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Abstract
Behavioral manipulation (BM) is a multimodal control approach based on the interference with the stimuli mediating insect 
perception and interaction with the surroundings. BM could represent a win–win strategy for the management of vector-borne 
plant pathogens as the bacterium Xylella fastidiosa, since it could reduce the number of vectors alighting on host plants and, 
consequently, the chances for transmission to occur. In this review, we summarized current knowledge and highlighted gaps 
in information on (i) how insect vectors of X. fastidiosa in general, and more specifically the meadow spittlebug Philaenus 
spumarius, locate and accept the host plant; and (ii) how behavioral manipulation techniques could be applied to disrupt 
the vector–host plant interaction. Finally, we discussed how diverse BM strategies could be combined with other integrated 
pest management tools to protect olive groves from inoculation with the fastidious bacterium.
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Introduction

Native to the Americas, the gram-negative, xylem-limited 
bacterium Xylella fastidiosa is a colonizer of both plants 
and insects and can infect more than 650 plant species 
(Almeida 2016; Sicard et al. 2018; Morelli et al. 2021). 

Xylella fastidiosa is characterized by various phylogenetic 
clades, each with a limited host range, and only particu-
lar bacterial genotypes cause specific plant diseases. The 
current main grouping comprises the subspecies fastidiosa, 
multiplex, and pauca (Morelli et al. 2021). The bacterium 
is transmitted only by xylem-sap feeding insects, such as 
sharpshooters (Hemiptera: Cicadellidae: Cicadellinae) and 
spittlebugs (Hemiptera: Aphrophoridae). The inoculation of 
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bacterial cells may occur few minutes upon stylets insertion 
into the host plant tissues and contact with a xylem vessel 
(Cornara et al. 2020, 2022).

Invasions of new areas and continents largely depend on 
trade of plant material, and diverse introductions recently 
resulted in the establishment of X. fastidiosa in Europe 
(Martelli 2016; Strona et al. 2017). The region Apulia, 
in south-eastern Italy, was the first area of the Old World 
where a X. fastidiosa outbreak was reported; the strain ST53, 
belonging to the subspecies pauca, likely introduced around 
2008, was demonstrated to be the causal agent of the olive 
quick decline syndrome (Saponari et al. 2017; Vanhove et al. 
2019). The Italian outbreak could be thought as a “perfect 
storm” in which the combination of several factors resulted 
in an unprecedented spread of the fastidious bacterium and 
the loss of millions of olive trees, and, as a consequence, 
in economic and social turmoil. Firstly, X. fastidiosa was 
accidentally introduced into an environment (Apulia) where 
a native, competent, and polyphagous vector, the meadow 
spittlebug Philaenus spumarius (L.) (Hemiptera Aphrophor-
idae), is very abundant (Cornara et al. 2018a). Secondly, 
olive trees, hosts of both the spittlebug and the strain ST53, 
cover the area, forming an almost continuous forest inter-
spersed with Mediterranean maquis sheltering the vectors 
during hot and dry summers (Cornara et al. 2018a; Bodino 
et al. 2019). Thirdly, pest management efforts were belated 
because symptoms of the disease can show one-to-two 
years after infection and due to the difficulties in uprooting 
infected trees, which represent a cultural heritage for the 
local residents (Almeida et al. 2019; Saponari et al. 2019). 
Currently, the main control strategies against P. spumarius in 
olive orchards consist in tilling, which is aimed at reducing 
the herbaceous cover hosting the spittlebug juveniles, and 
in mandatory pesticide applications (Saponari et al. 2017, 
2019; Lago et al. 2021, 2022). Notwithstanding these efforts, 
X. fastidiosa infections continue to expand, with a yearly rate 
of movement of the invasion front of about 10 km, leaving 
devastation in its wake (Saponari et al. 2019). As a fact, the 
bacterium is causing immeasurable environmental losses 
and is rapidly accelerating the desertification of the region, 
due to tree removal and drawbacks of vector control meas-
ures, which pose a risk to biodiversity (Sánchez-Bayo and 
Wyckhuys 2019; Ali et al. 2021). New strategies that do not 
threaten the environment and that should be compatible with 
other integrated pest management techniques are urgently 
needed for the long-term management of the bacterium and 
its vector.

