented attacking sugarcane 
(Fig. 1), mainly belonging to the Pyralidae, Crambidae, 
Noctuidae and Tortricidae families (Long and Hensley 
1972; Kfir et al. 2002).

One notable sugarcane borers belongs to the genus Chilo, 
which is classified under the Crambidae and was previously 
categorized under Pyralidae. Species within the genus Chilo 
initiate damaged by causing 'dead-heart' in sugarcane shoots 
and subsequently feed on the internal stem tissue. These 
damages result in a significant reduction in sugarcane yield, 
potentially leading to total crop failure (Guan et al. 2012). 
Chilo infuscatellus, commonly referred to as the early shoot 
borer, causes damage to the crop in its early stages, leading 
to a subsequent reduction in yield. This species can survive 
year-round in mild climates (David et al. 1986; Narasim-
han et al. 2001; Srikanth et al. 2009; Omkar 2018). Another 
significant sugarcane borer in this genus is the internode 
spotted borer, Chilo sacchariphagus, known for typically 
attacking plants aged 3–7 months. It exerts a more substan-
tial impact on cane yield than sucrose yield (Waterhouse 
2007; Bezuidenhout et al. 2008). The third species, C. veno-
satus, is also a noteworthy sugarcane borer, contributing to 
substantial economic losses (Liu et al. 2012; Hu et al. 2017; 
Fang et al. 2018). The fourth species, C. tumidicostalis, pri-
marily inflicts damage to the crop after internode formation 
(Long and Hensley 1972). The fifth species, stalk borer C. 
auricilius, has young larvae that bore into shoots and canes 
by cutting holes and forming galleries in the stalk (Jaipal 

1996), impairing growth and causing losses in cane yield 
and sugar recovery (Nesbitt et al. 1986).

Concerning borers within the Diatraea genus, their 
primary impact is on sugarcane in the Americas. In this 
genus, Diatraea saccharal is a prominent pest prevalent in 
the Western Hemisphere (Box and Harold 1931; Long and 
Hensley 1972; Reagan et al. 1972; Cristofoletti et al. 2018). 
Additionally, species like D. albicrinella, D. busckella, D. 
tabernella, D. centrella, D. indigenella, D. lineolata, D. 
considerate and D. magnifactella have been documented as 
sugarcane attackers (Long and Hensley 1972; Vejar-Cota 
et al. 2008; Vargas et al. 2015; Solis and Metz 2016).

The pink borers species in the Sesamia genus lead to a 
significant reduction in sugar recovery (Okamoto et al. 1999; 
Nikpay et al. 2014). Among these species, Sesamia cretica 
and S. nonagrioides are widely distributed in all sugarcane-
growing areas, infesting sugarcane at all stages of growth 
(Jamshidnia et al. 2010; Nikpay et al. 2017). S. grisescens, 
on the other hand, can cause substantial damage to sugar-
cane in a few countries (Young et al. 1992). Additionally, 
larvaes of S. inferens bore into the aboveground parts of 
sugarcane seedlings (Luo et al. 2014). S. nonagrioides, also 
known as the corn borer, is another species within the Sesa-
mia genus that causes severe damage to sugarcane (Fantinou 
et al. 2003).

Apart from the borer species from Chilo, Diatraea and 
Sesamia, some species of other genera also attack sugarcane. 
For example, larvaes of Argyroploce schistaceana inflict 
damage to both underground and surficial parts of sugar-
cane, causing a significant increase in population density 
and ultimately resulting in losses in cane yield and sugar 
(Luo et al. 2014; Zhang et al. 2019a). Larvaes of Tryporyza 

Fig. 1   The major sugarcane borers
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intacta bore into the seedlings, causing 'dead-heart' and 
reducing the number of tillers (Wei et al. 2012, 2014). Scir-
pophaga nivella imparts a characteristic 'bunchy top' appear-
ance to the plant (Long and Hensley 1972). The Mexican 
rice borer, Eoreuma loftini, is an invasive sugarcane borer 
causing severe damage (Meagher et al. 1994; Showler et al. 
2011). The giant cane borer, Telchin licus, caused severe 
damage to sugarcane (Almeida et al. 2007; Triana et al. 
2020), mainly in Central and South America. The African 
sugarcane stalk borer, Eldana saccharina, attacks mature 
sugarcane (Girling 1978) and is the most destructive pest 
in South African (Keeping 2006), with the first description 
dating back to 1865 from sugarcane in Sierra Leone (Atkin-
son and Carnegie 1989; Bosque-Pérez and Mareck 1991; 
Ngwuta 2015).

Sugarcane borers distribution

Sugarcane borers, particularly species within the genera 
Chilo and Sesamia, stand out as the predominant and highly 
damaging pests affecting sugarcane in cane-growing coun-
tries globally, with the exception of Australia and Fiji (Sal-
lam 2006). Each geographical region possesses its distinc-
tive pest fauna. Old World regions, including African and 
Asia, host a variety of Chilo and Sesamia species (Long 
and Hensley 1972). Conversely, New World regions, such as 
the Americas, are primarily populated by Diatraea species 
(Long and Hensley 1972).

The sugarcane internode spotted borer, Chilo saccha-
riphagus, originally emerged in Asia but has subsequently 
disseminated to various sugarcane-producing countries and 
islands worldwide, encompassing central Asia, India, Korea, 
China, Indonesia, Malaysia, Sri Lanka, Thailand, Vietnam, 
Madagascar, Mauritius, Mozambique and South Africa (Cao 
et al. 2011; Ghahari et al. 2009; Nibouche et al. 2019; CABI 
2022). The early shoot borer, C. infuscatellus, constitutes a 
notable pest with an extensive range spanning from the Phil-
ippines to Afghanistan, encompassing central Asia, India, 
Korea, China, Indonesia, Malaysia, Thailand, Uzbekistan, 
Vietnam, Russia and Papua New Guine (Narasimhan et al. 
2001; CABI 2022). Another destructive pest, the stalk borer 
C. auricilius, is present in Eastern and Southeastern Asia, 
including Bangladesh, Bhutan, China, India, Indonesia, 
Malaysia, Myanmar, and other regions, as well as, northern 
Australia (Khanna et al. 1957; Nesbitt et al. 1986; Jaipal 
1996; CABI 2022). C. tumidicostalis is a serious pest in 
some states of India, such as Assam, West Bengal, and the 
eastern part of Bihar, as well as in Bangladesh and Nepal 
(Neupane 1990). C. venosatus is primarily distributed in 
South China, Swaziland, Australia, Brazil, India, the Antil-
les, and Central and South America (He 2009; Liu et al. 
2012 Fang et al. 2018).

Borers belonging to the genus D. are acknowledged as 
severe pests of sugarcane in the Americas (White et al. 
2001). D. saccharalis, in particular, is a significant sugar-
cane pest across the American continent, spanning Antigua 
and Barbuda, Barbados, Belize, Costa Rica, Cuba, Haiti, 
Honduras, Mexico, Montserrat, Argentina, Bolivia, Brazil, 
Colombia, Ecuador, Guyana, Peru, Suriname, Uruguay and 
Venezuela (CABI 2022). This borer has posed a significant 
and enduring threat to the sugar industry in Brazil and Amer-
ica (Box and Harold 1931; Reagan et al. 1972 Vargas et al. 
2015; Almeida et al. 2007; Sidhu 2013). It also represents a 
significant challenge in Cuba, Peru, Puerto Rico, Jamaica, 
Trinidad, Mexico, Colombia and America (Long and Hens-
ley 1972; Solis and Metz 2016). Crambid stalk borer spe-
cies, including Diatraea considerata, D. magnifactella, are 
distributed in Mexico (Vejar-Cota et al. 2008). In Colom-
bia, various Diatraea species, including D. albicrinella, D. 
busckella, D. tabernella D. centrella, D. indigenella and D. 
lineolata, have been reported to attack sugarcane (Solis and 
Metz 2016). D. centralla is the primary sugarcane borer in 
Guyana and Trinidad (Long and Hensley 1972).

The pink borer, Sesamia inferens, has been identi-
fied as a sugarcane borer in various countries, including 
Bangladesh, Bhutan, Cambodia, China, India, Indonesia, 
Japan, Nepal, Pakistan, the Philippines, Singapore, Thai-
land, Papua New Guinea, the Solomon Islands and others 
(Young et al. 1992; Okamoto et al. 1999; CABI 2022). The 
other two species from the Sesamia genera, S. cretica and 
S. nonagrioides, are distributed in all sugarcane-growing 
areas (Jamshidnia et al. 2010). The corn borer, S. nonagri-
oides, is found throughout southern Europe, North Africa, 
and the Middle East (Fantinou et al. 2003; CABI 2022). S. 
calamistis and E. saccharina are the two major sugarcane 
borers found exclusively in South Africa (Long and Hensley 
1972; CABI 2022). The pink stem borer, Sesamia spp., is 
also the most destructive pest of sugarcane in Southwest Iran 
(Nikpay et al. 2014; CABI 2022). S. cretica is an important 
borer of sugarcane, maize and sorghum in Africa, the Middle 
East, Southern Europe, Egypt, and Mediterranean, includ-
ing Sudan, Somalia, Kenya, Cameroon and Ethiopia (Tem-
erak and Negm 2009; Goftishu et al. 2016; CABI 2022). S. 
grisescens is exclusively distributed in Papua New Guinea 
(Young et al. 1992; CABI 2022).

