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Abstract
Drought events are expected to limit crop productivity in the context of current climate change. Drought is also likely to 
affect multitrophic interactions such as those involving plants, phytophagous insects and their natural enemies. We designed 
a two-phase experiment to test the effect of water availability and fertilizer treatment on the interaction between maize, the 
fall armyworm and its nucleopolyhedrovirus pathogen. Plants grown in soil with high irrigation and mineral fertilization 
had the highest shoot and root dry weight. Furthermore, plant nitrogen levels were higher in plants with fertilization and 
a low irrigation scheme compared to other treatments. Low irrigation of maize plants reduced virus-induced mortality of 
armyworm larvae. Insects did not feed on plants with high irrigation and without fertilization. We conclude that water stress 
and plant nutrition can affect virus performance and thereby affect the efficiency of biological control and pest management, 
especially as water and nutrient limitation will likely increase under climate change.
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Introduction

Maize, Zea mays L. (Poaceae), is one of the most important 
staple crops in the world and is used for food, animal feed 
and numerous industrial products (Ranum et al. 2014). This 
plant is attacked by pests that decrease the yield and can 
affect the quality of the grain (de Lange et al. 2014). The fall 

armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: 
Noctuidae), is a major pest of maize and a number of other 
crops including rice, sorghum and others (Nagoshi et al. 
2011). This insect is widely distributed across the Americas, 
particularly in subtropical and tropical regions (Lafontaine 
and Schmidt 2010), but has recently invaded and become a 
devastating pest in peripheral regions of the European Union 
such as the Canary Islands, Africa, Asia and Oceania (Goer-
gen et al. 2016; Baloch et al. 2020; Nagaratna et al. 2021; 
Gilioli et al. 2022; Wang et al. 2023).

Infestations of S. frugiperda are usually controlled by the 
application of synthetic insecticides (Chimweta et al. 2020) 
or by using genetically modified plants that express insect 
toxins (Carzoli et al. 2018) or the use of new genetic modifi-
cation methods such as the self-limiting insect and germline 
transformation techniques (Chen and Palli 2021; Reavey 
et al. 2022). Nevertheless, there is a growing incidence 
of resistance to common pesticides (Van den Berg and du 
Plessis 2022) and genetically modified maize (Huang 2021). 
Excessive use of pesticides can also have consequences for 
human and animal health, an adverse environmental impact 
and significantly increased crop production costs (Mahmood 
et al. 2016). Biological insecticides based on entomopatho-
gens represent an effective and environmentally benign 
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alternative to conventional insecticides as they are highly 
selective and compatible with other insect natural enemies, 
and fit well into integrated pest management programs 
(Lacey et al. 2015; Lacey 2017).

Lepidopteran nucleopolyhedroviruses (Baculoviridae; 
genus Alphabaculovirus) are DNA viruses that are embed-
ded in a protein matrix to form large occlusion bodies (OBs) 
that allow them to remain viable on plant surfaces or in the 
soil for extended periods (Harrison et al. 2018). Infection 
occurs when larvae consume OB-contaminated foliage and 
death follows several days later with the release of large 
numbers of OBs into the environment for the following cycle 
of transmission (Williams 2018). These viruses do not pose 
any risk for human or animal health, beneficial insects or the 
environment, and they are considered to be safe for use as 
biological insecticides (Hokkanen and Hajek 2003). Several 
strains of the Spodoptera frugiperda multiple nucleopolyhe-
drovirus (SfMNPV) are being developed as the basis for bio-
logical insecticides targeted at this pest (Haase et al. 2015; 
Barrera-Cubillos et al. 2017; García-Banderas et al. 2020; 
Hussain et al. 2021).

Plants can influence phytophagous insects by modulat-
ing the nutritional content in their tissues and bodily fluids, 
thereby affecting positively or negatively their longevity, 
reproductive performance and physiology (Kariyat and Port-
man 2016). It is important to understand how plants influ-
ence the immune response, survival, mobility and reproduc-
tion of insects in order to predict the spread of invasive pests 
(Neubert and Parker 2004). These traits can also affect the 
interactions of herbivores with their natural enemies (Gols 
2014).

