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Abstract
The olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) is a key pest species of wild and cultivated olive trees 
worldwide. Contrarily to most tephritid flies, in which males release the sex pheromone, in B. oleae the female is the sex 
responsible of attracting the opposite sex. However, and even though vast research has been done during the last decades, 
we are still far from understanding the chemical signals involved in the sexual communication of this species, including 
those produced by males. Here, we report for the first time the presence of two male-specific volatile compounds, namely 
γ-hexalactone and δ-hexalactone, with the former exerting a significant attraction upon both sexes under laboratory and field 
conditions. Volatile collections conducted on laboratory-reared virgin individuals of both sexes revealed the presence of 
these two compounds only in males, regardless of their age. In double-choice behavioral assays, γ-hexalactone resulted to 
be attractive for virgin males and females (7–14 days old), with no attractiveness reported for δ-hexalactone. Finally, in field 
assays traps baited with the binary blend of ammonium bicarbonate and γ-hexalactone yielded significantly more catches 
per week of both sexes than those baited with ammonium bicarbonate and ammonium bicarbonate plus 1,7-dioxaspiro[5.5]
undecane, the major sex pheromone component. Altogether, our results shed light on the chemical ecology of the species 
and represent a promising experimental basis for the development of more innovative and effective mass trapping tools based 
on the use of γ-hexalactone.
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Key message

Bactrocera oleae virgin males release two lactones, 
γ-hexalactone and δ-hexalactone.γ-Hexalactone elicits an 
attraction on virgin mature males and females in laboratory 
tests.

In field tests, the combination of ammonium bicarbonate 
and γ-hexalactone is highly attractive.

Our results might represent an innovative approach for 
improving ammonia-based baits in B. oleae.

Introduction

The so-called true fruit flies belonging to the family Teph-
ritidae comprises more than 4000 species from 500 gen-
era, with some of the species representing a serious threat 
for several agricultural and horticultural crops worldwide 
(White and Elson-Harris 1992). It has been estimated that 
direct and indirect economic losses attributable to teph-
ritid flies exceed US $2 billion per year (Souza et al. 2021). 
In Europe, the Mediterranean fruit fly Ceratitis capitata 
Wiedemann and the olive fruit fly Bactrocera oleae (Rossi) 
are key pests regarded as the most harmful tephritid spe-
cies in the continent, causing substantial damage (Enkerlin 
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and Mumford 1997; Kampouraki et al. 2018). Bactrocera 
oleae, an endemic species to the Mediterranean Basin and 
Middle East, and currently also present in South and Cen-
tral Africa, Pakistan, California and Mexico (Nardi et al. 
2005), is considered as the most damaging insect to wild 
and cultivated olive trees worldwide (Daane and Johnson 
2010). While adults are polyphagous and feed on different 
substrates, such as nectar, honeydew, fruit and plant exu-
dates, bacteria and even bird faeces (Christenson and Foote 
1960), larvae are mainly monophagous, and they breed and 
feed on the mesocarp of the fruits of some species within 
the genus Olea, especially on Olea europaea, but also on O. 
verrucosa and O. chrysophylla (Daane and Johnson 2010). 
The number of generations per year is variable and sug-
gested to be related to the geographical region, the quality of 
the fruits, and agronomic and climatic conditions (Malheiro 
et al. 2015). Specifically, in the Mediterranean temperate 
areas three to four generations are usually reported, with 
up to six generations in the warmest Mediterranean areas 
where summer high temperatures may be a limiting factor 
for the development of the insect (Pappas et al. 2011). In 
this sense, B. oleae is highly dependent of temperature, with 
temperatures higher than 35 ℃ negatively affecting the life 
cycle of the insect (Johnson et al. 2011; Pappas et al. 2011). 
Similarly, at least four generations per year are observed in 
California, although an additional generation on fall is sug-
gested (Rice et al. 2003). Gravid females lay their eggs in 
healthy olives, and upon hatching, larvae feed on the meso-
carp. Larval development comprehends three instar stages, 
and during mid-autumn onwards third-instar larvae of the 
last generation leave the fruit for pupating in the soil, where 
they overwinter and emerge in the following spring. Due 
to the carpophagous feeding habit of larvae, the fruit oil 
content declines, the chemical composition is altered, and a 
premature drop of the olives is promoted (Bento et al. 1997; 
Gómez-Caravaca et al. 2008; Gucci et al. 2012). Addition-
ally, the value of stung olives is reduced for table consump-
tion (Malheiro et al. 2015). Altogether, the incidence of the 
olive fruit fly drastically affect the quantity and quality of 
table fruit and oil products, with average yield losses of up 
to 15% (Malheiro et al. 2015), and even 90% of crop losses 
may occur in the absence of control measures (Ordano et al. 
2015). As a consequence, severe economic impact on olive 
production is produced. Losses attributable to olive fruit fly 
infestations are estimated to excess US $1 billion dollars 
per year in the Mediterranean Basin (van Asch et al. 2015). 
To cite an example, only in the island of Crete annual dam-
age translates into more than 20 million euros (Kampouraki 
et al. 2018).