Apart from the three aforementioned genera of sug-
arcane borers, there are additional generas specific to 
Asia, Africa and Americas. In Asia, the white borer A. 
schistaceana is prevalent in sugarcane-growing areas in 
China and is considered highly detrimental in Mauritius 
(Young et al. 1992) and also distributed in Madagascar, 
Indonesia, Japan, Malaysia, Philippines, Sri Lanka and 
Vietnam (CABI 2022). S. excerptalis is identified as a 
prominent sugarcane borer in Thailand (Young et al. 1992) 
and is frequently found across various regions, including 
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Bangladesh, China, India, Indonesia, Japan, Malaysia, 
Myanmar, Nepal, Pakistan, the Philippines, Singapore, 
South Korea, Thailand, Vietnam, Australia, Papua New 
Guinea and the Solomon Islands (CABI 2022). S. nivella 
is identified as a species that inflicts significant economic 
damage in India, Java and Indonesia (Long and Hensley 
1972; Angerilli et al. 1998). Moreover, it is commonly 
found across several regions, including Bangladesh, Bru-
nei, China, India, Indonesia, Malaysia, Myanmar, Nepal, 
Pakistan, the Philippines, Singapore, Sri Lanka, Thailand, 
Vietnam, Australia, Fiji, New Caledonia and Papua New 
Guinea (CABI 2022). The Guangxi sugarcane area hosts 
various sugarcane borers, including A. schistaceana and 
T. intact Snellen (Li et al. 2016a, b). In the Americas, 
the Mexican rice borer, E. loftini, was initially discovered 
on sugarcane in the Lower Rio Grande Valley of Texas, 
USA, in the early 1980s and has subsequently spread to 
sugarcane-growing regions in Louisiana (Showler et al. 
2011; Vanweelden et al. 2015; Wilson et al. 2015a). The 
sugarcane borer, T. intacta, is a severe pest in Southeast 
Asian countries and South China, causing significant dam-
age, particularly in recent years (Wei et al. 2014). In 2008, 
the giant cane borer T. licus was initially recorded in Sao 
Paulo, the largest sugarcane-growing state in Brazil. It has 

subsequently spread across all sugarcane areas and is cur-
rently invading the central and southern regions of this 
country (Almeida et al. 2007). The African sugarcane stalk 
borer, E. saccharina, is acknowledged as the most destruc-
tive pest in South Africa, where it not only infests numer-
ous wetland sedges (Atkinson and Carnegie 1989; Keeping 
2006), but is also widely distributed in Angola, Benin, 
Botswana, Burkina Faso, Burundi, Cameroon, Chad, 
Congo, Equatorial Guinea, Eswatini, Ethiopia, Gabon, 
Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Liberia, 
Madagascar, Malawi, Mali, Mozambique, Niger, Nige-
ria, Rwanda, Senegal, Seychelles, Sierra Leone, Somalia, 
Sudan, Tanzania, Togo, Uganda, Zambia, Zimbabwe and 
Saudi Arabia (CABI 2022).

In the major sugarcane production regions, namely Asia, 
South America, and their neighboring areas, a greater vari-
ety of borer species indicate a significant occurrence of 
pests. In contrast, Australia and Europe exhibit fewer borer 
species (Fig. 2). This phenomenon is partly attributed to the 
relatively small total area of sugarcane in these two regions. 
However, it may also be linked to their effective pest control 
measures. The diversity of borer species in various regions 
may also be influenced by the local climate, ecological 
environment, and insect species composition. To prevent 

Fig. 2   The distribution of sugarcane borers around the world



Journal of Pest Science	

the spread and proliferation of insect pests, effective control 
of invasive species is a crucial strategy for every country, 
particularly those with border regions.

Economic loss caused by borers

Yield losses linked to most borers species are primarily 
attributed to reductions in crop before the formation of 
young shoots and to reductions in stalk weight and juice 
quality after internodes formation has commenced (Long 
and Hensley 1972). The infestation index, represented by the 
percentage of bored internodes, stands as a reliable param-
eter for predicting yield losses (Milligan et al. 2003). Ellis 
et al. (Ellis et al. 1960) concluded that the occurrence of 
internodes bored per unit weight of cane consistently cor-
relates with sugar loss more effectively than estimates of 
the number of bored internodes or stalks. However, some 
researchers have also highlighted the impact of borer dam-
age on juice quality (Holloway and Haley 1928). Thus, 
the damage caused by different species of borers has been 
assessed based on various methods of measurement. For 
example, Chilo infuscatellus can survive the winter in mild 
climates, and attacks the ratooning seedlings, resulting in 
the occurrence of 28.6 percent dead hearts (Srikanth et al. 
2009), determined by the ratio of damaged seedlings to total 
seedlings. Meanwhile, larvaes of C. venosatus feed inside 
the sugarcane stem, resulting in a production loss of 25 
percent (w/w) (Liu et al. 2012), measured by assessing the 
bored rate of the sugarcane and estimating the sugar produc-
tion loss.

Based on various calculations, the losses attributed to 
borers were estimated. In Brazil, D. saccharalis larvae bored 
an average of 25.77 percent and 19.01 percent of the inter-
nodes during the sugarcane-growing seasons of 2010 and 
2011, respectively. Percentage of bored internodes (D. sac-
charalis) ranged from 3.7 to 27.7% in the 2018 plant cane 
and 2019 first ratoon trials in in Louisiana, the USA (Sal-
gado et al. 2022). Sucrose yield significantly decreased with 
the increasing internodes infestation, resulting in estimated 
sugar yield losses of 8.83 percent and 19.80 percent per 1 
percent bored internodes for the first and second seasons, 
respectively (Rossato et al. 2013). Additionally, an approxi-
mately 0.5 percent reduction in sugar yield per acre was 
observed for each 1 percent of bored internodes after D. 
saccharalis infestation (Long and Hensley 1972).

In India, losses in sugarcane yield and sucrose content 
due to C. tumidicostalis have been estimated to range from 
8.2 to 12.6 percent and 10.7 to 48.6 percent, respectively, 
in Bihar (Khanna et al. 1957). And these borers result in 
cane yield losses of 8 to 10 percent at the farmer's level and 
sugar recovery losses of 10 to 15 percent in sugar processing 
(Jasmine et al. 2012).

In China, about 40 percent of sugarcane is annually 
damaged by borers, leading to yield losses ranging from 
10 to 25 percent (Li et al. 2016a, b). In China, researches 
observed that sugarcane borer could cause cane loss of 
2625–7950 kg/ha, representing 3.2–9.4% of cane production 
when borer damage rate was 5–20% and 9960–13,537.5 kg/
ha, accounting for 11.7–15.9% when borer incidence was 
25–35% (Zhang et al. 2019b). Pests occurred significantly 
in Xianggui sugarcane area of China, where the average 
borer-damaged strain was 46.54%, the average yield loss was 
14.89%, and the average sucrose content loss was as high as 
1.12%. The estimated results of economic damage caused by 
pests revealed that the agricultural losses amounted to 467 
million yuan (about 60.31 million dollars), industry losses 
reached 856 million yuan (about 119.72 million dollars), 
and the national financial losses were 51million yuan (Xie 
et al. 2020).

In Louisiana, damages caused by D. saccharalis were 
estimated to cause losses of up to 28 percent of cane weight 
per acre in a susceptible cultivar ('CP 44–101') (Hensley 
and Long 1969). However, it is crucial to note that eco-
nomic losses associated with E. loftini in Louisiana sug-
arcane may reach as high as 220 million US dollars when 
the insect becomes fully established in the state (Meagher 
et al. 1994). The crambid stalk borer, D. considerata, causes 
annual losses of up to 10 million US dollars in Mexico 
(Vejar-Cota et al. 2008). Mexican rice borers, E. loftini, 
damage 20 percent of sugarcane internodes in that region, 
resulting in losses of 575 USD/ha (Meagher et al. 1994), 
and the total annual losses throughout the region are esti-
mated to be between 10 and 20 million USD (Hardke et al. 
2011). These diverse instances underscore the significant 
economic impact. Under the conditions of the Cauca River 
Valley in Colombia, economic losses attributed to Diatraea 
spp. are estimated at 143 kg of sucrose for each percent of 
bored internodes (Vargas et al. 2013). In Papua New Guinea, 
between January and June 1987, 70 percent of the total com-
mercial planting in Ramu suffered moderate-to-severe dam-
age by S. grisescens, leading to an 18 percent loss in sugar 
production (Young et al. 1992). The crop losses caused by E. 
saccharina in South African sugarcane have been estimated 
at a 0.1-percent yield loss for every 1 percent of damaged 
stalks (Smaill and Carnegie 1979).

In Indonesia, the economic losses of sugarcane caused by 
S. nivella can amount to as much as 50 percent (Angerilli 
et al. 1998). Simultaneously, the proportion of stalks dam-
aged by C. sacchariphagus and C. auricilius reached 40 per-
cent, leading to an approximate biomass yield reduction of 
12.5 t/ha (19.2 percent) (Goebel et al. 2014).

Moreover, the damage inflicted by its larvaes is pervasive, 
manifesting at all stages of plant development. In addition, 
the entrance holes crafted by these borers not only serve as 
gateways for their but also provide avenues for secondary 
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phytopathogenic fungi, thereby intensifying the potential 
impact on the crop (Rossato et al. 2013).

In general, bores damage results in 10–30% reduction 
in sugarcane yield, corresponding to the losses of one-fifth 
(calculated as an average of 20%) of the land allocated for 
sugarcane cultivation annually, thereby representing a sub-
stantial and noteworthy losses. Consequently, the developed 
and implementation of novel technologies to mitigate borer 
damage represent a critically important and formidable 
undertaking for sugarcane-producing economies worldwide.

Current integrated pest management (IPM) 
strategy on control on sugarcane bores

Integrated pest management (IPM) is an ecological strategy 
for pest control designed to suppress pest populations below 
the economic threshold level (ETL). Presently, IPM systems 
for managing the sugarcane borer encompass the manipu-
lation of cropping system, the use of chemical pesticides, 
behavioral manipulation, biological control, and the selec-
tion of resistant varieties (Fig. 3).