Water stress and nutrition have a critical role in the devel-
opment of plants in both natural habitats and agricultural 
conditions (Morales et al. 2008). Plants require water and 
nutrients to perform biochemical reactions and physiologi-
cal functions, including photosynthesis, solute transport 
and defense (Hopkins and Hüner 2004; Galmés et al. 2007; 
Da Ge et al. 2010). Nevertheless, in the context of current 
global climate change, it is expected that heat waves and 
drought events will increase and have a negative impact on 
plants (Ploughe et al. 2019), which may affect the interac-
tions between herbivorous insects and their natural enemies 
(Thomson et al. 2010; Anderegg et al. 2015; Díaz-Álvarez 
et  al. 2020; Noman et  al. 2020). Therefore, future pest 
control strategies will have to consider the aspects of crop 
development that interact with the development of insect 
pests and their natural enemies, such as their susceptibility 
to biological insecticides based on viruses.

There are very few studies on the efficiency of 
entomopathogens in phytophagous insects feeding on plants 
under extreme conditions such as water stress (drought) and 
nutrient limitation (Devi et al. 2005; Borisade and Magan 
2015; Dara et al. 2017; Real Santillan et al. 2019). The 

objective of this study was to evaluate the effect of water 
stress and soil nutrients on the interaction between the fall 
armyworm on maize and its nucleopolyhedrovirus. Our 
hypothesis is that the limitation of water and nutrients will 
affect the performance of this baculoviruses toward its host, 
the fall armyworm.

Materials and methods

Biological materials

The maize hybrid line NB9 (Novasem Innovaciones, Jalisco, 
Mexico) has been developed to have water stress tolerance 
and rapid initial development traits (https://​www.​novas​em.​
com.​mx). Larvae of the fall armyworm were collected in 
maize fields in the municipality of Queréndaro, Michoacán 
State, Mexico. Larvae with signs of polyhedrosis disease 
were not observed in the field-collected insects or any of 
their descendants during laboratory rearing. Insects were 
reared at room temperature on semisynthetic diet (Poitout 
and Bues 1974), and the adults were given continuous access 
to 15% honey solution. The SfMNPV strain originated from 
Nicaragua and has been characterized in detail (Escribano 
et al. 1999; Simón et al. 2008). This isolate was produced 
in fourth instar S. frugiperda larvae, purified and OBs were 
quantified (Christian et al. 2001), using a Neubauer counting 
chamber mounted on a phase-contrast light microscope at 
40X magnification in triplicate.

Lethal concentration assay

A preliminary test was performed to estimate the median 
lethal concentration (LC50) of SfMNPV OBs. Groups of 30 
newly molted larvae in the second instar were inoculated 
with 10, 30, 100, 300 and 1000 OBs/mm2 using the diet 
surface contamination technique which consists of inoculat-
ing the insect diet surface with OBs at known concentrations 
(Cisneros et al. 2002). Disks of semisynthetic diet (2 cm 
diameter) were treated with 100 μL of each OB concentra-
tion that was spread uniformly over the surface to ensure 
a homogeneous distribution of the inoculum. Control lar-
vae were reared on diet without OBs. Larvae were reared at 
room temperature (normally 20–25 °C) and checked daily 
until 10 days after inoculation. Lethal polyhedrosis disease 
was confirmed by microscopic examination of OBs extracted 
from larval tissue. The assay comprised three replicates. Pro-
bit analysis indicated that the concentration of 30 OBs/mm2 
corresponded to the median lethal concentration (LC50). The 
regression equation was: y = 0.999x − 0.98.

https://www.novasem.com.mx
https://www.novasem.com.mx
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Experimental design

The experiment had a completely randomized multifactorial 
design with three factors: (1) irrigation with two levels [low 
and high irrigation (40 and 85%) of soil moisture, repre-
senting 76 and 163 mL per kg soil, respectively], (2) ferti-
lization [with or without fertilizer application, as described 
below] and (3) virus with two inoculation levels [with 30 
OBs/mm2 and without OBs]. Six replicates of each treatment 
combination were performed. The experiment consisted of 
two phases: The first was the feeding of the fall armyworm 
on the plants, carried out in a greenhouse, and the second 
phase was the laboratory experiment in which insects were 
inoculated with viral OBs. The two phases were carried out 
at room temperature and with a photoperiod of 12 h:12 h 
(light:dark).