As mentioned above, X. fastidiosa can be theoretically 
transmitted by any xylem feeder, but the relevance of a vec-
tor in the bacterium epidemiology depends on its ecological 
attributes (e.g., vector density, distribution and dispersal), 
among which host selection plays a pivotal role. By under-
standing the stimuli underlying the behaviors leading to host 

plant location and acceptance by the insect vector, it would 
be possible to develop behavioral control strategies aimed 
at disrupting one or more aspects of these processes (Foster 
and Harris 1997; Mazzoni and Anfora 2021). Behavioral 
manipulation could represent a win–win strategy in the fight 
against X. fastidiosa because it could decrease both the vec-
tor-borne spread of the bacterium and reliance on pesticides 
(Mazzoni and Anfora 2021).

In this review, we summarize current knowledge and 
highlight information gaps on i) how insect vectors of X. 
fastidiosa in general, and more specifically the meadow 
spittlebug Philaenus spumarius, locate and accept the host 
plant; and ii) how behavioral manipulation techniques could 
be applied to disrupt the vector–host plant interaction.

Introducing behavioral manipulation

Behavioral manipulation (BM) methods for pest control 
are based on techniques aimed at interfering with crucial 
behaviors of target pests, in order to reduce their impact on 
crop production (Foster and Harris 1997; Cowles 2004; Gut 
et al. 2004; Mazzoni and Anfora 2021). BM may affect both 
intra- and interspecific communication; typical examples 
of it are semiochemical-based techniques such as mating 
disruption, which is largely adopted to control a wide range 
of crop pests (Benelli et al. 2019; Cardé 2021; Nieri et al. 
2022). Usually, BM strategies do not eradicate the pest, but 
tend to reduce the density of its population, decreasing direct 
damages to crops and/or the transmission of vector-borne 
pathogens (Hooks and Fereres 2006). Even if BM does not 
offer a quick or definitive suppression of pests compared to 
insecticides, it provides long-term and area-wide control, 
often lasting throughout the lifecycle of the crop–pest inter-
action (Foster and Harris 1997; Cowles 2004). In addition, 
limitations of BM are counterbalanced by its sustainability 
and compatibility with other pest management strategies, 
such as biological control (Foster and Harris 1997; Cowles 
2004; Pecenka et al. 2021).

Alteration of behaviors related to plant–insect interaction 
(i.e., host finding and feeding) may seem more advantageous 
than mating disruption, which reduces local populations but 
does not guarantee plant protection, especially considering 
potential immigration of pests from outside the crop (Foster 
and Harris 1997). In the case of vector-borne plant patho-
gens, BM might reduce the transmission rate by lowering 
the contacts between the pest and the target crop (Miller 
and Strickler 1984; Todd and Nault 1990; Cowles 2004; 
Almeida et al. 2005; Hooks and Fereres 2006; Hu, Mou and 
Tsai 2020).

In this context, to control a vector-borne bacterium as X. 
fastidiosa, the prerequisite for an efficient BM strategy is 
knowledge regarding the exogenous and endogenous factors 
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governing the vector’s host plant selection, which can be 
divided into host finding (thus, orientation and landing) 
and host acceptance (e.g., probing, feeding and oviposition) 
(Schoonhoven 1968; Visser 1983, 1986). Intraspecific com-
munication, particularly mating behavior, will be also treated 
within the present review, since it is crucial to better under-
stand the insect behavioral ecology once landed on the host 
plant. In this perspective, studying how the pest selects its 
hosts and communicates can provide insights regarding how 
to interfere with its landing, settling and permanency on the 
plant (i.e., by reducing mate and host finding, by impairing 
feeding by means of vibrational stimuli and/or by genome 
editing (Mazzoni and Anfora 2021; Salvagnin et al. 2018)).