Cropping system

The cropping system have long been acknowledged as the 
fundamental line of defense against pests in sugarcane cul-
tivation practices. These practices encompass intercrop-
ping, planting clean seed canes, the removal of crop resi-
dues and damaged plants, fertilization, the manipulation of 
planting dates, and other specific tillage methods (Hensley 
1971; Jaipal 2000; Kfir et al. 2002) (Fig. 4).

Intercropping is a valuable cultivation practice that 
can reduce pest damage, while simultaneously increas-
ing income. However, it is important to avoid intercrop-
ping sugarcane with similar crops from the same family, 
Graminae, such as maize, sorghum and rice, to prevent the 
spread of pests between these crops. Alternatively, inter-
cropping sugarcane with legumes such as soybean, mung 
bean, green manure crops, peanut, as well as vegetables 
such as tomatoes, hot peppers and cabbage, can establish 
an ecological balance conducive to the survival of natural 
enemies, thereby enhancing pest control (Zeng 2004).

Fig. 3   Integrated pest management strategy on sugarcane bores control
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The use of clean seed canes is instrumental in reduc-
ing the risk of pest infestation and enhancing both cane 
yield and quality. It is imperative to refrain from using 
canes sourced from fields severely impacted by pests 
(Tan et al. 2003). Moreover, common practices such as 
pre-harvest burning and the timely mechanical removal 
of borer-infested shoots or egg masses have been widely 
employed to curtail in-field pest populations and minimize 
damage (Jaipal 2000; Ma et al. 2014). The application of 
silicon (Si) fertilizer has proven effective in mitigating 
borer infestations by delaying the penetration of early 
instar larvaes into the stalks, resulting in increased larval 
mortality and reduced weight lost (Kvedaras and Keeping 
2007). Additionally, the choice of planting date can sig-
nificantly impact D. saccharalis populations in sugarcane, 
with early-planted sugarcane displaying greater suscepti-
ble to borers, consequently leading to heightened infesta-
tions (Beuzelin et al. 2011).

Moreover, performing low cutting during cane harvest 
proves effective in eliminating the majority of overwintering 
pests. Conversely, continuous sugarcane cultivation in the 
same field can result in an overabundance of overwintering 
borers, asynchronous borer development, and ultimately, 
substantial damage (Tan et al. 2003). Additional practices 
such as earthing up and propping cane stalks prevent lodging 

have been demonstrated to be effective measures in reducing 
stalk borer (Jaipal 2000).

However, it is essential to acknowledge that certain cul-
tivation practices have been abandoned due to their low 
control efficiency, labor shortages and escalating input 
costs (Hensley 1971). Despite these challenges, the inte-
gration of a combination of cultivation control practices, 
tailored to the specific conditions of each sugarcane cultiva-
tion area, remains crucial for effective and sustainable pest 
management.

Chemical pesticide control

When the level of economic injury reaches 6–12% of dam-
aged internodes for D. saccharalis, the necessity for action 
and the application of insecticides is recommended (White 
et al. 2008). Novaluron, an inhibitor of chitin synthesis, 
has demonstrated noteworthy reductions in D. saccharalis 
infestations, resulting in a 6.3–14.5-fold decrease in bored 
internodes. Moreover, the pyrethroid gamma-cyhalothrin 
has proven effective in safeguarding sugarcane against D. 
saccharalis infestations (Beuzelin et al. 2010). In studies 
conducted in Louisiana, insecticides such as Esfenvaler-
ate, Cyfluthrin + Azinphos-methyl, Lambda-cyhalothrin, 

Fig. 4   Cropping systems for control of sugarcane bores
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Tebufenozide and Esfenvalerate + Acephate have demon-
strated efficacy against D. saccharalis. Particularly, they 
have shown a strong fit for the chemical management of the 
pest (Rodriguez et al 2001; Cherry et al. 2015). Similarly, 
insecticides such as Flubendiamide, ß-cyfluthrin, Novaluron 
and Chlorantraniliprole have proven effective in reducing D. 
saccharalis injury, achieving reductions ranging from 39.1 
to 99.4% (Reay-Jones et al. 2005). Chlorantraniliprole and 
Flubendiamide have demonstrated high effectiveness in the 
management of E. loftini (Wilson et al. 2017). In China, 
insecticides including Carbofuran granules and Bisalfap 
granules have been extensively employed for controlling 
sugarcane borer (Chen 1998). Granular pesticides such as 
Sevidol granules, Lindane and Carbofuran have been uti-
lized for controlling of the early shoot borer, C. infuscatel-
lus, a significant pest in the sugarcane fields of Tamil Nadu, 
India (Narasimhan et al. 2001).

Despite the demonstrated effectiveness of numerous 
insecticides in mitigating sugarcane borer infestations, the 
indiscriminate application of these chemicals has resulted in 
adverse outcomes. These include the persistence of harmful 
residues, the development of pest resistance, resurgence of 
pests, environmental damage and the emergence of second-
ary pests (Reagan et al. 1972; Singh et al. 2015). Challenges 
such as inadequate penetration of insecticides, the protection 
of later instars and pupae within stalks, and the inability 
to apply foliar treatments in a timely manner during peak 
periods of adult emergence or oviposition pose substantial 
obstacles to the effectiveness of insecticide treatments (Ben-
nett 1971; Reagan et al. 1972). To address these issues, novel 
application techniques and formulations need to be explored 
and implemented.

Behavioral manipulation

Considering the potential adverse effects of pesticides, 
behavioral management and biological control are regarded 
as alternative supplementary technologies for controlling 
sugarcane borer.

Insects respond to a variety of chemical cues, including 
pheromones employed for mate attraction and allelochem-
icals used to locate host plants and identify plants under 
attack by herbivores. The utilization of sex pheromones 
serves as a valuable method for monitoring moth population 
levels of borers, providing essential information for timing 
insecticide applications and diminishing the fertility of wild 
females through mating disruption techniques (Van Rens-
burg et al. 1985; Narasimhan et al. 2001). The complexity 
of insect pheromones necessitates careful consideration of 
the formulation employed, particularly for successful trap-
ping. For instance, the pheromone of C. infuscatellus has 
been identified as Z-II hexadecenol and Z-II Hexadecenal 

(Narasimhan et al. 2001). While the sex pheromones of 
C. venosatus consist of a mixture of major components 
(Z13–18:AC, Z11–16:AC, and Z13–18:OH), only one 
sex pheromone component (Z11–16:OH) has been identi-
fied from C. infuscatellus (Fang et al. 2018). Pheromone-
trapping techniques have proven successfully in detecting 
the presence of C. sacchariphagus Bojer in sugarcane in 
Mozambique sugarcane fields (Way et al. 2004). The female 
sex pheromone of the sugarcane borer, C. sacchariphagus, 
comprises two compounds, (Z)-13-octadecenyl acetate (I) 
and (Z)-13-octadecen-l-ol (II). Traps baited with combina-
tions of these components successfully captured male C. 
sacchariphagus moths, with the 7:1 ratio performing simi-
lar to a virgin female moth (Trials 1980). In field trials, a 
blend of (Z)-8-tridecenyl acetate, (Z)-9-tetradecenyl acetate 
and (Z)-10-pentadecenyl acetate in an 8:4:1 ratio proved 
highly attractive for trapping male C. auricilius (Nesbitt 
et al. 1986). Studies have showed that a combination of (Z)-
9-tetradecenol with (Z)-9-tetradecenyl acetate, with the most 
effective composition being 75:25, as an enticing attractant 
for male S. cretica (Donegani 1977). In Guangxi, China, 
control experiments utilizing the sex pheromone of C. infus-
catellus on 5333 ha of sugarcane fields achieved a control 
effect of 82.48%, with the rate of attacked plants being less 
than 5% (Zeng 2004). Synthetic pheromone blends for C. 
suppressalis, C. indicus and C. auricilius have demonstrated 
satisfactory attractiveness to male moths in the field (Bee-
vor et al. 1990). Three potential pheromone components, 
hexadecenal (l6Ald), (E)-l1-hexadecenal (E11-l6Ald) and 
(Z)-l1-hexadecenal (Zl1-16Ald), have been identified from 
Scirpophaga nivella and Diatraea saccharalis (Angerilli 
et al. 1998; Dam et al. 2023). Field tests using traps baited 
with a 3-component blend revealed it as the most attrac-
tive synthetic pheromone combination (Angerilli et  al. 
1998). The sex pheromone produced by females of Sesa-
mia nonagrioides is a blend comprising Z-l1-hexadecenyl 
acetate (Z-11-16: Ac), Z-11-hexadecenal (Z-11-16: Ald), 
Z11-hexadecenol (Z-11-16: OH) and dodecyl acetate (12: 
AC) (Babilis and Mazomenos 1992). Despite the absence of 
recorded pheromone traps for Sesamia nonagrioides in the 
field, studies have identified. (Z)-13-octadecenyl acetate (I), 
(Z)-ll-hexadecenyl acetate (II) and (Z)-13-octadecenal (III) 
in an approximate ratio of 8:1:1.3 as equally attractive to the 
natural pheromone extracted from the female E. loftini moths 
(Shaver et al. 1988). Likewise, a two-component blend of 
(9Z, 11E)-hexadeca-9,1-dienal and (11Z)-hexadec-11-enal, 
in an approximate ratio of 10:1, has demonstrated compara-
ble attractiveness to the natural pheromone extracted from 
the female D. saccharalis pheromone glands (Kalinová et al. 
2005). The effectiveness of the D. saccharalis pheromone 
in reducing sugarcane borer damage has also been reported 
(Hensley 1973).
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Trap crops are plant strategically cultivated to attract 
insects, serving as a protective measure for target crops 
against pest attacks. Extensive testing have been conducted 
on trap crops, with numerous instances of successful com-
mercial application in various crops documented (Hokkanen 
and T 1991; Shelton and Nault 2004; Jacob et al. 2021). 
The utilization of trap crops extends to sugarcane borer 
management. In field conditions, small sugarcane plots sur-
rounded by a row of Erianthus arundinaceus (Retz.) Jeswiet 
have demonstrated reduced stalk borer damage, leading to 
decreased larval survival and development compared to 
sugarcane (Hokkanen and T 1991; Shelton and Badenes-
Perez 2006; Nibouche and Tibère 2010), and E. arundina-
ceus 28NG7 has been identified as a potential trap crop for 
controlling C. sacchariphagus, and larger commercial field 
trials have substantiated its efficiency in diminishing C. sac-
chariphagus damage on sugarcane (Nibouche et al. 2012).