Soil and mineral fertilization

Plastic pots contained 800 g (dry wt) of an agricultural 
Luvisol soil collected from Morelia, Michoacán, Mex-
ico (19°41′09″ N; 101°14′17″ W, 1900  m elevation), 
with pH = 7.28, 53.2% clay, 19.5% sand and 27.3% silt, 
5.8 mg kg−1 of phosphorus and 23.2 mg kg−1 of nitrogen. 
The soil was mixed 1:1 (w/w) with river sand. The fertilizer 
used (and hereinafter called NPK) comprised the follow-
ing nutrients (mg kg−1 dry soil): KH2PO4 (30), K2SO4 (30), 
CaCl2.2H2O (30), CuSO4.5H2O (2.1), ZnSO4.7H2O (5.4), 
MnSO4.H2O (10.5), MgSO4.7H2O (45), Na2MoO4.2H2O 
(0.18). NPK was applied by placing it on top of the soil 
of the fertilized treatments, allowing it to dry and there-
after mixing the fertilizer into the soil. Also, NH3NO4 
(30 mg kg−1) was added weekly to the fertilized treatments 
from the second week onwards during the experiment.

First phase: plant growth and insect placement

Three maize seeds were planted in each pot to ensure ger-
mination and were watered with 124 mL tap water (65% 
of field capacity). When the maize plants were established, 
two plants were carefully removed so that only one plant 
remained in each pot and plants were as homogeneous as 
possible in size. Ten days after the establishment of the seed-
lings, the irrigation treatments were started. Field capacity 
was determined to be 192 mL/kg of soil by using the gravi-
metric method (Llorca and Bautista-Carrascosa 2004).

Six weeks after planting, 30 recently hatched S. fru-
giperda larvae with no previous feeding experience were 
placed on each plant. Plants were covered with an enclosure 
made of fine mesh fabric with a 0.2 mm pore size to prevent 
insect escape. The larvae were left to feed until they reached 
the second instar (L2). Five days after the larvae were placed 
on the plants, 12 L2 larvae were collected from each plant in 

the fertilizer and no fertilizer treatments. This group of 12 
larvae was used in the second phase to test their susceptibil-
ity to SfMNPV OBs under laboratory conditions.

Harvest

After 8 weeks, the plants that had not been exposed to 
insects were harvested. The aboveground part of the plant 
(stems and leaves) was separated from the roots, and both 
parts were dried in an oven for 72 h at 80 °C and weighed. 
The dried shoot or root parts of each plant were ground in 
a Thomas Scientific® mill and sieved through a 0.42 mm 
mesh and the nitrogen and phosphorus concentrations were 
quantified after Micro-Kjeldahl digestion, followed by color-
imetric analysis as described previously (Murphy and Riley 
1962 for P; Bremner 1996 for N).

Second phase: Inoculation of S. frugiperda

Suspensions of 1.4 mL of SfMNPV OBs at a concentra-
tion of 30 OBs/µL were prepared for each well of a 12 well 
cell-culture plate (Nunc™ ThermoFisherScientfic, https://​
www.​therm​ofish​er.​com/​mx/​es/​home/​life-​scien​ce/​cell-​cultu​
re/​cell-​cultu​re-​plast​ics/​cell-​cultu​re-​plates.​html). A square of 
approximately 1.5 × 1.5 cm was cut from a fully expanded 
young maize leaf of each of the treatments, avoiding the 
central vein. Each leaf square was placed in a well, and 
below this, a filter paper that had the shape of the wells was 
placed and moistened with 0.2 mL of distilled water at 24 h 
intervals. The leaves were previously disinfected with a 6% 
(v/v) solution of domestic bleach (0.9% sodium hypochlo-
rite), washed thoroughly with water and afterward treated 
with 100 µL of 0.01% sodium dodecyl sulfate (SDS) solu-
tion containing OBs to produce a concentration of 30 OBs/
mm2 on each leaf square. Leaf squares without OBs were 
treated with 100 µL of 0.01% SDS alone. A second instar 
larva (collected from maize plants as described in Sect. 2.4) 
was placed in each well with a leaf square of the correspond-
ing treatment. The larvae were left to feed on the virus for 
48 h at room temperature, to 12:12 (light:dark) and a lid 
was placed on top of the box, with a damp towel. The leaf 
squares were then removed and exchanged for a new leaf 
square without virus that was replaced daily for 8 days. After 
8 days, the larval mortality was quantified.