Over the last four decades, the management of B. oleae 
populations has been based on the use of wide-spectrum 
organophosphate insecticides and pyrethroids (Manousis 
and Moore 1987; Margaritopoulos et al. 2008). Drawbacks 

derived from the overuse of pesticides, such as residues 
prevalence (Cavanna and Molinari 1998; Amvrazi and 
Albanis 2009), development of insect resistance (Skouras 
et al. 2007; Kakani et al. 2010; Kampouraki et al. 2018), 
and potential side effects on beneficial insects (Pinheiro 
et al. 2020), have led to seeking more effective and eco-
friendly approaches subjected to an Integrated Pest Man-
agement framework. These alternative strategies, with 
not satisfactory results in many of the cases, include the 
development of novel and safer insecticides (Canale et al. 
2013a; Rizzo et al. 2020), research on natural enemies 
and entomopathogenic organisms as biological control 
tools (Daane and Johnson 2010; Shaurub 2023), the Ster-
ile Insect Technique (Ant et al. 2012), symbiotic control 
strategies targeting its endosymbiont bacterium Candida-
tus Erwinia dacicola (Sinno et al. 2020), and mass trap-
ping and attract-and-kill programs based on the use of food 
lures alone or in combination with the sex pheromone of 
the species. (Broumas et al. 2002; Mazomenos et al. 2002; 
Speranza et al. 2004; Yasin et al. 2014). In this sense, 
food lures, such as sugar and yeast baits, protein hydro-
lysates, and ammonium salts (e.g. ammonium phosphate, 
biammonium phosphate, ammonium carbonate, ammo-
nium acetate, and ammonium sulphate), have been long 
time recognized as relevant attractants for true fruit flies, 
including B. oleae (for a historical review, see Epsky et al. 
2014). Even though both sexes of many tephritid species 
are attracted to these kind of baits, field catches tend to 
be female-biased (Yokoyama et al. 2006; Martinez et al. 
2007; Vázquez et al. 2022), since they require a protein 
source to complete egg maturation (Hagen and Finney 
1950). The ammonia released from these baits is suggested 
to be the agent mediating this attraction, and therefore, 
the efficacy of different ammonium salts as an ammonia 
source has been tested on fruit flies for several decades 
(Bateman and Morton 1981; Mazor et al. 1987; Katsoy-
annos et al. 2000; Thomas et al. 2008). There is not still 
a consensus about the performance of ammonium salts in 
comparison to protein hydrolysates, since they have been 
referred to elicit a higher (Bateman and Morton 1981; 
Varikou et  al. 2021) or lower (Haniotakis et  al. 1998; 
Varikou et al. 2014) attraction than the latter, or even 
enhance the effect of hydrolyzed protein baits (Piñero et al. 
2015, 2017, 2020). In the case of B. oleae, the co-release 
of ammonium bicarbonate and the major sex pheromone 
compound 1,7-dioxaspiro[5.5]undecane (= olean) (Baker 
et al. 1980; Mazomenos and Haniotakis 1981; Gariboldi 
et al. 1983) significantly increases male, and strikingly, 
female catches in comparison to ammonium bicarbonate 
alone (Haniotakis and Vassiliou-Waite 1987; Broumas and 
Haniotakis 1994). Nevertheless, male catches with this 
food lure-pheromone combination are often reported to 
exceed those of females in fall season, when the crop is 
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more susceptible (Haniotakis and Vassiliou-Waite 1987; 
Yokoyama et al. 2006; Burrack et al. 2008), and there-
fore, the elucidation of novel chemical cues involved in 
the sexual communication of the species would allow to 
improve the performance of ammonia-based baits during 
this season.

The semiochemistry of the mating system of tephritid 
flies involves complex intraspecific interactions (Scolari 
et al. 2021), in which male- and female-produced com-
pounds are involved in the attraction of either one (Kob-
ayashi et al. 1978; Haniotakis et al. 1986; Landolt et al. 
1988; Carpita et al. 2012) or both sexes (Perdomo et al. 
1976; Baker et al. 1990; Hee and Tan 1998; Būda et al. 
2020). In contrast to other tephritid genera, in which pher-
omones are known to be released by males (comprehen-
sively reviewed in Scolari et al. 2021), in some species of 
the genus Bactrocera Macquart chemical communication 
is more particular, with both sexes producing pheromone 
components (Haniotakis et al. 1986; Noushini et al. 2020), 
and females involved in pheromone communication in few 
species (Mazomenos and Haniotakis 1981; Zhang et al. 
2019; Noushini et al. 2019, 2021a, b). Even though the char-
acterization of the sex pheromone blend of the olive fruit 
fly was accomplished four decades ago (Baker et al. 1980; 
Mazomenos and Haniotakis 1981; Gariboldi et al. 1983), 
and the additional research conducted on the intraspecific 
chemical communication of the species (Baker et al. 1982b; 
Gariboldi et al. 1982, 1983; Carpita et al. 2012; Canale et al. 
2013b, 2015; Fusini et al. 2018), the chemical ecology of 
the species still remains far from being completely under-
stood. In the olive fruit fly the sex pheromone is released by 
females, and comprises a four-component blend, composed 
by the aforementioned olean, nonanal, ethyl dodecanoate, 
and α-pinene (Mazomenos and Haniotakis 1981, 1985). 
The emission of olean is produced close to the onset of the 
scotophase (Levi-Zada et al. 2012), in accordance with the 
time window in which mating occurs (Loher and Zervas 
1979). Both sexes are reported to release olean since the first 
day after emergence, although quantitative and age-related 
differences are detected between sexes (Canale et al. 2012; 
Levi-Zada et al. 2012). In young males the maximal produc-
tivity is reached in few days after emergence (5–8 days), and 
the production ceases by the 11th day (Canale et al. 2012; 
Levi-Zada et al. 2012), in marked contrast to females, in 
which the emission peaks in the first 18 days and continues 
up to 35–45 days after emergence (Canale et al. 2012; Levi-
Zada et al. 2012). In addition, the amount of olean released 
from females is ca. 1000 ng/h at the onset of scotophase, 
significantly exceeding that emitted by males (ca. 15 ng/h) 
(Levi-Zada et al. 2012). The role of male-released olean is 
still unknown. Benelli and coworkers discarded the emission 
of olean from young males as a chemical mimicry, suggest-
ing that it may benefit them by keeping away older males, 