Push–pull strategies encompass the manipulation of insect 
pests and their natural enemies by incorporating stimuli that 
render the protected target unattractive or unsuitable to the 
pests (push), while simultaneously exert a pulling force on the 
pest, guiding it toward an alternative crop or trap (pull), from 
which the pests are subsequently removed (Cook et al. 2007). 
Maize (Zea mays) is identified as a suitable attractive plant 
(Schexnayder et al. 2001), while Melinis minutiflora and Cype-
rus dives serve as repellent plant for certain borers (Conlong 
and Rutherford 2009) and are also attractive to parasitoids of 
these pests, such as Xanthopimpla stemmator (Conlong and 

Kasl 2000). When intercropped with sugarcane, M. minutiflora 
can reduce E. saccharina populations in sugarcane by up to 
50% and diminish damage to sugarcane by up to 75% (Barker 
et al. 2006). Additionally, Bt maize functions as a 'dead-end 
trap crop' due to the toxic effect of the cry1Ab protein on E. 
saccharina larvae, potentially mitigating borer damage on sug-
arcane (Keeping et al. 2010). Recently, MON 95379 Bt maize 
as a new tool to manage sugarcane borer (D. saccharalis) in 
South America (Horikoshi et al. 2022).

Regrettably, the utilization of pheromone to diminish stem 
borers infestation and enhance sugarcane crop production has 
made little progress thus far (Campion and Nesbitt 1983). 
The advancement of semiochemical components is frequently 
impeded by constraints in formulation and delivery technol-
ogy, mainly stemming from the small and specialized market. 
Inadequate knowledge and components may result in control 
breakdowns, jeopardizing the robustness and reliability of pest 
management approaches. Attaining a comprehensive under-
standing of the behavioral and chemical ecology of host-pest 
interactions and the impacts of these strategies on beneficial 
organisms necessitate substantial research efforts.

Fig. 5   Biological control of sugarcane bores
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Biological control

In Integrated Pest Management (IPM) strategies for sug-
arcane borers, biocontrol plays a pivotal role. Biocontrol 
agents mainly encompass entomopathogenic microorgan-
isms, parasitoids and natural enemies (Fig. 5).

Entomopathogenic microorganisms, encompassing bac-
teria, viruses, fungi, have found commercially applications 
as biological agents. Notably, among bacteria, Bt (B. thur-
ingiensis) stands out as a well-known classical biological 
agent (Sanahuja et al. 2011). Diverse Bt strains (HD133 
cryAa, cry1Ab, cry1C; HD559; GM7 cry1Aa, cry1Ab, and 
cry1B; GM10 cry1Aa, cry1Ab, cry1Ac, and cry1C; GM34 
cry1Aa, cry1Ab, and cry1Ac; S76 cryAa, cry1Ab, cryAc, 
cry2Aa, and cry2Ab) and pure proteins have demonstrated 
efficacy in killing D. saccharalis (Hernández-Velázquez 
et al. 2012; Daquila et al. 2021). In South Africa, novel 
control strategies for E. saccharina have been developed 
using the sugarcane endophyte Gluconacetobacter diazo-
trophicus carrying Bt cry1Ac genes (Theo and Gustav 
2013). Glasshouse trials revealed that sugarcane treated 
with Pseudomonas fluorescens carrying the Bt gene 
exhibited increased resistance to E. saccharina damage 
compared to untreated sugarcane (Herrera et al. 1994). In 
field trials, B. thuringiensis Berliner reduced D. saccha-
ralis damage by up to 75%, although it has not yet been 
adopted for commercial production (Legaspi et al. 2000; 
Showler 2016).

Viruses infecting insects have garnered great attention 
as biological control agents, owing to their specificity 
toward insect populations and minimal impact environ-
ment impact. An endemic granulovirus (GV) extracted 
from larvae of the sugarcane borer, Diatraea saccharalis 
(DisaGV), originally discovered in the USA, was intro-
duced to Brazil as an effort to control sugarcane borers 
(Alves 1986). In India, natural occurrences of two GVs 

infecting larvae of C. infuscatellus (ChinGV) and C. sac-
chariphagus (ChsaGV) were widely distributed in Tamil 
Nadu (Easwaramoorthy and Jayaraj 1987). Additionally, 
viruses such as Anticarsia gemmatalis MNPV (AgM-
NPV), Trichoplusia ni MNPV (TnMNPV) and AgMNPV-
D10 have demonstrated lethal effects on D. saccharalis 
(Hernández-Velázquez et al. 2012). These viruses provide 
potential insights for practical use in the biological control 
of sugarcane borer.

The field of entomopathogenic fungi has emerged as a 
promising avenue for researching the biological control of 
insect pests in sugarcane plants. The entomopathogenic 
fungi Beauveria bassiana and Metarhizium anisopliae have 
displayed significant potential as biocontrol agents against 
the sugarcane borer, D. saccharalis. Field experiments con-
ducted in Brazil showed that the application of M. anisopliae 
resulted in a commendable mortality rate of above 50% for 
D. saccharalis. Similarly, in India, M. anisopliae exhibited 
efficacy against C. indicus (Easwaramoorthy et al. 2001). 
Eight strains of M. anisopliae displayed high virulence 
against C. venosatus in China (Liu et al. 2012). Furthermore, 
M. anisopliae has demonstrated potential as a pathogen for 
S. inferens (Varma and Tandan 1996). In India, B. bassiana 
caused mortality rates of 69% to 76% in C. infuscatellus 
larvae (Sivasankaran et al. 1990). Laboratory studies have 
also indicated the pathogenicity of B. bassiana against S. 
inferens and S. grisescens (Varma and Tandan 1996; Sweet 
1994). Other entomopathogenic fungi such as Hirsutella 
nodulosa, Isaria tenuipes, and I. farinosa, Cordyceps spe-
cies have been studied on D. saccharalis, S. inferens and 
C. indicus, E. saccharina (Varma and Tandan 1996; Assefa 
et al. 2010; Hernández-Velázquez et al. 2012). Moreover, 
Fusarium oxysporum has exhibited pathogenicity against S. 
inferens (Varma and Tandan 1996). Additionally, Nosema 
sp., a microsporidium causing 'white larvae' disease, has 
impeded large-scale production of borers on sugarcane (Ing-
lis et al. 2015).

Table 1   Parasitoids on sugarcane borers

Parasitoid Borer species Borer life stage Reference

Billaea claripalpis Diatraea spp. Larvae Vargas et al. (2015)
Cotesia flavipes Diatraea spp. Egg and larvae Fuchs et al. (1979; Parra et al. (2014); Molter et al. (2023)
Goniozus natalensis Eldana saccharina Larvae Hearne et al. (1994)
Lixophaga diatraeae Diatraea saccharalis Larvae Posnock (2016)
Lydella minense Diatraea spp. Larvae Vargas et al. (2015)
Sturmiopsis inferens Chilo infuscatellus, C. auricilius, 

Acigona steniellus, Sesamia 
inferens

Larvae David et al. (1988), Srikanth et al. (2009)

Telenomus busseolaes S. Intacta, C. sacchariphagus Egg Nagarkatti and Nair (1973), Jamshidnia et al. (2010), Qin et al. 
(2018)

Trichogramma galloi Diatraea spp. Egg and larvae Goebel et al. (2014), Parra et al. (2014), Molter et al. (2023)
Xanthopimpla stemmator E. saccharina, C. sacchariphagus Pupa Conlong (1994), Conlong and Goebel (2002)
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Biocontrol programs have also utilized parasitoids on egg, 
larva and pupa, to manage sugarcane borers (Table 1). Six-
teen known species of parasitoids target the larva-pupa stage 
of the sugarcane borer (Chen 1998). Insect parasitoids such 
as Trichogramma spp. and Cotesias spp. have demonstrated 
effectiveness in controlling the egg and larval stages of moth 
borers (Goebel et al. 2014; Roldán et al. 2020; Molter et al. 
2023). For example, in Brazil, releases of Trichogramma 
galloi Zucchi and Cotesia flavipes have been employed to 
handle Diatraea spp. infestations, resulting in a substantial 
60% reduction in pest populations (Parra et al. 2014). C. 
flavipes is also a pivotal agent in managing D. saccharalis in 
South Texas (Fuchs et al. 1979; Parra et al. 2014). Lixophaga 
diatraeae has demonstrated effectiveness in controlling D. 
saccharalis in Louisiana, with a noteworthy 75% parasiti-
zation rate recorded in the 1954 season (Posnock 2016). 
In Colombia, the tachinid flies Lydella minense or Billaea 
claripalpis are released when previous crop damage exceeds 
2.5–5% (Vargas et al. 2015). Sturmiopsis inferens, a tachinid 
fly, serves as a crucial larval parasitoid of shoot borer (C. 
infuscatellus), stalk borer (C. auricilius), Gurdaspur borer 
(Acigona steniellus) and pink borer (S. inferens) (David 
et al. 1988). Releases of S. inferens against C. infuscatellus 
in India resulted in parasitism rates of 23.3% to 21.0% (Sri-
kanth et al. 2009). T. busseolae, an egg parasitoid wasp, has 
demonstrated high parasitism rates of approximately 50% 
on the eggs of sugarcane borers, S. intacta and C. saccha-
riphagus (Nagarkatti and Nair 1973; Jamshidnia et al. 2010; 
Qin et al. 2018). Goniozus natalensis shows promise as a 
parasitoid for biologically controlling E. saccharina infesta-
tions in sugarcane, resulting in a 60% reduction in crop dam-
age (Hearne et al. 1994). The pupa parasitoid Xanthopimpla 
stemmator Thunberg has been widely reared and released 
against E. saccharina in South African (Conlong 1994). In 
Açucareira de Moçambique, releases of X. stemmator led to 
reductions in C. sacchariphagus populations ranging from 
31.3 to 90% across different trial sites (Conlong and Goebel 
2002) (Table 1).