Statistical analysis

A two-way ANOVA was used to examine water stress and 
fertilization effects. The assumptions of homogeneity of 
variances and a normal data distribution were confirmed by 
Bartlett’s test and the Anderson–Darling test, respectively. 

https://www.thermofisher.com/mx/es/home/life-science/cell-culture/cell-culture-plastics/cell-culture-plates.html
https://www.thermofisher.com/mx/es/home/life-science/cell-culture/cell-culture-plastics/cell-culture-plates.html
https://www.thermofisher.com/mx/es/home/life-science/cell-culture/cell-culture-plastics/cell-culture-plates.html
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The LSD test (least significant difference) was used for mean 
comparisons. Spearman correlations were used to explore 
the relation between all variables. The median lethal con-
centration was estimated by Probit regression using the Polo 
Plus program (https://​leora-​softw​are.​com/). A principal 
component analysis (PCA) was performed with all variables, 
and the Mahalanobis distance was verified to detect outliers 
(Jolliffe 2002). The PCA was performed using R version 
4.0 (https://​www.r-​proje​ct.​org/) and plotted with the “Fac-
toMineR” package. The correlations graphs were produced 
with the “ggplot2” package. Other graphics were prepared 
using SigmaPlot™ 14.0 (https://​systa​tsoft​ware.​com/​produ​
cts/​sigma​plot/).

Results

Effect of low irrigation and nutrients on plant 
growth

The interaction between irrigation and fertilization treat-
ments had a significant effect on shoot and root dry weight. 
Plants grown in soils with high irrigation and NPK fertili-
zation had a significantly higher shoot and root dry weight 
when compared to low irrigated plants, regardless of ferti-
lization and with high irrigated plants without fertilization 
(Fig. 1a and b). The root/shoot weight ratio was higher in 
unfertilized plants with low irrigation compared to plants 
that grew with higher irrigation, but not in the fertilizer treat-
ment (Fig. 1c).

The plants that grew with low irrigation had a higher 
concentration of N compared to those grown with high irri-
gation, both in unfertilized plants (35.3% higher in the low 
irrigation treatment) and in fertilized plants (54.3% higher 
in the low irrigation treatment) (Fig. 2a). The concentra-
tion of P in plants did not vary significantly (Table 1). The 
mean (± SE) concentration of P (mg g−1) in plants with low 
irrigation was 0.104 ± 0.004 without NPK and 0.112 ± 0.002 
with NPK and with high irrigation was 0.112 ± 0.002 with-
out NPK and 0.104 ± 0.003 with NPK.

Effect of SfMNPV on S. frugiperda larval mortality

Insect mortality could not be analyzed by two-way ANOVA 
because very few insects were recovered from the no ferti-
lizer treatment with high irrigation. The few larvae collected, 
in addition, did not feed on the leaf squares inoculated with 
the nucleopolyhedrovirus. Therefore, this variable was ana-
lyzed with a one-way ANOVA with the remaining three 
treatments.

The larvae that died in the virus treatment displayed the 
characteristic signs of polyhedrovirus disease, which was 
confirmed by observing the presence of abundant OBs in 

Fig. 1   Means (± SE, n = 6) of shoot dry weight (a), root dry weight 
(b) and the root/shoot weight ratio (c) of the maize plants at 8 weeks 
of growth with or without NPK fertilizer treatment. Identical letters 
in the columns indicate that treatments did not differ significantly 
(p > 0.05)

https://leora-software.com/
https://www.r-project.org/
https://systatsoftware.com/products/sigmaplot/
https://systatsoftware.com/products/sigmaplot/
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smears of larval tissues under a phase-contrast microscope 
(Olympus BX41) at × 400.

Larval mortality was observed in the control treat-
ments, and these were: low irrigation without fertilization 
(12.1 ± 5.1%), low irrigation with fertilization (0.7 ± 0.7%) 
and high irrigation with fertilization (3.8 ± 1.8%). Therefore, 

Abbott's formula was used to adjust for mortality in the con-
trol treatment (Rosenheim and Hoy 1989).