thus avoiding mating competence (Benelli et al. 2013). In 
addition to chemical signals, intrasexual communication is 
also mediated by additional sensory cues. Indeed, courtship 
and successful mating on males seem to be tightly linked to 
male wing vibration and associated behavior (f.i., abdomen 
rubbing with hind tarsus) (Benelli et al. 2012; Canale et al. 
2013b), which in turn is related to the size of males (Benelli 
et al. 2016). Recently it has been determined that B. oleae 
males emit intermittent pulses of highly variable duration, 
at a frequency of ca. 350 Hz, and this wing vibration trait 
is suggested to be involved not only on courtship behavior, 
but also on male-male interactions (Terzidou et al. 2022). 
Similarly, the sexual communication of other tephritid spe-
cies relies on a multimodal process based on the interaction 
of chemical and physical cues, highlighting the complexity 
of the mating system and courtship behavior of this dipteran 
family (extensively reviewed in Benelli et al. 2014).

In spite of all these advances on the intraspecific com-
munication of the species, the identification of biologically 
active male-borne chemical cues is limited to some extent. 
To the best of our knowledge, only one male-specific active 
compound has been identified so far. Carpita and cowork-
ers reported the presence of the unsaturated hydrocarbon 
(Z)-9-tricosene (“muscalure”) in rectal glands of mature 
males, and this compound resulted to be attractive for virgin 
females at close-range (Carpita et al. 2012). However, the 
efficacy of (Z)-9-tricosene on field has not been evaluated 
yet, and probably its low volatility makes unfeasible to lure 
conspecific females at a long-range. Hence, we questioned 
whether males may produce and release overlooked volatile 
cues that may be active on females, and therefore potentially 
strengthen the attractiveness mediated by an ammonium salt. 
To achieve our goal, we first focused on the volatile profile 
of sexually mature individuals, and determined the behav-
ioral activity of two male-specific lactones on both sexes 
under laboratory conditions. Finally, the attractiveness of 
the binary blend composed by γ-hexalactone and ammonium 
bicarbonate was determined in field assays.

Materials and methods

Insects

Volatile collections and behavioral assays were conducted 
on insects from a permanent laboratory colony maintained 
at the installations of the Institute for Advanced Chemistry 
of Catalonia (Barcelona, Spain) since 2016. The parental 
generation for establishing this colony was obtained from a 
long-term colony (ca. 10 generations per year) cultured at 
the Joint FAO/IAEA Centre of Nuclear Techniques in Food 
and Agriculture (Vienna, Austria) since 2008. For egg pro-
duction, larvae rearing and adult maintenance, previously 
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described methodologies based on artificial oviposition and 
larvae-developing substrates were followed (Estes et al. 
2012 and references therein). To obtain virgin individuals 
for being further tested, the presence of pupae was daily 
checked, and upon emergence, adults were sorted by sex, 
and those of the same sex were pooled in cubic Bugdorm© 
cages (30 × 30 × 30 cm). Adults were fed on a mixture of 
sugar, yeast hydrolysate, and egg yolk (75:19:6) (Tsitsipis 
and Kontos 1983), and water was provided ad libitum, by 
wetting a sponge strip. Both food and water were replaced 
every two days. All the developmental stages were kept at 
24 ± 1 ℃, 55 ± 5% (relative humidity), and a L:D photoper-
iod of 16:8.

Chemicals

Racemic γ-hexalactone (98%) (hereafter referred to as 
γ-hexalactone) was purchased from Alfa Aesar (Heysham, 
United Kingdom), while racemic δ-hexalactone (98%) 
(δ-hexalactone) was acquired from Thermo Fisher Scien-
tific (Madrid, Spain). Commercial suppliers of racemic 
olean (98%) and ammonium bicarbonate (98%) were Cymit 
Química S.L. (Barcelona, Spain) and Barcelonesa de Drogas 
y Productos Químicos S.A.U. (Barcelona, Spain), respec-
tively. n-Hexane of GC purity (SupraSolv®, Merck, Darm-
stadt, Germany) was used as solvent for preparing the serial 
dilutions to be tested in behavioral assays. Kovats retention 
indices (KI) were calculated using a commercial series of 
saturated n-alkanes  (C7–C40, Merck-Sigma Aldrich, Madrid, 
Spain).