Biological control through predation by natural enemies 
plays a significant role in managing sugarcane borers (Mea-
gher et al. 1998). Predators such as ants, earwigs, ground 
beetles, spiders, wireworms, lady beetles, mites and sol-
dier beetles are considered crucial in controlling sugarcane 
borers in Louisiana (Negm and Hensley 1969). The red 
imported fire ant (Solenopsis invicta) emerges as a domi-
nant natural enemy of D. saccharalis in Louisiana sugarcane 
fields (Beuzelin et al. 2010). Pheidole spp. ants also serve as 
abundant predators on sugarcane borers (Cherry et al. 2015). 
Spiders (Araneae) play a significant role as egg predators 
of D. saccharalis and hold second importance within the 
natural enemy complex (Ali and Reagan 1986). Among the 
spiders, Lycosa poonaensis and Palystes sp. stand out as the 
most voracious species, consuming 1.6 borer larvae and 2.2 

borer adults per day respectively, indicating their effective-
ness in controlling sugarcane borer (Technol 2001a). Ground 
beetles (Coleoptera: Carabidae), tiger beetles (Coleoptera: 
Carabidae: Cicindelinae), rove beetles (Coleoptera: Staphyli-
nidae), click beetles (Coleoptera: Elateridae), and earwigs 
(Dermaptera) are also acknowledged as important natural 
enemies on D. saccharalis in Louisiana (Negm and Hensley 
1967, 1969).

Fluctuations in biological control can arise due to geo-
graphical and seasonal variations, along with the presence 
of hyperparasitoids, which may undermine the effectiveness 
of this strategy (Gitahy et al. 2007). Moreover, the environ-
mental instability of entomopathogenic microorganisms hin-
ders their augmentative use in controlling sugarcane borers. 
Therefore, further in-depth research is still required in this 
field to achieve widespread application.

Host plant resistance

In the realm of diseases and pests’ control, the paramount 
approach is plant resistance, prove to be both highly and 
economically prudent. The selection of resistant sugarcane 
varieties is commonly achieved through the application of 
conventional breeding techniques. Resistance to borers in 
sugarcane manifests in leaves or stems, impeding or retard-
ing larval ingress into the stalks (Kvedaras et al. 2007). 
Traits linked to leave, such as narrow leaves, leaf shedding, 
erect leaves, long leaf spindles, low leaf senescence, and 
those related to stems, including high fiber content, light 
stalk color, heavy wax coating, thin stalks, high vigor, high 
juice content, and rind hardness and epicuticular wax com-
position, have served as criteria for ranking entries based on 
their resistance to borers (Long and Hensley 1972; Ngwuta 
2015; Reagan and Mulcahy 2019; de Mello et al. 2020; 
Wartha et al. 2022; Penn and Read 2023). The selection 
of numerous resistant sugarcane cultivars has been facili-
tated by these pivotal resistance traits. Exemplary varieties, 
including N21, N24, L 99-226, L 01-299, HoCP 04-838, 
L 01-283, Ho 12-615, SP803280, SP813250, RB867515 
and SP891115, have exhibited resistance traits in either the 
stem or leaves, leading to a diminished rate of borer larvae 
and substantial height gain in stalks (Kvedaras et al. 2009; 
Tomaz et al. 2017; Reagan and Mulcahy 2019). In India, 
varieties such as Co 243, 281, 285, 312, 356, 421, 449, 
453, 527, 617, 650, 775, 853, 975, 1007, 1048, 1049, 1157, 
6239, 6402, 6403, 6507, 6508, 6510, 6610, Cos 673, 729, 
BO17, 54, 70 and 99 have demonstrated a low incidence of 
infestation by C. infuscatellus (David et al. 1986). Among 
these, Co 1007, 1236, 7302, 7303, S-5/75, S-38/76, E 92 
and E 168 (David et al. 1986), as well as Co 356 and 513 
are acknowledged for their resistance to Chilo auricilius in 
India. Additionally, Co 243, 453 and 617 display a lower 
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susceptible to Chilo tumidicostalis (Negm and Hensley 
1969). Furthermore, the determination of the percentage of 
bored internodes and the relative survival of larval within 
the stalk have been employed to select sugarcane varieties 
exhibiting resistance to the Mexican rice borer, Eoreuma 
loftini (Wilson et al. 2015b; Salgado et al. 2022). The evalu-
ation of sugarcane resistance to the African sugarcane borer, 
E. saccharina, involves the measurement of the length of 
bored stalks, the count of bored internodes, and the quan-
tification of surviving larvae and pupae in terms of both 
number and weight (Keeping 2006).

The incorporation of introgressions from wild relatives 
species plays a pivotal role in enhancing resistance and toler-
ance to various biotic and abiotic stresses, as well as obtain-
ing desirable agronomic traits, including increased yields 
(Prescott-Allen 1986; Singh et al. 2020; Meena et al. 2020). 
Nevertheless, the effective selection of elite varieties with 
resistance to borers through introgression poses challenges, 
given the highly time-consuming and labor-intensive nature 
of the selection process. The selection of desired clones 
necessitates three stages on a large population before they 
can proceed to regional evaluation trials (Meena et al. 2020). 
To confer resistance to Lepidopteran stalk borers, transgenic 
sugarcane lines expressing genes like the Cry protein, pro-
teinase inhibitor, or lectin have been successfully devel-
oped (Srikanth et al. 2011). This approach holds promise in 
effectively suppressing borers, offering substantial benefits 
to sugarcane production.

Status of transgenic sugarcane

Genes used for GM sugarcane

Significant endeavors have been devoted to the develop-
ment of genetically modified sugarcane harboring desired 
traits. For example, transgenic sugarcane plants have been 
employed for the production of sorbitol, gentiobiose, and 
gentiobiitol (Chong et  al. 2010a,b), cellobiohydrolases 
(CBH I and CBH II) (Harrison et al. 2011), bacterial endo-
glucanase (Harrison et al. 2014), 2G ethanol (Bewg et al. 
2016), and other valuable alternative products (Petrasovits 
et al. 2012; Barros et al. 2013; Zale 2016). Furthermore, 
numerous genetically modified sugarcanes exhibiting resist-
ance to both biotic and abiotic stresses have been success-
fully developed. Diverse genes have been integrated into 
sugarcane genomes, encompassing a bacterial toxin degrada-
tion gene (Zhang et al. 1999), virus resistance genes (Ingel-
brecht et al. 1999; Butterfield et al. 2002; McQualter et al. 
2004; Gilbert et al. 2005, 2009; Zhu et al. 2011; Guo et al. 
2015), bovine pancreatic trypsin inhibitor gene (Christy 
et al. 2009), several insect resistance genes (Arencibia et al. 
1997; Enríquez and G. 2000; Falco and Silva-Filho 2003; 

Weng et al. 2006; Kalunke et al. 2009; Arvinth et al. 2010; 
Weng et al. 2011; de Oliveira et al. 2022), herbicide resist-
ance genes (Enríquez-Obregón et al. 1998; Christell et al. 
2013), and tolerance to drought and salinity genes (Molinari 
et al. 2010; Reis et al. 2014; Kumar et al. 2014) (Table 2).

The prosperous commercialization of transgenic crops 
hinges on the stable and uniform expression of introduced 
traits across successive generations, coupled with their 
agronomic performance comparable to elite commercial 
cultivars (Anderson and Birch 2012). Prominent transgenic 
crops, including soybean (Padgette et al. 1995), rice (Duan 
et al. 1996) and corn (Fearing et al. 1997; Chen et al. 2008; 
Paz et al. 2010), have exhibited these characteristics. None-
theless, transgenic sugarcane populations manifest consid-
erable genetic variability (Joyce et al. 1998; Gilbert et al. 
2005; Vickers et al. 2005a), and somaclonal variation may 
occur to varying degrees in transgenic sugarcane due to the 
prolonged period in tissue culture during the transforma-
tion process. Hence, a comprehensive field assessment of 
transgenic events is imperative to identify elite and com-
mercially valuable events. However, there have been lim-
ited field assessments of transgenic sugarcanes, as evidenced 
by studies conducted by several scientists (Arencibia et al. 
1999; Leibbrandt and Snyman 2003; Lakshmanan et al. 
2005; Vickers et al. 2005a; Gilbert et al. 2009; Weng et al. 
2011; Basnayake et al. 2012).