Host finding

The search for a new host is generally triggered by changes 
in environmental factors or by modifications of the insect's 
physiology such as food deprivation or egg maturation. On 
the other hand, landing is driven by the right stimulus or 
set of stimuli, which may include abiotic and biotic factors 
such as host plant-mediated and non-host cues (i.e., wind, 
rain, the presence of hetero- and conspecifics, etc.) as well 
as learning (Miller and Strickler 1984; Visser 1986; Ber-
nays 1996; Finch and Collier 2000; Cowles 2004; Hodkin-
son 2009; Döring 2014). In the last decade, an impressive 
number of works regarding host finding and acceptance in 
phytophagous insects has been published. However, infor-
mation regarding how these insects perceive and evaluate 
their environment is rather fragmented (Prokopy and Owens 
1978, 1983; Todd and Nault 1990; Stenberg and Ericson 
2007; Döring 2014). The majority of published works sug-
gests that two main sensory modalities govern this process: 
vision and olfaction (Prokopy and Owens 1983; Miller and 
Strickler 1984; Dicke 2000; Beyaert and Hilker 2013; Ben-
Yakir et al. 2020). All X. fastidiosa competent vectors pre-
sumably use semiophysicals (namely, visual and vibrational 
cues) and semiochemicals (odors) for host finding (Krugner 
et al. 2019; Nieri et al. 2022). In particular, visual cues are 
likely critical in host detection, while volatiles and xylem-
sap metabolites, are key components of host acceptance.

Vision

Among herbivorous insects (especially auchenorrhynchans), 
vision is probably the sensory modality driving host locali-
zation at long distances. For instance, in the leafhopper 
Empoasca vitis, the suppression of opsin genes within the 
eyes was sufficient to hinder tropism toward hosts, espe-
cially at relatively long distances from the plant (Zhang et al. 
2018). Phytophagous insects elaborate visual cues in func-
tion of i) their distance from the plant, and ii) their position 

in vicinity of the potential host (i.e., nearby or inside the 
canopy). Thereby, distant plants are presumably perceived 
as indistinct shapes against the horizon, while, as the insect 
approaches, the visual quality of the foliage is used to iden-
tify hosts and triggers landing. Once inside the crop or the 
canopy, visual cues such as shape, size, color, brightness and 
polarization, guide the insect toward the preferred plant and/
or structure (Prokopy and Owens 1983). For instance, Moer-
icke (1955) and Kennedy and colleagues (1961) described 
how insects, in this case aphids, respond to ultraviolet and 
human-visible light, which govern attack flights or trivial 
flights involving landing on green plants or long migratory 
flights, respectively.

Color is a key factor driving host finding and landing in 
herbivorous insects. Color is composed of different spectral 
characteristics: hue is the dominant wavelength, brightness 
the total amount of light reflected, and saturation the spec-
tral purity of the reflected light. Insects may utilize any of 
these cues in different combinations, and many have true 
color vision, which is defined as intensity-independent dis-
crimination of objects, based on their spectral properties 
(Van der Kooi et al. 2021). Yet, the way in which insects 
perceive colors differs fundamentally from humans (Chittka 
and Döring 2007). To the best of our knowledge, a system-
atic understanding of behavioral responses to colors in spit-
tlebugs and related taxa is missing, together with data on 
spectral reflectance of traps used in behavioral experiments. 
Nonetheless, mechanisms discovered in other hemipteran 
insects such as aphids (Döring 2014; Döring and Kirchner 
2022) may help to guide the interpretation of experiments 
with spittlebugs or closely related species. This approach 
may also be used to compare behavioral differences between 
species, which may be remarkable. For example, green is 
attractive to most leafhoppers (i.e., Empoasca spp.), which 
prefer bright colors corresponding to young leaves (Zhang 
et al. 2018; Bian et al. 2020), while whiteflies such as Bemi-
sia tabaci prefer yellow (Blackmer and Byrne 1993) and 
thrips (e.g., Frankliniella occidentalis) are extremely sensi-
tive to blue (Blackmer and Byrne 1993; Zhang et al. 2018; 
Ren et al. 2020). Differences occur even between sexes, as 
in the leafhopper Scaphoideus titanus, in which males are 
mostly attracted from yellow, while females seem to prefer 
red, probably because this color recalls the grapevine bark, 
thus oviposition sites (Mazzoni et al. 2011). This example 
suggests the presence of another spectral channel (and con-
sequently, receptors), maximally sensitive in the orange or 
red range. Similar preferences have been observed in some 
Australian hemipterans as well (Farnier et al. 2014).