Headspace collection and analysis

Volatile collection from B. oleae adults of both sexes was 
performed by solid phase microextraction (SPME), with a 
divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/
PDMS) coated fiber (50/30 μm; Supelco, Merck-Sigma 
Aldrich). First, a comparison of the volatile profiles released 
from males and females (7–14 days old) was conducted. A 
total of n = 6 collections per sex were performed. In each 
volatile collection, ten virgin individuals, either males 
or females, were introduced in a 40 mL screwed-cap vial 
(Supelco, Merck Sigma Aldrich), and left exposed to the 
SPME fiber for 6 h deprived of any food or water source. 
Next, virgin males of different ages (1, 5, 14, 19 and 23 days 
old) were sampled under the same conditions to determine 
whether the release of the specific compounds followed an 
age-dependent pattern. Two samples per age category were 
performed, each containing ten males. Prior to being used 
for the first time, SPME fibers were conditioned by inserting 
them into a GC injection port at 270 ℃ for 30 min. All the 
collections were done from 10:00 am to 18:00 pm at room 
temperature.

After each collection, the fiber was immediately injected 
at 270 ℃ in splitless mode (5 min) into a Thermo Finnigan 
Trace 2000 GC system coupled to a Trace MS quadrupole 
mass spectrometer (Thermo Fisher Scientific). A non-polar 
TR-5MS column (30 m × 0.25 mm I.D. × 0.25 µm; Thermo 
Fisher Scientific) was used, and the following temperature 
program was set up: an initial temperature of 40° hold for 
5 min, followed by an increase of 5 °C/min to 180 °C, and 
finally raised 15 °C/min to 300 °C, with a hold time of 
5 min. The MS was used in the electron impact mode at 
70 eV. The MS system was operated in the scan mode, from 
40 to 500 amu, at 1.0 scan/s. Compound identification was 
achieved by comparison of mass spectra with those of syn-
thetic standards (only in the case of γ- and δ-hexalactone) 
and a mass spectral library (The National Institute of Stand-
ards and Technology-NIST Mass Spectral Database), and by 
comparison of calculated KI values with those in literature, 
when available.

Behavioral activity

Walking response of virgin B. oleae males and females 
( 7–14 days old) in response to γ-hexalactone (1, 10, and 
100 µg) and δ-hexalactone (1 and 10 µg) was determined 
in a double-choice glass olfactometer (main arm 10 cm 
long × 18 mm I.D., arms 8 cm long × 1.8 mm I.D., angle 
between arms 90°) set in vertical position and suspended by 
a retort stand. In each trial, hexane-diluted γ-hexalactone or 
δ-hexalactone was confronted against n-hexane as solvent 
control. Testing quantities of each lactone were obtained 
from serial dilutions in n-hexane, and 10 µL of the corre-
sponding dilution was loaded onto a filter paper disc (What-
man, 2.5 cm diameter, Merck-Sigma Aldrich), while 10 µL 
of hexane were loaded on another filter paper as solvent con-
trol. An incoming charcoal-filtered airflow at 350 ml/min 
was set for each arm. Filter papers were renewed every five 
insects, and the position of the arms were also switched to 
avoid any directionality. All the system was homogenously 
illuminated using a table lamp with white light (60 W) 
placed on a shelf ca. 30 cm above the olfactometer junction, 
providing a light intensity of approximately 500 lx. Prior to 
the beginning of each trial, flies were individually isolated 
in 15 ml Falcon tubes, and allowed to acclimate to room 
conditions for 1 h. A total of 40–80 flies of each sex were 
tested for each compound and amount, and each insect was 
used only once. A positive response was considered if the 
fly entered any arm at least 2 cm beyond the arm junction. 
If an insect did not make a choice after 5 min, it was consid-
ered as non-responding, and discarded for further statistical 
analysis.
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Field tests

To test the efficacy of γ-hexalactone enhancing the attrac-
tiveness of ammonium bicarbonate under natural conditions, 
three field assays were carried out. In the first one, hereaf-
ter referred to as Assay 1, we assessed the attractiveness of 
the binary blend composed of ammonium bicarbonate (AB, 
40 g) and γ-hexalactone (200 mg) in comparison to AB (40 g) 
alone. This assay was deployed in an olive orchard (41.45751, 
1.81742; var. Arbequina) sited in Sant Llorenç d´Hortons 
(Catalonia, Spain), from 29th August to 28th November of 
2018. In a second set of assays, namely Assays 2 and 3, the 
efficacy of the binary blend composed by AB (40 g) and olean 
(200 mg) was compared against the blend of AB (40 g) and 
γ-hexalactone (200 mg). The Assay 2 was conducted in the 
same olive orchard as Assay 1, and it started on 17th October 
and ended on 13th December 2019. On the other hand, the 
Assay 3 was conducted from 13th July to 23rd November 2021 
in an olive orchard (43.81803, 4.05009; var. Picholine) located 
in Aspères (France). Both sampling sites were selected due to 
reported B. oleae attacks in previous years and their manage-
ment by organic farming.

For all field trials, the same experimental design 
and methodology were followed. Cone yellow traps 
(FLYPACK®DACUS, SEDQ Healthy Crops, Spain) were 
baited with the corresponding lure, and hung up in the leaf 
canopy at a height of 1.4–1.8 m from ground level. Three trap 
blocks were deployed per assay, and each block contained 
one trap for each attractant tested. The dispenser for releasing 
olean and γ-hexalactone was a 2 mL-polyethylene capsule, 
which provides a constant release rate of approximately 0.80 
and 0.14 mg/day respectively, while AB was released from a 
polyethylene-cellulose envelope, affording a release rate for 
ammonia of ca. 5 mg/day. All the release rates were estimated 
in a wind tunnel at 40 °C and an incoming airflow of 2 m/s 
during 169 days (Supplementary Figures S1 & S2). A mini-
mum distance of 25 m between traps and blocks was set. Trap 
catches were weekly checked, and rotated clockwise within 
each block after fly counting and sex determination.