Gallo-Meagher and Irvine presented the initial documen-
tation of stable expression of a transgenic trait-herbicide 
resistance in successive generations of sugarcane (Gallo-
Meagher and Irvine 1996). Subsequent to that milestone, 
stable transgene expression has been observed in relation to 
virus and insect resistance (Joyce et al. 1998; Gilbert et al. 
2009; Weng et al. 2011), herbicide resistance (Weng et al. 
2011), polyphenol oxidase activity (Vickers et al. 2005b), 
sorbitol (Chong et al. 2010b) and isomaltulose accumulation 
(Basnayake et al. 2012). Contradictory results have emerged 
from certain analyses of the agronomic performance of 
transgenic sugarcane. Arencibia et al. (1999) demonstrated 
that majority of transgenic events resistant to stalk borers 
exhibited agronomic traits akin to those of the untrans-
formed parent clone. In field trials spanning three years, 
Leibbrandt and Snyman (2003) and Gilbert et al. (2005) 
similarly concluded that stable transgene expression and 
agronomic performance equivalent to that of parent clones 
were attained. Nonetheless, Vickers et al. (2005a) observed 
that the majority of transgenic events exhibited substan-
tial yield reduction in contrast to the parent clone, with no 
impact on sugar content and purity. In summary, numerous 
beneficial genes have been successfully integrated into sug-
arcane, yielding the desired traits. No significant technical 
bottlenecks impede the generation of transgenic sugarcane. 
Nevertheless, more key tools are necessary to make trans-
genic events more efficient and available for commercial use.
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Sugarcane transformation methods

The production of transgenic sugarcane depends on reli-
able genetic transformation techniques. Presently, the two 
predominant methods for sugarcane transformation are 
biolistic and agrobacterium-based approaches (Manick-
avasagam et al. 2004; Zhangsun et al. 2007; Joyce et al. 
2014; Mayavan et al. 2015). These methods involve the 
use of embryogenic callus induced from immature top 
stalks (Taparia et  al. 2012a; Fouad et  al. 2015). The 
regeneration of transformed plants has been accomplished 
through diverse approaches, including direct and indirect 
organogenesis or somatic embryogenesis (Arencibia et al. 
1998), (Manickavasagam et al. 2004; Attia et al. 2005; 
Lakshmanan 2006), (Eldessoky et al. 2011; Taparia et al. 
2012b). Various methods have demonstrated differing effi-
ciencies in generating regenerative embryogenic calli. The 
application of a biolistic-based transformation approach, 
coupled with a bioreactor-based micro-propagation sys-
tem, has proven successful in transforming twelve elite 
cane genotypes, achieving transformation efficiencies of 
up to 39% (Ramasamy et al. 2018). Nevertheless, these 
methods may be time-consuming and labor-intensive. In 
addressing these challenges, researchers have investigated 
tissue culture-free plant transformation methods mediated 
by A. tumefaciens, involving sugarcane axillary buds, stem 
cuttings, or seeds (Manickavasagam et al. 2004; Mayavan 
et al. 2013, 2015).

The promoter stands out as the most important ele-
ment influencing the expression of transformed genes. 
To mitigate the risk of transgene silencing in multigene 
transformations and attain superimposed traits in trans-
genic crops, employing promoters with diverse expression 
patterns is highly desirable (Peremarti et al. 2010; Zeevi 
et al. 2012). Among several promoters, ubiquitin promot-
ers have surfaced as a promising option for the constitutive 
expression of transgenes in sugarcane (Lakshmanan et al. 
2005). These promoters have demonstrated a significant 
enhancement in transgene expression levels compared to 
other promoters, including the CaMV 35S promoter, rice 
actin Act1 promoter, and synthetic Emu promoter (Mcelroy 
et al. 1991; Last et al. 1991). Ubiquitin promoters encom-
pass those derived from Cauliflower mosaic virus (CaMV), 
Rice tungro bacilliform virus (RTBV), Commelina yellow 
mottle virus, Taro bacilliform virus, Banana streak virus 
(BSV), and Sugarcane bacilliform virus (SCBV) (Kay 
et al. 1987; Medberry and Olszewski 1992; Bhattachar-
yya-Pakrasi et al. 1993; Chen et al. 1996; Peer et al. 2001; 
Tzafrir et al. 1998; Schenk et al. 1999). The Ubi-1 pro-
moter has proven effective in producing stable transgenic 
sugarcane lines (Falco and Silva-Filho 2003). In a recent 
development, transgenic sugarcane plants expressing two 

genes encoding proteinase inhibitors under the control of 
the maize ubiquitin promoter (pUbi-1) were created, lead-
ing to a substantial retardation of Diatraea saccharalis 
feeding on the transgenic sugarcane leaf tissues (Falco and 
Silva-Filho 2003). Similar to Ubi-1, sugarcane ubi4 has 
demonstrated heat shock inducibility in stable transformed 
sugarcane callus lines, whereas sugarcane ubi9 did not 
exhibit such inducibility in transgenic sugarcane plants 
(Wei et al. 2003). In contrast, another promoter, SCBV21, 
exhibited 1.8- and 2.4-fold higher transient expression of 
EYFP (Enhanced Yellow Fluorescent Protein) compared 
to the standard maize ubiquitin 1 (Ubi1) and Cauliflower 
mosaic virus 35S promoters, respectively, in sugarcane 
young leaf segments (Gao et al. 2017). Additional func-
tional promoters in sugarcane encompass sugarcane 
dirigent and o-methyltransferase from putative defense and 
fiber biosynthesis-related genes, maize phosphoenolpyru-
vate carboxylase, and sugarcane loading stem gene (Damaj 
et al. 2010; Harrison et al. 2011; Moyle and Birch 2013).

Another critical factor influencing exogenous gene 
expression and performance is the GC content and codon 
usage pattern of target gene (Estruch et al. 1997). Earlier 
studies have shown that GC-rich regions are more tran-
scriptionally active in plants and animals, whereas AT-rich 
regions can hinder transcription (Scott et al. 1998; Herbert 
and Rich 1999; Vinogradov 2003). Hence, designing syn-
thetic copies of exogenous genes with elevated GC contents 
has the potential to enhance translational efficiency (Rocher 
et al. 1998Rouwendal et al. 1997; Liu 2009; Jackson et al. 
2013; Mudge et al. 2013). In the development of strongly 
insect-resistant sugarcane, the cry1Ac gene underwent modi-
fication to create a synthetic version, referred to as s-cry1Ac. 
This involved increasing the GC content of the coding region 
from the original 37.4% to 47.5% based on the sugarcane 
codon usage pattern. Consequently, this modification 
enhances the protein expression level of s-cry1Ac in trans-
genic sugarcane plants by twofold to threefold (Weng et al. 
2006). Transgenic sugarcane lines harboring the modified 
cry1Ac gene with an evaluated GC content (54.8%) yielded 
approximately fivefold higher levels of cry1Ac protein (up 
to 50 ng cry1Ac protein per mg soluble proteins) com-
pared to those expressing the partially modified s-cry1Ac 
(GC% = 47.5%) (Weng et al. 2011). These m-cry1Ac trans-
genic sugarcane lines demonstrated enhanced resistance to 
insect attacks compared to s-cry1Ac transgenic sugarcane 
plants (Weng et al. 2011).

The creation of transgenic plants with stacked multiple 
genes is typically accomplished through the cross between 
different transgenic plants (Cao et al. 2002; Datta et al. 2002; 
Zhao et al. 2003) or by retransformation with multiple genes 
(Jobling et al. 2002; Carlo et al. 2003; Singla-Pareek et al. 
2003; Qi et al. 2004). However, researchers have devised a 
fast and cost-effective method that entails inserting a single 
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transferred DNA (T-DNA) containing multiple genes into a 
plant at the same site of the genome within one transforma-
tion cycle (Slater et al. 1999; Bohmert et al. 2000, 2002). 
Despite its advantages, the T-DNA approach has its limita-
tions, including the size of the T-DNA and potential uneven 
gene expression among different genes (Jones et al. 1987; 
Peach and Velten 1991).

Besides, various studies have reported that factors, 
including the transgene copy number, developmental regu-
lation, and transcriptional or post-transcriptional mecha-
nisms, can influence transgene stability in transgenic sug-
arcane plants (Wei et al. 2003; Robert et al. 2010; Mudge 
et al. 2009). Hence, further improvements are necessary 
to overcome these limitations (Poirier et al. 2000; Goderis 
et al. 2002; Thomson et al. 2002). Encouragingly, long-term 
transgene expression consistency and the T-DNA insert sta-
bility have been successfully achieved in multiple cycles of 
field-propagated sugarcane (Caffall et al. 2017). Moreover, 
transgenic sugarcane parents that exhibit stable inheritance 
of transgenes can be effectively utilized in breeding pro-
grams (Butterfield et al. 2002), indicating a high likelihood 
of successful commercialization of transgenic sugarcane.

Progress, advantages and limitations of Bt 
sugarcane

The status of Bt crops

Bacillus thuringiensis (Bt) Cry toxins, recognized bio-
logical agents employed for insect pests control (Gómez 

2007), are synthesized as crystal inclusions, hence acquir-
ing the designation Cry toxins. Presently, a total of 166 cry 
genes have been documented, classifying their respective 
cry proteins divided into 30 groups and several subgroups 
(Barboza-Corona 1998).

Genetically modified (GM) plants incorporating Bt 
genes have undergone swift adoption since their com-
mercial introduction in 1996 (Dively et al. 2016). Various 
crops, such as maize, cotton, soybean, rice, potato, brinjal, 
tomato and sugarcane, have been genetically modified with 
Bt genes (Xiao and Wu 2019). The global cultivation area 
of Bt crops has witnessed a substantial surge, escalating 
from 1.1 million hectares in 1996 to approximately 178 
million hectares annually across 28 countries at present 
(Venugopal and Dively 2017). Bt corn, cotton and soybean 
collectively constitute over 99% of this total area (Venu-
gopal and Dively 2017), with a cumulative surpassing of 
830 million hectares planted with Bt crops globally up to 
the present moment.

Cry toxins exhibit toxic activity against various insect 
species (Miyasono et al. 1994; Bradley et al. 1995; Sch-
nepf et al. 1998). Their mode of action involves solubiliza-
tion and proteolytic processing in the insect midgut. The 
proteins bind to receptor molecules located in the apical 
cells of the brush border membrane, leading to their inser-
tion and the formation of a pore (Hfte and Whiteley 1989; 
Bravo 1997; Schnepf et al. 1998). The specificity of these 
crystals to insects relies on the proteins’ affinity to bind-
ing receptor molecules and the environmental conditions 
within the insect midgut (Van et al. 1990; Bravo et al. 1992) 
(Fig. 6). Cry toxins have exhibited substantial insecticidal 

Fig. 6   The model of Bt mechanism. The Bt toxin dissolves in the high pH insect gut and become active. The toxins then bind to the gut cells of 
the insect, punching holes in the lining. The Bt spores spill out of the gut and ultimately leading to the death of the insect
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activity against Lepidopterans, Coleopterans and mosquitoes 
(Gómez et al. 2007).