We found significant differences between the treatments 
inoculated with SfMNPV (F2,15 = 5.70, P = 0.014). The 
insects that fed on plants with high irrigation and fertiliza-
tion, presented significantly higher mortality than those that 
fed on fertilized plants but with low irrigation, or unferti-
lized plants with low irrigation (Fig. 2b). Significant cor-
relations were detected between shoot dry weight and root 
dry weight (r = 0.92, p < 0.001), shoot dry weight and per-
centage of larval mortality (r = 0.57, p < 0.01), i.e., when 
the aerial biomass of the plant increased, larval mortality 
also increased (Fig. 3). The same trend was observed in the 
relationship between root dry weight vs percentage of larval 
mortality (r = 0.49, p < 0.05), shoot dry weight vs ratio root/
shoot dry weight (r =  − 0.50, p < 0.05), N concentration vs 
ratio root/shoot dry weight (r =  − 0.53, p < 0.01), percentage 
of larval mortality vs N (r = 0.55, p < 0.01) and shoot dry 
weight vs N (r = 0.56, p < 0.01) (Fig. 3).

The principal component analysis explained 74.5% of the 
variability for all variables of experiment (Fig. 4). The first 
component included shoot and root dry weight and larval 
mortality (48.6% variability), which are related to the treat-
ment of fertilized plants with high irrigation. In the second 
component, shoot nitrogen and phosphorus concentrations 
explained 25.9% of the variability and were related to fer-
tilized plants with low irrigation. High root/shoot ratio was 
more related to unfertilized plants and those with low irriga-
tion (Fig. 4).

Discussion

Water shortage reduced the prevalence of nucleopolyhedro-
virus-induced mortality in the fall armyworm on plants that 
received fertilizer. Low irrigation affected maize plants even 
when they were fertilized. This meant that nutrients were 
more concentrated in the leaves of low irrigation plants, 
especially nitrogen.

It is known that the nutritional quality of the foodplant 
can affect the capacity of phytophagous insects to defend 
themselves and resist an infection by pathogens (Lochmiller 

Fig. 2   Means (± SE, n = 6) of the shoot nitrogen concentration (a) 
and the percentage of larval mortality (b). N.A. are missing data. 
Identical letters in the columns indicate that treatments did not differ 
significantly (p > 0.05)

Table 1   Summary of linear 
model ANOVAs for all plant 
response variables and factors: 
Irrigation (I), Fertilization (F) 
and their interaction (I × F)

Numbers in bold show significant differences (P < 0.05)
Sdw and Rdw shoot and root dry weight, respectively; df degrees of freedom; F Fisher's F statistic; P prob-
ability value

Sdw Rdw Rdw/Sdw Nitrogen Phosphorous

df F P F P F P F P F P

Irrigation 1,20 365.1  < 0.001 46.56  < 0.001 0.697 0.4101 97.29  < 0.001 0.88 0.359
Fertilization 1,20 585.7  < 0.001 72.17  < 0.001 13.92 0.001 514.9  < 0.001 0.876 0.36
I × F 1,20 244.1  < 0.001 22.56  < 0.001 6.255 0.021 7.78 0.011 3.21 0.088
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and Deerenberg 2000). For example, in a recent study, 
García-Gómez et al. (2021) reported that the mortality of S. 
frugiperda exposed to nucleopolyhedrovirus diminished as 
the concentration of nitrogen in maize leaves increased. In 
addition, experiments with Spodoptera exempta Walker and 
Spodoptera littoralis Boisduval larvae infected with their 
respective nucleopolyhedroviruses showed high survival 

rates when insects fed on a protein-rich diet during the first 
24 h post-infection (Lee et al. 2006; Povey et al. 2014). 
Those reports suggest that an adequate nutrition is likely 
required to trigger efficient defensive mechanisms and resist 
viral infection because almost all the defensive mechanisms 
of the immune arsenal require large amounts of amino acids 
for the production of proteins (Beisel 1977).