Statistical analysis

Walking response of males and females in the double-choice 
olfactometer was subjected to a Chi-square goodness-of-fit 
test, to test if the proportion of flies making a choice dif-
fered from a 50:50 distribution. The performance of the 
baits tested in each field assay was analyzed by comparing 
the mean catches of both sexes of B. oleae per week with the 
Mann–Whitney U nonparametric test. All the statistical pro-
cedures were subjected to a significance level of α = 0.05, and 
performed using SPSS Statistics 17.0 software (SPSS, Chi-
cago, IL, USA).

Results

Headspace collection

Analysis of the volatile profiles from males and females of 
7–14 days old revealed the presence of γ-hexalactone and 
δ-hexalactone only in males, while no traces were detected 
in females (Fig. 1, Table 1). Apart from these two lactones, 
(Z)-9-tricosene and ethyl (Z)-9-octadecenoate (= ethyl 
oleate) were also detected, although the latter was also 
present in all the headspace collections from females. 
When comparing the volatile profiles from males of dif-
ferent ages, both lactones were detected in all sampling 
groups, i.e. from one to 23 days old (Fig. 2).

With regard to females, volatile collections included 
the major sexual pheromone component olean, its unsatu-
rated form l,7-dioxaspiro[5.5]undec-4-ene, and tentatively 
identified hydroxy derivatives, viz. 3-hydroxy-1,7-dioxas-
piro[5.5]undecane and 1,6-dioxaspiro[4.5]decan-2-meth-
anol (Table 1). Six additional esters were also identified 
from females: ethyl decanoate, ethyl dodecanoate, ethyl 
tetradecanoate, ethyl hexadecanoate, ethyl (Z)-9-hexa-
decenoate, and the abovementioned ethyl (Z)-9-octade-
cenoate (Table 1).

Behavioral activity

Both males and females showed a positive response to 
γ-hexalactone at 1 µg (males, 71% of attraction, χ2 = 3.857, 
df = 1, p = 0.050; females, 69% of attraction, χ2 = 4.235, 
df = 1, p = 0.040), and 10 µg (males, 69% of attraction, 
χ2 = 3.846, df = 1, p = 0.050; females, 65% of attraction 
χ2 = 3.930, df = 1, p = 0.047) (Fig. 3), whereas the amount 
of 100 µg did not exhibit an attractive effect on neither 
of the sexes (males, χ2 = 1.385, df = 1, p = 0.239; females, 
χ2 = 0.053, df = 1, p = 0.819) (Fig. 3).

On the other hand, none of the sexes showed a positive 
response towards δ-hexalactone at neither 1 µg (males, 
53% of attraction, χ2 = 0.118, df = 1, p = 0.732; females, 
62% of attraction χ2 = 1.882, df = 1, p = 0.170) nor 10 µg 
(males, 50% of attraction, χ2 = 0.0, df = 1, p = 1.0; females, 
54% of attraction, χ2 = 0.154, df = 1, p = 0.695) (Fig. 4).

Field tests

Overall, 2,468 B. oleae were trapped in Assay 1, with an 
equal sex ratio for both baits (♂:♀ in AB, 0.98:1; AB plus 
γ-hexalactone, 1.02:1). Traps baited with the binary blend 
of AB and γ-hexalactone significantly lured more indi-
viduals of both sexes per week than those traps baited 
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only with AB (males, U = − 23.0 z = − 2.043, p = 0.043; 
females, U = 22.5, z = − 2.080 p = 0.035) (Fig. 5).

In both Assays 2 and 3, the mean number of males and 
females per week of traps co-releasing AB and γ-hexalactone 
significantly differed from those traps baited with the blend 
AB and olean (Fig. 6). Specifically, in Assay 2 a total of 
1,112 flies were trapped (♂:♀ in AB plus γ-hexalactone, 
1.58:1; AB plus olean, 1.38:1), and the binary blend of AB 
and γ-hexalactone resulted to be more attractive than the 
combination of AB and olean (males, U = 12.5, z = − 2.051, 
p = 0.038; females, U = 11.5, z = − 2.155, p = 0.028) 
(Fig. 6a). The same response pattern was detected in Assay 
3 (771 B. oleae trapped, ♂:♀ in AB plus γ-hexalactone, 
1.60:1; AB plus olean, 0.75:1), being the binary blend AB 
plus γ-hexalactone the most attractive bait for both sexes 
(males, U = 72.0, z = − 3.176, p = 0.001 < 0.; females, 
U = 86.0, z = 2.765, p = 0.005) (Fig. 6b).