In addition to Cry proteins, different types of Bt crops 
have been engineered to produce vegetative insecticidal pro-
teins (Vip) (Mahon et al. 2012; Bernardi 2015; Chakroun 
et al. 2016; Sharon et al. 2016; Wei et al. 2017). The increas-
ing adoption of Bt crops reflects growers’ high satisfaction 
with their performance. Bt crops have demonstrated out-
standing effectiveness in controlling Coleopteran, Lepidop-
teran and some Hemipteran insect pests (Carrière et al. 2003; 
Wu et al. 2008; Hutchison et al. 2010; Downes et al. 2017; 
Xiao and Wu 2019; Girón-Calva et al. 2020). By diminish-
ing reliance on conventional chemical pesticides, Bt crops 
provide an alternative and sustainable strategy for pest man-
agement (Betz et al. 2000).

Progress of Bt sugarcane

Due to the large and complex genome, selecting sugarcane 
cultivars with desired agronomic traits by conventional 
breeding program is a time- and labor-consuming proce-
dure (Cheavegatti-Gianotto et al. 2011; Souza et al. 2011). 
Consequently, direct gene transformation is being employed 
as a promising approach to introduce important traits into 
sugarcane (Ye et al. 2016). The enhancement of insect resist-
ance in transgenic sugarcane has been achieved through the 
transformation of cry1A(b) (Arencibia et al. 1997, 1999; 
Arvinth et al. 2010; Zhi et al. 2017), GNA (Sétamou et al. 
2002; Zhangsun et  al. 2007), cry1Aa3 (Kalunke et  al. 
2009), cry1Ac (Weng et al. 2006, 2011; Gao et al. 2016a, b; 
Dessoky et al. 2021; Salgado et al. 2022), cry2A (Gao et al. 
2018), Vip3A (Riaz et al. 2020), and proteinase inhibitor 
(Nutt et al. 2001; Falco and Silva-Filho 2003) (Iqbal et al. 
2021)(Table 3). Field trials of insect-resistant transgenic 
sugarcane have revealed that most lines exhibit agronomic 
traits similar or less favorable than those of non-transgenic 
varieties (Arencibia et al. 1999; Zhi et al. 2017). Notably, 
concerning borer resistance, the creation of sugarcane cul-
tivars ROC16 and YT79-177 by introducing of a modified 
cry1Ac gene through particle bombardment resulted in about 
62% of transgenic plants being resistant to borer in both 
greenhouse and field trials (Weng et al. 2011). Furthermore, 
the Bt insecticidal gene Cry1Ab and the glyphosate-tolerant 
gene EPSPS were inserted into a single transferred DNA 
fragment along with the selection marker gene PMI and 
introduced into sugarcane using agrobacterium-mediated 
transformation, leading to the development of robust borer-
resistant lines (Wang et  al. 2017). Additionally, a gene 
encoding the Bacillus thuringiensis Cry1a(b) protein has 
been found to confer sugarcane resistance to Diatraea sac-
charalis under both laboratory and field conditions (Technol 
2001b). Therefore, the insertion of insect-resistant genes into 

sugarcane holds great promise as a strategy for controlling 
sugarcane borers.

It is worth noting that having low copy-number exogenous 
genes are considered to be beneficial for plant improvement 
(Dai et al. 2001). For example, a single copy of Cry1Ab or 
Cry1Ac in sugarcane can provide effective protection against 
borers (Arvinth et al. 2010; Weng et al. 2011). Additionally, 
transgenic sugarcane lines with a medium copy number of 
the cry1Ac gene have also shown significantly higher resist-
ance to sugarcane borers while maintaining a similar yield 
to control lines (Gao et al. 2016a, b). However, there was 
a statistically significant negative correlation between the 
copy number of the cry2A gene and the percentage of borer-
infested plants (Gao et al. 2018). The gene balance hypoth-
esis suggests that a correlation between transgene copy num-
ber and gene expression levels, but in reality, the relationship 
is complex (Dai et al. 2001; Coate et al. 2016). Moreover, 
the correlation between the cry1Ac protein abundance and 
cry1Ac gene copies varied among different transgenic lines 
from various varieties(Zhou et al. 2018). Therefore, in prac-
tical plant improvement, it is necessary to screen a large pop-
ulation of transgenic lines to identify individuals with stable 
expression patterns that are appropriate for an aimed trait, 
while avoiding adverse agronomic changes that may arise 
from chance mutations or quasi-stable epigenetic changes 
during tissue culture (Graham et al. 2011; Yu et al. 2011).

Commercialized Bt sugarcane

During 2022, the total global area under GM crop cultiva-
tion reached approximately 202.2 million hectares, the plant-
ing area of GM crops accounted for about 12% of the total 
arable land area, reflecting an increase of 3.3%. The number 
of countries approved to cultivate GM crops increased to 
29, and 71 countries and regions approved the commercial 
application of GM products (Li et al. 2023). Transgenic 
crops with herbicide tolerance (HT) and pest resistance 
(Bt) have been widely used in recent years. According to 
the statistics of the United States Department of Agriculture 
(USDA), in 2022, the share of Bt cotton accounted for about 
89%, and Bt corn climbed to 84% of the GM crops. How-
ever, the plantation area of transgenic sugarcane is 100,000 
hm2. So far, a total of 7 GM sugarcane events, which confer 
insect resistance (against Lepidoptera), have been developed 
for approval (ISAAA 2019, 2022). In Brazil, the foremost 
sugarcane producer and primary sugar exporter, genetically 
modified (GM) sugarcane varieties resistant to the sugarcane 
borer (Diatraea saccharalis), have obtained approval and 
been introduced for commercial cultivation. Brazil stands as 
the sole and pioneering country to introduce Bt sugarcane 
to the market. These varieties CTC 20 Bt, CTC 9001 Bt and 
CTC 93309–4 Bt express not only the cry1Ab protein, but 
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Table 3   Transgenic sugarcane resistant to borers

Type of explant Promoter Method of trans-
formation

Exogenous gene Target trait Variety References

Embryogenic Calli Ubiquitin promoter Agrobacterium-
mediated trans-
formation/parti-
cle bombardment 
and regeneration

Cry1Ab Shoot borer (Chilo 
infuscatellus) 
resistance

Co 86,032 and 
CoJ 64

Arvinth et al. (2010)

Embryogenic calli CaMV 35S pro-
moter

Electroporating cryIA(b) Borer resistance 
(Diatraea sac-
charalis)

Ja60-5 Arencibia et al. 
(1999)

Embryogenic calli Ubi-1 promoter Agrobacterium-
mediated trans-
formation

Cry1Ab, 
glyphosate-
tolerant gene 
EPSPS

Insect Resistance 
and Herbicide 
Tolerance

ROC22 Zhi et al. (2017)

Embryogenic calli CaMV35S pro-
moter

Agrobacterium-
mediated trans-
formation

Cry 1Aa3 Borer resistance 
(Chilo saccha-
riphagus and 
Scripophaga 
excerptalis)

CoC671 Kalunke et al. 
(2009)

Embryogenic calli Maize ubiquitin 
promoter

Microprojectile 
bombardment

S-Cry1Ac Borer resistance YT79-177 and 
ROC16

Weng et al. (2006)

Embryogenic calli pUbimBt Microprojectile 
bombardment

m-cry1Ac Borer resistance ROC16 and YT79-
177

Weng et al. (2011)

Embryogenic calli 35 s promoter Microprojectile 
bombardment

cry1Ac Borer resistance 
-Diatraea sac-
charalis

FN15 Gao et al. (2016a, b)

Embryogenic calli Maize ubiquitin 
promoter (Ubi-1)

Microprojectile 
bombardment

cry1Ac Borer resist-
ance- Diatraea 
saccharalis

– Falco and Silva-
Filho (2003)

Embryogenic calli cry1Ac p Agrobacterium 
tumefaciens 
transformation

cry1Ac Borer resistance- 
Spodoptera litura

Salgado et al. 
(2022)

Salgado et al. (2022)

Young leaf 
explants

35S promoter Agrobacterium 
transformation

cry1Ac Mortality percent-
age of Sesamia 
cretica

GT54-C9 Dessoky et al. 
(2021)

Intact cells CaMV 35S pro-
moter

Microprojectile 
bombardment

cry1A(b) Borer resistance Ja 60–5 Arencibia et al. 
(1997)

– – – – Herbicide-Resist-
ant

NCo310 Leibbrandt and Sny-
man (2003)

Embryogenic calli Maize ubiquitin-
l(Ubi-1) pro-
moter

Microprojectile 
bombardment

bar gene Herbicide resistant NCo 310 Gallo-Meagher and 
Irvine (1996)

Embryogeniccalli Agrobacterium-
mediated trans-
formation

CryIAC Resistance against 
the Sesamia 
cretica

GT54–9(C9) Ismail and Roba 
(2013)

Embryogenic calli ST-LS1 promote Particle bombard-
ment

cry2A Borer Resistance ROC22 Gao et al. (2018)

Embryogenic calli Ubi-1 promoter Agrobacterium-
mediated trans-
formation

Cry1Ab, 
glyphosate-
tolerant gene 
EPSPS,

Insect Resistance 
and Herbicide 
Tolerance

ROC22 Gao et al. (2018)

Embryonic calli 35 s promoter Particle bombard-
ment

cry1Ac Resistance against 
sugarcane borer

FN15 Gao et al. (2016a, b)

Embryogenic calli pGcry2A0229 Particle bombard-
ment

cry2A Resistance against 
sugarcane borer

ROC22 Gao et al. (2018)

Young leaf roll 
region with the 
apical meristem

Polyubiquitin Particle bombard-
ment

Vip3A Resistance against 
sugarcane borer

CPF-246 Riaz et al. (2020)
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also the neomycin phosphotransferase type II (NptII) protein 
used as a selection marker during the transformation process 
(Kennedy et al. 2018). Regarding health issue, the major 
concern for people is regarding GM crops. Investigations 
into the presence of foreign DNA and protein in sugar pro-
duced from these sanctioned GM sugarcane varieties have 
demonstrated the absence of heterologous DNA or Bt pro-
tein in the clarified juice, ethanol or raw sugar. This suggests 
their elimination or degradation during the processing of this 
GM variety (Cheavegatti-Gianotto et al. 2018).