Multichromatic vision do not likely play an important role 
in the discrimination of different plant colors (Prokopy and 
Owens 1983), considering that many plants share similar 
spectral characteristics (Farnier et al. 2014). Light, scattered 
from or transmitted through leaves, is most intense around 
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500–580 nm, in the green-yellow part of the spectrum, 
resulting in green-yellow objects being extremely attractive 
for phytophagous insects seeking for vegetation (Prokopy 
and Owens 1983). Given that information is currently scarce 
on behavioral or physiological responses of spittlebugs to 
this color range, we may only speculate what colored stimuli 
are used by these insects. For many herbivorous insects, yel-
low colors indicate young leaves rich in nitrogen, which is a 
limiting factor in many plants (Mooney and Gulmon 1982). 
It must be said, however, that yellow leaf color is not nec-
essarily an indicator of high quality (Döring and Kirchner 
2022). Future research should therefore assess whether spe-
cific spectral properties of leaves of these plants are related 
to food quality and are consequently relevant for xylem feed-
ers. In this regard, research on behavioral and electrophysi-
ological responses to colors is needed, as it would facilitate 
the development of new trapping devices for the control of 
spittlebug and sharpshooter vectors in the field.

In the case of P. spumarius, the sole study that inves-
tigated the effectiveness of differently colored sticky traps 
dates back to 1967 and demonstrated that yellow is the 
most attractive color compared to the others tested, which 
included white, blue, green, orange, red and pink (it must 
be noted that these were the colors as perceived by human 
observers). A low number of P. spumarius was recorded 
on white, blue and pink traps, whereas intermediate num-
bers were found on green, orange and red traps (Wilson and 
Shade 1967). However, the yellow sticky traps currently 
employed in the field do not efficiently trap spittlebugs, 
especially in olive groves, suggesting that there are other 
attractive cues (different wavelengths, saturation, shape or 
factors other than color) involved (Morente et al. 2018). 
For instance, insects can detect the linear polarization of 
light, which represents the oscillation of incident photons 
in a common plane. Light, reflected from the shiny, waxy 
cuticle of leaves, becomes linearly polarized (Wehner 2001). 
The observer perceives this light together with the diffuse, 
unpolarized light, scattered from leaves or reflected through 
leaves. The ratio between the polarized and unpolarized light 
depends on the chemical and physical properties of the cuti-
cle and the leaf parenchyma, and it could therefore be used 
by insects to detect or evaluate potential hosts. For instance, 
polarized reflections are exploited by butterflies to evaluate 
and identify host plants (Kelber et al. 2001), in that they 
choose oviposition sites based on the degree of polariza-
tion of reflected light (Blake et al. 2019). Aquatic bugs have 
photoreceptors optimized for detecting water bodies using 
polarization vision as well (Schwindt 1984a, 1984b), prov-
ing that hemipterans possess a object-directed polarization 
vision that could be used to select targets.