Discussion

In this work we report for the first time the presence of 
two male-specific lactones, namely γ-hexalactone and 
δ-hexalactone, in B. oleae virgin males, with the former 

exhibiting a significant attraction on virgin males and 
females in double-choice assays, and enhancing the attrac-
tiveness of the food bait ammonium bicarbonate upon both 
sexes in field tests. In contrast, the role of δ-hexalactone is 
still unclear, since no biological activity was observed in 
laboratory behavioral assays. Nonetheless, further research 
would be needed to determine whether the insect is capa-
ble of detecting the compound (i.e. by mean of electroan-
tennographic and electropalpographic assays), and, if so, 
compare the biological activity of the compound alone and 
together with the additional male specific-chemical cues, 
viz. γ-hexalactone and (Z)-9-tricosene, in order to determine 
any possible synergism.

The relevance of the lactone motif in the intraspecific 
chemical communication of insects (Schulz and Hötling 
2015), and specifically on tephritid genera, has previously 
been described, with the general pattern of males being the 
sex involved in their production and emission. In Rhagole-
tis spp., short-chain lactones have been reported as relevant 
intraspecific cues. For instance, males of Rhagoletis batava 
Hering release (-)-δ-heptalactone, and it results attractive for 
both sexes, therefore acting as an aggregation pheromone 
(Būda et al. 2020). Males of the walnut husk fly Rhagole-
tis completa Cresson also release δ-hexalactone, along with 

Fig. 1  Representative total ion chromatogram from SPME headspace 
volatiles of laboratory-reared B. oleae (7–14  days old) virgin males 
(a) and females (b). Inset depicts the elution of male-specific com-

pounds γ-hexalactone (1) and δ-hexalactone (2). HC = hydrocarbons. 
Numbers above each peak match with the numbers of the compounds 
in Table 1
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δ-heptalactone, and this binary mixture is highly attractive 
in field tests, although no information of the sex-ratio of the 
catches was provided by the authors (Sarles et al. 2018). 
With regard to Anastrepha spp., more complex lactones are 
suggested to be part of the sex pheromone blend. In three 

Anastrepha species, namely Anastrepha ludens (Loew), 
Anastrepha fraterculus (Wiedemann), and Anastrepha sus-
pensa (Loew), the trivially-known lactones suspensolide, 
epianastrephin and anastrephin have been identified as 

components of the male sex pheromone (Battiste et al. 1983; 
Stokes et al. 1983; Chuman et al. 1988; Lima et al. 2001; 
Milet-Pinheiro et al. 2015).

Concerning subfamily Dacinae, in which genus Bac-
trocera is included, scant records of male-produced lac-

tones are known (Ohinata et al. 1982; Baker et al. 1985; 
Ono et al. 2020). (E)-5-(3,6-heptadienyl)dihydro-2(3H)-
furanone was identified from the volatile bouquet released 
by Bactrocera cucurbitae (Coquillett) males (Ohinata et al. 

Table 1  Chemicals identified in SPME headspace collections from laboratory-reared Bactrocera oleae virgin males and females (7-14 days old).
ID Compound KIa Identificationb

(Lib., KI, Ss)

Males Females Refsc

1 γ-hexalactone 1067 Lib, KI, Ss 1

2 δ-hexalactone 1107 Lib., KI, Ss 1

3 l,7-dioxaspiro[5.5]undecane (=olean) 1139 Lib., Ss 2,3,4

4 l,7-dioxaspiro[5.5]undec-4-ened 1162 Lib 1

5 1,6-dioxaspiro[4.5]decan-2-methanold 1304 Lib 5

6 1,6-dioxaspiro[4.5]decan-2-methanold 1322 Lib 5

7 3-hydroxy-1,7-dioxaspiro[5.5]undecaned 1341 Lib 5

8 3-hydroxy-1,7-dioxaspiro[5.5]undecaned 1373 Lib 5

9 Ethyl decanoate 1400 Lib, KI 6

10 Ethyl dodecanoate 1600 Lib, KI 4,6,7

11 Ethyl tetradecanoate 1800 Lib, KI 4,6

12 Ethyl (Z)-9-hexadecenoate 1983 Lib, KI 4e,8

13 Ethyl hexadecanoate 1999 Lib, KI 4,6

14 Ethyl (Z)-9-octadecenoate 2183 Lib, KI 6,9

15 (Z)-9-tricosene 2279 Lib, KI 9

a Calculated Kovats retention indices (KI) on a TR-5MS column (30 m × 0.25 mm I.D. × 0.25 µm)
b Compound identification achieved by comparison of their mass spectra with those in a mass spectral library (Lib.), literature-reported Kovats 
retention indices (KI), and synthetic standards (Ss).
c References in which the presence of the compound is detected in B. oleae: 1: Current work; 2: (Baker et al. 1980); 3: (Mazomenos and Hanio-
takis 1981); 4: (Gariboldi et al. 1983); 5: (Baker et al. 1982b); 6: (Canale et al. 2015); 7: (Mazomenos and Haniotakis 1985); 8: (Fusini et al. 
2018); 9: (Carpita et al. 2012).
d Tentatively identified
e Double bond position not determined