Fig. 3   Spearman correlation 
indices for all variables. Blue 
colors indicate correlations 
close to 1 and orange color 
close to − 1

Fig. 4   Principal component 
analysis including all variables 
measured in the experiment. 
Treatment abbreviations: LI-
NPK (low irrigation without 
fertilization), LI + NPK (low 
irrigation with fertilization), HI-
NPK (high irrigation without 
fertilization) HI + NPK (high 
irrigation with fertilization). 
The ellipses were drawn to indi-
cate a 95% confidence interval
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In this study, we did not perform protein analyses of 
plants that could have provided information on the nutri-
tional status of S. frugiperda and their ability to resist viral 
infection. However, nitrogen is an integral constituent of 
plant of proteins, nucleic acids, chlorophyll, coenzymes, 
phytohormones and secondary metabolites (Hawkesford 
et al. 2012). Increased availability of nitrogen increases the 
concentration of crude protein in plants (Gallais et al. 2006; 
Wiesler 2012), which is of nutritional benefit to insects 
(Siva-Jothy and Thompson 2002) and may strengthen 
their immune response and increase survival following an 
entomopathogen challenge (Povey et al. 2014). In contrast, 
when the virus was applied onto leaves of water-stressed 
plants, it was difficult to disperse the OB suspension homo-
geneously on the leaf surface. This was possibly a con-
sequence of the induction of physiological and chemical 
defensive mechanisms. Commonly, trichomes on leaves are 
associated with the physical defenses of the plant against 
herbivores (Björkman et al. 2008). However, such structures 
can also participate in water balance and can exert photo-
protection by reflecting sunlight (Molina-Montenegro et al. 
2006). Other physiological mechanisms that might modify 
the dispersion of OBs on the leaf surface include stomatal 
closure, since the stomata remain closed in response to water 
stress (Hopkins and Hüner 2004; Rodriguez-Dominguez 
and Brodribb 2020), or the presence of wax produced as a 
physiological response to environmental stress (Ludlow and 
Muchow 1990; Lewandowska et al. 2020).

The treatment involving high irrigation and fertiliza-
tion resulted in the highest larval mortality, likely because 
the plant leaves in this treatment had adequate moisture 
and moderate nitrogen content, and the larvae consumed 
a greater quantity of OB-contaminated leaf tissue than 
occurred in the other treatments. Although this seems to be 
a contradiction, the larvae that fed on plants with low irriga-
tion had lower mortality because the nutrients like nitrogen 
in the treatments with high irrigation were found scattered 
throughout the plant or less concentration. Thus, we postu-
late that the insects had to feed on more plant tissue which 
increased their consumption of inoculum OBs, resulting in 
higher mortality than in the larvae that fed on water-stressed 
plants where the insects consumed less tissue to satisfy their 
physiological demand due to the more concentrated nitro-
gen. Therefore, mortality did not change due to fertilization, 
but due to water stress, which increased or decreased the 
concentration of nutrients in the plant.

Another result was observed in the high irrigation with 
low nutrient treatment in which plants became unappetizing 
and were avoided by larvae. As mentioned before, it was not 
possible to recover more than a few of the individuals from 
this treatment, and they did not become infected by the virus. 
Intriguingly, very low nitrogen concentrations were detected 

in this treatment, and plants also showed a yellowish tinge 
and semitranslucent foliage, which is a sign of chlorosis.

Compared to other families of herbaceous plants, the con-
centration of proteins in grasses and in the family Poaceae 
in general tend to be low (Lyttleton 1973; Holechek 1984). 
Hence, it is possible that the nutritional quality of the plants 
in this treatment was so low that insects were unable to 
develop through the larval instars and undergo pupation. 
In addition, extended periods of time on plants represent 
an increased risk for insects because of a greater possibility 
of being preyed upon by natural enemies or of becoming 
infected by pathogens. In this regard, Loader and Damman 
(1991) observed higher predation of lepidopteran larvae 
when they fed on plants with little nitrogen content. In addi-
tion, Lepidoptera have a hundred times greater risk of being 
predated when they feed, compared to periods when they do 
not (Bernays 1997).

Conclusion

Here we show that water stress interfered with nucleopoly-
hedrovirus infection of the fall armyworm. We conclude that 
water stress can affect the performance of the nucleopoly-
hedrovirus and thereby reduce the biological control of fall 
armyworm. As climate change continues to generate water 
stress and nutrient limitations, it is necessary to understand 
the effect of these factors on the ecology of the insects that 
feed on crops. This study may help to identify crop plant 
factors that influence the performance of biocontrol agents 
and improve pest management strategies that include the 
use of entomopathogens. However, more studies are needed 
on the role of water stress and plant nutrition in the efficacy 
of entomopathogens used for biological control. It is also 
necessary to study the effect of the secondary metabolites 
produced by the plant when there is water stress, such as 
phenolic compounds and their effect on the performance of 
baculoviruses in the control of the fall armyworm.
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