The life cycle of P. spumarius potentially influences the 
way insects perceive and process visual stimuli, consider-
ing that the transition to adulthood means passing from a 

sedentary, semiaquatic lifestyle to a dry and free-living one 
(Halkka et al. 1977; Keskinen and Meyer-Rochow 2004; 
Cornara et al. 2018a). In this univoltine species, eggs are 
laid on straw very close to the soil, while nymphs crawl 
on plants in the surrounding ground cover after hatching. 
Nymphs likely do not seek specific host plants given that 
they may thrive on hundreds of herbaceous species, while 
the production of a watery foam is essential for their sur-
vival as it avoids desiccation. The life of the nymph is con-
sequently rather sedentary until adulthood. On the other 
hand, the adult spittlebug emerges from the foam covered 
by an exoskeleton protective against sunlight and provided 
with wings and legs capable of impressive jumps. They are 
hence ready to explore the outside world and find shelters if 
the herbaceous cover dries out in summer (Yurtsever 2000; 
Cornara et al. 2018a; Bodino et al. 2020). In this perspective, 
the eyes of P. spumarius are expected to undergo signifi-
cant changes during adult molting giving that adults walk, 
jump and fly to find hosts. They need appropriate visual 
acuity, achieved during metamorphosis by an increase in 
size and number of facets within the compound eye. The 
cornea thickens and the rhabdoms become thinner, making 
the adult eyes tougher and improving vision compared to 
juveniles (Keskinen and Meyer-Rochow 2004). Nothing is 
known, however, about how P. spumarius eyes respond to 
specific visual requirements, and what stimuli, attractive or 
repellant, might be involved in orientation and behavioral 
changes.

If visual cues are pivotal, repellant stimuli could be used 
to reduce host finding by the spittlebug and integrated with 
attractive stimuli to develop push-and-pull strategies. Some 
plant species evolve resistant traits that help reduce detec-
tion by pests, even when this implies a lower reflection of 
optimum light wavelengths. For example, plants can reduce 
aphid landing by reflecting wavelengths other than the yel-
low or green—in the UV spectrum—or by producing wax-
less and glossy leaves (Eigenbrode and Espelie 1995; Staple-
ton and Summers 2002; Moharramipour et al. 1997; Smith 
and Chuang 2014).

Visual background appearance is another driving force 
guiding insects toward vegetated ground surfaces that may 
be used for vector management (Döring and Röhrig 2016). 
The marked contrast in the light spectrum between plants 
and soil is attractive to insects, especially when substantial 
amounts of bare soil surround a plant or a crop (Prokopy 
and Owens 1978, 1983; A’Brook 1968). A comparable situ-
ation occurs in the olive orchards ravaged by X. fastidiosa 
in southern Italy, where the herbaceous cover dries out in 
summer, leaving olive trees and a few evergreen shrubs 
surrounded by bare red soil (Fig. 1) (Cornara et al. 2018a; 
Bodino et al. 2019; Saponari et al. 2019). As noted above, 
current control techniques aimed at reducing vector popula-
tions involve removal of the ground cover in olive orchards. 
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Even if this tillage decreases the number of nymphs devel-
oping on the understory, it could potentially increase the 
risk of attracting adult spittlebugs from outside the orchard. 
In this regard, even if the dispersal of P. spumarius seems 
limited in olive orchards, it is influenced by several factors, 
such as agroecosystem structure and landscape composition 
(Santoiemma et al. 2019; Bodino et al. 2021b). As reported 
by Lago et al. (2022), interplant movements could occur 
during night or dusk, suggesting that also the time of the 
day should be considered. Provided that visual stimuli are 
available for P. spumarius, imagine a spittlebug adult search-
ing for a host in proximity of a tilled plot: would not be the 
leafy and green canopy of an olive tree easy to spot against 
the red bare soil? Even though this is only a hypothesis, it 
would be of paramount importance to investigate the role of 
color background in host localization by this insect, espe-
cially considering that similar information could provide 
novel insights regarding the relation between ground cover 
removal and spittlebug abundance on olive canopies.