Fig. 2  Zoomed-in region of 
SPME headspace collections 
from laboratory-reared Bac-
trocera oleae virgin males of 
different ages (1, 5, 14, 19 and 
23 days old). Eluting peaks of 
γ-hexalactone (1), δ-hexalactone 
(2), and olean (3) are shown. 
Those peaks highlighted with 
a black dot match with those in 
the SPME fiber blank (upper 
trace)
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1982). Recently, Ono and coworkers detected 3-hydroxy-
decalactone in the rectal gland of both sexes of Bactrocera 
tsuneonis (Miyake), although the amount of compound 
detected in mature males was significantly higher than in 
immature males and females (Ono et al. 2020). However, no 
biological activity of any of the abovementioned compounds 
has been determined so far. Similarly, some lactones from 
host plants are reported as biologically actives for true fruit 
flies. In Bactrocera dorsalis (Hendel) and Bactrocera try-
oni (Froggatt), γ-octalactone, a mango-released compound, 
is recognized as a strong oviposition stimulant (Pagadala 
Damodaram et al. 2014; Kempraj et al. 2019). Addition-
ally, an aggregative response in B. tryoni is induced by this 
compound (Kempraj et al. 2019). Moreover, gamma- and 
delta-lactones of diverse chain length  (C4-C12) from host 
fruits elicit electroantennographic responses on C. capitata 
(Light et al. 1988). Therefore, our findings represent the first 
report within this subfamily of a male-produced lactone bio-
logically active on conspecifics.

Analytical procedures on the volatile fraction of B. oleae 
allowed to detect both lactones exclusively in virgin males, 
and although the stereochemistry was not determined, 

both sexes positively responded to the racemic mixture of 
γ-hexalactone. In a similar vein, racemic δ-hexalactone and 
δ-heptalactone are effective attracting R. completa (Sarles 
et al. 2018). Nonetheless, discrepancies in the response level 
related to enantiomeric composition are commonly reported. 

Fig. 3  Behavioral response (expressed as percentage of attraction) of 
laboratory-reared virgin B. oleae (7–14 days old) males and females 
to γ-hexalactone (1, 10 and 100  µg). Asterisks denote a significant 
preference towards γ-hexalactone (Chi-square goodness-of-fit, at 
α = 0.05). The number beside each bar indicates the total number of 
flies tested, and the number of flies making a choice for the control 
arm (C) and γ-hexalactone (γ) is indicated within parentheses

Fig. 4  Behavioral response (expressed as percentage of attrac-
tion) of laboratory-reared virgin B. oleae (7–14 days old) males and 
females to δ-hexalactone (1 and 10 µg). No significant preference was 
detected for neither of the olfactometer arms (Chi-square goodness-
of-fit test, at α = 0.05). The number beside each bar indicates the total 
number of flies tested, and the number of flies making a choice for the 
control arm (C) and δ-hexalactone (δ) is indicated within parentheses

Fig. 5  Field Assay 1: mean number (+ SEM) of B. oleae females and 
males trapped per week (n = 13 weeks)  (29th August to  28th Novem-
ber 2018) in FLYPACK®DACUS traps baited with AB (ammonium 
bicarbonate, 40 g) and AB (40 g) plus γ-hexalactone (200 mg). Col-
umns headed with different letters within a sex (capital letters for 
females, lowercase letters for males) are statistically different (Mann–
Whitney U test, at α = 0.05)
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In fact, olean is produced as racemate by both B. oleae sexes 
(Haniotakis et al. 1986; Levi-Zada et al. 2012), and while 
sexually mature males are attracted to the (R)-(-) enanti-
omer in laboratory and field assays, females only respond 
to (S)-( +)-olean under laboratory conditions (Haniota-
kis et al. 1986). Conversely, males of R. batava only emit 
(-)-δ-heptalactone, and antennae from both sexes strongly 
responded to it, while anosmia was reported when stimu-
lated with the opposite enantiomer (Būda et al. 2020). In 
this sense, as earlier stated, none of the sexes of B. oleae 
responded to δ-hexalactone in our laboratory assays, and 
a possible antagonistic effect between enantiomers may be 
masking any biological activity. Therefore, the determina-
tion of its enantiomeric composition and further biological 
tests would provide valuable foundation to assess the true 
role of the compound.

The emission of γ-hexalactone was detectable in all the 
sampling ages considered (from one to up to 23 days old), 
which suggests that the biological relevance of the com-
pound may prevail throughout males´ lifespan. It is worth 
noting that the presence of γ-hexalactone was also detected 

in 7- and 14-day-old feral males reared from infested olive 
fruits, while only traces were found in samples from feral 
males of less than one week old (Supplementary Figure S3). 
With regard to δ-hexalactone, it was clearly detectable in 
feral males of 14 days old, while younger males showed 
either traces (7 days old) or lacked the compound (< 7 days 
old) (Supplementary Figure S3). Thus, these findings con-
sistently demonstrate that the volatile profile of laboratory-
reared individuals is similar to that of feral males. Different 
factors have been demonstrated to quantitatively and qualita-
tively modify the pheromone production in long-established 
laboratory insect colonies (Raina et al. 1989; van Bergen 
et al. 2013; Merli et al. 2018). For instance, major and minor 
sex pheromone components of C. capitata males are altered 
under different larvae diets (Vaníčková et al. 2012; Merli 
et al. 2018). Nevertheless, our volatile collections from feral 
males demonstrated that both lactones are naturally pro-
duced, and a potential influence of the artificial diet should 
be discarded. Further research on age-related production and 
release of γ-hexalactone in feral males would be of great aid 
to gain a better understanding of its natural role.