Advantages of Bt crops

Biotechnology provides potent tools capable of substantially 
enhancing agricultural productivity and efficiency, concur-
rently tackling diverse challenges. Utilizing biotechnology 
enables the reduction of excessive insecticide use, leading 
to sustainable economic and ecological benefits (James 
2010). For instance, Bt cotton has exhibited notable out-
comes, including a 50% decrease in insecticide usage and 
a 31% surge in crop yields in China and India. This has 
resulted in a significant boost in cotton income, totaling 
US$11.9 billion (James 2011). In addition to direct eco-
nomic benefits, reports indicate indirect advantages such 
as heightened employment, household income and dimin-
ished poverty (Subramanian and Qaim 2009; Raybould and 
Quemada 2010; Shankar and Thirtle 2010; Carpenter 2010). 
Substantial research suggests that the adoption of Bt crops 
has substantially decreased insecticide application in numer-
ous countries (Carpenter 2010). On a global scale, geneti-
cally modified (GM) crops have augmented yields by 22%, 
diminished pesticide usage by 37%, and mitigated environ-
mental impact, including an 18% reduction in insecticide 
and herbicide use (Raman 2017).

Cry proteins, expressed by Bt crops, have been shown 
to possess high specificity toward target pests, thereby pre-
senting minimal risk to non-target species due to their nar-
row spectrum of activity (Romeis et al. 2006; Lareesa et al. 
2008; Li et al. 2014). Reports confirm that the widespread 
adoption of Bt cotton has indeed yielded a positive impact 
on pest populations (Wu et al. 2008; Qiao et al. 2016; Qiao 
et al. 2017). Thus, Bt crops play a role in enhancing the over-
all sustainability and health of agroecosystems by foster-
ing a more balanced and resilient ecosystem (Marvier et al. 
2007); Naranjo et al. 2008; Naranjo 2011; Lu et al. 2012; 
Li et al. 2016a, b; Wei et al. 2018). As a result, this fosters 
more effective pest control and reduces reliance on broad-
spectrum insecticides.

Bt crops contribute to food quality by mitigating pest 
damage, preventing not only yield losses but also preserv-
ing quality (Miller 2008), (Li et al. 2016a, b). Pesticide resi-
dues are a significant concern regarding food quality, given 

their potential adverse effects on health through the direct 
consumption of foods containing toxic residues (Anilkumar 
et al. 2008; Usha et al. 2011; Nag and Raikwar 2011). Bt 
crops can decrease the dependence on chemical insecticides, 
thereby reducing pesticide residues in crops. This contrib-
utes to heightened food safety and quality by minimizing 
the potential health risks associated with pesticide exposure 
(Abedullah et al. 2014).

Due to its unique characteristics, such as vegetative prop-
agation, sugarcane minimizes the likelihood of gene flow 
and potential environmental impacts associated with trans-
genic varieties. Additionally, sugar derived from sugarcane, 
undergoing high-temperature and crystallization processes, 
is considered a low-risk product in terms of both food and 
environmental safety (Qaiser et al. 2011). Several biosafety 
reports have been conducted on transgenic sugarcane lines 
to assess their safety and potential environmental effects 
(Gilbert et al. 2005). Specifically, studies on Cry1Ac trans-
genic sugarcane have demonstrated that it does not have a 
significant impact on microbial diversity in the rhizosphere 
soil and enzyme activities within a single crop season (Zhou 
et al. 2016). These findings suggest that Bt sugarcane has the 
potential to be utilized for effective insect pest management 
in sugarcane fields without significant adverse effects on the 
environment.

In summary, Bt crops function as a valuable tool for 
enhancing food and feed quality by decreasing pesticide resi-
dues, mitigating health risks linked to pesticide exposure, 
and advocating for safer and healthier agricultural practices.

Issues and solution of Bt crops

The emergence of pest resistance poses a significant chal-
lenge to the sustainability of Bt transgenic technology 
(Heckel 2012; Pardo-López et al. 2013; Dively et al. 2016; 
Sharon et al. 2016). The development of resistance in pest 
populations can lead to a reduction in the efficacy of Bt 
crops for pest control on a global scale (Tabashnik et al. 
2013; Bruce et al. 2014). Additionally, there are reports of 
cross-resistance between Cry proteins in cotton pest insects 
(Anilkumar et al. 2008; Unnithan et al. 2015), emphasizing 
the urgency of resistance management (Mchughen 2012). To 
tackle these challenges, one commonly utilized approach is 
the high-dose refuge strategy. This approach involves plant-
ing Bt crops with high levels of toxin expression to sup-
press the population of resistant pests, while simultaneously 
growing 'refuge' plants that do not produce Bt toxins. These 
refuge plants offer a habitat for susceptible pests, allowing 
for their survival and mating with any resistant insects, thus 
maintaining a low frequency of resistant alleles (Roush 
1997; Liu and Tabashnik 1997; Dively et al. 2016).
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In addition to the high-dose refuge strategy, early detec-
tion of resistance is crucial. This involves conducting base-
line susceptibility tests to determine the susceptibility of 
pest populations to Bt toxins and to identify the genetic basis 
underlying their resistance, (Paolino and Gassmann 2017; 
Wei et al. 2017). Identifying resistant individuals or popu-
lations early on enables the implementation of appropriate 
management strategies to mitigate resistance evolution and 
preserve the efficacy of Bt crops. Overall, these strategies 
are essential to delaying the evolution of resistance and 
maintaining the long-term effectiveness of Bt transgenic 
technology.

Conclusion and future perspectives

Lepidopteran borers, by causing reductions in stalk weight, 
juice quality and sugar recovery, are the most destructive 
pests in sugarcane. Currently, the use of chemical pesticides 
can severely damage human health and ecosystem function-
ing, compromising the sustainability of plant protection. 
Thus, the objective for scientists is reducing the use of chem-
ical pesticides, thereby minimizing environmental impact 
without compromising crop yields. Biological agents, such 
as aphids and fungi, have been studied and other novel tech-
nologies, including application of cropping system, behav-
ioral manipulation and the selection of resistant varieties, 
have been identified to effectively reduce sugarcane borer 
damages in laboratory conditions. However, the effective-
ness of this strategy has been hampered by harmful residues, 
limitations in formulation, environmental variability, labor 
shortages, and increased input costs. Furthermore, the life 
cycle of the sugarcane borer typically lasts for two months, 
with 4–6 overlapping generations occurring each year. Given 
that the sugarcane borer primarily feeds within sugarcane 
stalks, managing it with foliar insecticides or other biologi-
cal agents is challenging and requires careful timing to coin-
cide with larval eclosion. Consequently, the effectiveness of 
biological control activities against the pest is impeded, and 
most of these technologies are challenging to implement in 
the field.

Transgenic Bt sugarcane, achieved through the intro-
duction of genes encoding Cry proteins, has effectively 
enhanced sugarcane's resistance to insect damage, as evi-
denced by studies conducted by scientists (Kalunke et al. 
2009; Arvinth et al. 2010; Wu et al. 2010; Weng et al. 2011; 
Gao et al. 2016a, b). A lot of successful commercial exam-
ples can be also found in Bt corn and Bt cotton, which have 
shown increased profits and decreased yield losses, so devel-
oping Bt sugarcane is a viable solution for sugarcane borers.

Further studies can focus on these aspects:
There is still a need for improvement in IPM strategy to 

control sugarcane borers. The development of innovative 

biological products, including microorganisms and metabo-
lites, screening additional chemical pesticides, employing 
chemical ecology strategies, identifying novel cultural man-
agement approaches, and breeding resistant varieties, will 
enhance the resistance of sugarcane to attacks by borers. 
Investigating the effectiveness of various combinations of 
control strategies in 'IPM' is crucial for achieving effec-
tive control of sugarcane borers, albeit with significant 
challenges.

The implementation of these tactics depended on an 
enhanced understanding of the systematics, biology and 
ecology of the pests. Investigating the lifespan and feeding 
habits is crucial for determining the optimal timing of pesti-
cide and other agent applications. Additionally, Geographic 
Information Systems (GIS), remote sensing, and semio-
chemicals for detecting damage and monitoring populations 
offer significant opportunities for IPM.

The success of this initiative relies on the collaborative 
efforts of researchers, technology-transfer specialists, and 
commercial partners to ensure the effective translation of 
research into practical use. Current practices in IPM should 
be evaluated within the context of IPM programs, with a 
focus on compatibility and consideration of ecological, envi-
ronmental, and economic consequences. The efficacy of new 
control strategies should be assessed by farmers, ensuring 
consistent profitability and security for growers and sugar-
cane millers.

Promising biotechnological advances with excellent 
potential are poised to significantly enhance the control of 
sugarcane borers. Exploring the feasibility and advantages 
of stacking multiple genes within a single transferred DNA 
(T-DNA) fragment holds the potential to simplify genetic 
engineering and enhance the effectiveness of pest resist-
ance (Xiao and Wu 2019). Thus, the future management of 
lepidopteran pests will encompass the integration of trans-
genic crops with various novel Bt genes. Additional research 
should concentrate on utilizing or developing more robust 
genetic modification techniques, including genome edit-
ing technology and efficient genetic transformation, for the 
development of crops with enhanced resistance traits against 
sugarcane borers.
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