Both laboratory and field trials confirmed that the male-
specific γ-hexalactone is attractive for males and females, 
either when singly presented (laboratory assays) or when 
co-released with ammonium bicarbonate (field trials). 
Indeed, the combination of γ-hexalactone with the food lure 
increases the number of catches of both sexes compared to 
the performance of ammonium bicarbonate and olean. Even 
though the male to female ratio in ammonium bicarbonate 
and γ-hexalactone bait was male-biased (ca. 1.6:1, with the 
exception of Assay 1), the number of females trapped was 
significantly increased in comparison to the other testing 
baits. Taken into consideration that the ammonium salt and 
the major pheromone component are primarily attractants 
of females and males respectively, the observed increase in 
catches level should be attributable to an attractive effect of 
γ-hexalactone upon both sexes. This is partially in agree-
ment with previous observations, which addressed the role 
of males exerting attraction on females. Evidence of male-
mediated attraction on females dates back from the decade 
of 1970s, when a particular odor emanating from males 
was reported when the mating activity of the insect peaks 
(Economopoulos et al. 1971). Later, it was described that 
“an oily substance from the glandular epithelium” resulted 
attractive to females in the laboratory (De Marzo et al. 
1978), albeit the conclusions of this study generated some 
skepticism, due to some methodological weaknesses that 
may have led to artificial results (Mavraganis et al. 2010). 
Further evidence was provided by Mavraganis and cowork-
ers, who tested the activity of male body extracts, which 
resulted to be attractive for mature virgin females in test 
cages (Mavraganis et al. 2010). In the last years, (Z)-9-tri-
cosene has been isolated from the rectal gland of mature 

Fig. 6  Field Assays 2 & 3: mean number (+ SEM) of B. oleae 
females and males trapped per week in FLYPACK®DACUS traps 
baited with AB (ammonium bicarbonate, 40 g) plus olean (200 mg) 
and AB (40  g) plus γ-hexalactone (200  mg). Columns headed with 
different letters within a sex (capital letters for females, lowercase 
letters for males) are statistically different (Mann–Whitney U test, 
at α = 0.05); a Field assay 2, conducted from  17th October to  13th 
December 2019 (n = 8  weeks) in Sant Llorenç d´Hortons (Spain); 
b Field assay 3, conducted from 13th July to  23rd November 2021 
(n = 19 weeks) in Ásperes (France)
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males, and it attracts virgin females in olfactometer tests 
(Carpita et al. 2012). As in many other tephritid species 
(Baker et al. 1982a; Perkins et al. 1990; Zhang et al. 2019; 
Noushini et al. 2019, 2021a, b), the rectal gland is regarded 
as the biologically-active compounds secreting organ in B. 
oleae (Gariboldi et al. 1983; Carpita et al. 2012; Canale 
et al. 2013b, 2015). In addition, male urotergal gland in the 
olive fruit fly males has been reported to be attractive for 
both sexes, with females attracted to urotergal glands from 
old males (15 days old), and males attracted to urotergal 
glands from young males (5 days old) (Canale et al. 2013b). 
However, it is remarkable that these previous works have 
not found any of the lactones reported by us when analyz-
ing the content of male glands (Carpita et al. 2012; Canale 
et al. 2013b) and thus, the characterization of the production 
and release site of both lactones deserves further attention.

Interestingly, in our case γ-hexalactone was not only 
attractive for females, but unexpectedly also for males. 
We suggest that this male-male interaction mediated by 
γ-hexalactone might be related to lek formation. It is well 
known that B. oleae males form leks at dusk, and within 
these swarms they compete for female attraction, and court-
ship takes place. Similar lekking behavior has been reported 
for most tephritid species (Iwahashi and Majima 1986; Dod-
son 1986; Whittier et al. 1992; Segura et al. 2009). Cues 
involved in lekking are not fully understood in fruit flies, 
although intraspecific and host chemical cues, visual and 
acoustic signals are suggested to be relevant (reviewed by 
Benelli et al. 2014). In this sense, it would be plausible 
that γ-hexalactone, along with other undetermined signals, 
may contribute to lek formation by recruiting males at first 
instance, and afterwards, female conspecifics may be enticed 
towards swarming males by the action of additional cues, 
with a possible role of γ-hexalactone. Nevertheless, in the 
light of our results it is too premature to draw such conclu-
sions, and hence in-depth research would be needed to test 
whether γ-hexalactone is attractive by itself under field con-
ditions, along with determining its possible role as a poten-
tial lek formation elicitor.

In conclusion, our findings demonstrate that the com-
bination of ammonium bicarbonate and γ-hexalactone is 
highly attractive for both sexes of B. oleae, and this bait 
even improves the performance of ammonium bicarbo-
nate and olean. Therefore, the use of γ-hexalactone should 
be taken into consideration for replacing olean as a com-
plement of this kind of food lure-based baits. Remain-
ing challenges, such as determining the stereochemistry 
or γ-hexalactone, the role of δ-hexalactone as a potential 
synergist, and the optimum release rate (Navarro-Llopis 
et al. 2011), may contribute to gather pivotal information 
for the development of novel trapping strategies against 
B. oleae populations. Furthermore, the identification of 

reported male-specific lactones represents a novel step 
towards deciphering the chemically-mediated intraspecific 
interactions of B. oleae, supporting the idea that the sexual 
communication of the species is not governed only by the 
chemical cues released from females. Future work will be 
aimed to address the putative role of γ-hexalactone as an 
aggregative cue.
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