Finally, it has been noted that xylem feeders discriminate 
against plants showing symptoms of severe water stress and/
or of bacterial infection (Marucci et al. 2005; Mizell et al. 
2008; Rashed et al. 2011; Daugherty et al. 2011; Krugner 
et al. 2014). In particular, visual stimuli influence host selec-
tion by sharpshooter vectors of X. fastidiosa in the Americas, 
as these insects discriminate against infected grapevines, 

which are subjected to water stress and presumably represent 
a low-quality food source (Daugherty et al. 2011, 2017; Del 
Cid et al. 2018). Philaenus spumarius may show a similar 
preference, which would affect pathogen acquisition and, 
consequently, the spread of the olive disease caused by the 
fastidious bacterium. As pointed out by Daugherty and col-
leagues (2011), when investigating whether alternate hosts 
in the field represent pathogen reservoirs, it is important 
to study how vectors respond to infection in these plant 
species. In fact, X. fastidiosa infection level and symptom 
severity differ among different host species, and trends in 
quality over time may influence host phenotype and, as a 
consequence, vector behaviors (Hill & Purcell 1995; Pur-
cell, 1997; Daugherty et al. 2011, 2017). Considering that X. 
fastidiosa, H. vitripennis and P. spumarius have broad host 
ranges (Krugner et al. 2019; Almeida et al. 2005; Cornara 
et al. 2018a, b), it would be crucial to unveil how infection 
and symptom expression impact the acceptance of different 
host plants by vectors. Similar information would, in our 
opinion, allow to better characterize X. fastidiosa epidemiol-
ogy and develop strategies aimed at reducing vectors landing 
on host plants.

Fig. 1  Visual cues may govern the movement of the spittlebug 
Philaenus spumarius toward olive plants, considering contrast of 
colors between the red bare soil and the green olive canopy. The spit-

tlebug may move from the drying herbaceous vegetation or from sur-
rounding olive/wild trees
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Olfaction

Plants emit volatile organic compounds (VOCs) that can be 
detected by phytophagous insects during flight and land-
ing via olfactory receptors on their antennae, or with other 
sensilla on tarsi and mouthparts (Visser 1986; Andersson 
et al. 2015). Depending on the species, either host-specific 
volatiles or specific ratios of ubiquitous plant odors (such 
as green-leaf volatiles) are used by insects to find preferred 
hosts (Bruce et al. 2005; Riffell et  al. 2009; Bruce and 
Pickett 2011). Extensive research has proven that odors are 
crucial components in long- and short-range localization 
of food sources within insect taxa such as Lepidoptera and 
Diptera, as well among some hemipterans, such as stinkbugs 
(Pentatomidae). Electrophysiological and behavioral tests on 
sternorrhynchans such as aphids (Aphidoidea), whiteflies 
(Aleyrodoidea) and psyllids (Psylloidea) demonstrated not 
only that odors trigger physiological responses, but also that 
they influence the orienting behavior of these insects, even 
if solely at short distances from the plant (Bruce et al. 2005; 
Coutinho-Abreu et al. 2014).

In contrast, auchenorrhynchans (cicadas, spittlebugs, 
leaf-, plant- and treehoppers) have small antennae, and most 
studies suggest that olfaction has little role in mate and host 
finding, although exceptions have been reported (e.g., Maz-
zoni et al. 2009; Ranieri et al. 2016; Zhang et al. 2018). 
For instance, the cixid planthopper Hyalesthes obsoletus has 
sensible sensilla that are finely tuned to perceive preferred 
hosts (Riolo et al. 2012). In many leafhopper and planthop-
per species, chemical stimuli such as plant volatiles are simi-
larly associated to host detection, though in most cases odors 
just increase responsiveness to visual stimuli (Obata et al. 
1981; Todd et al. 1990; Cook and Denno 1994; Fereres and 
Moreno 2009; Mazzoni et al. 2009; Rossi Stacconi et al. 
2014; Darshanee et al. 2017; Grange et al. 2017). Enhanced 
responses to visual cues attributable to plant volatiles have 
also been observed in the sharpshooter Homalodisca vit-
ripennis, a X. fastidiosa vector in North America (Patt and 
Sétamou 2007; Krugner et al. 2019). Among these and other 
xylem feeders, a variety of cues are presumably used to track 
the physiological state of host plants and consequently assess 
whether they can provide adequate nutrients (Mizell and 
French 1987; Andersen et al. 1992; Brodbeck et al. 1999; 
Redak et al. 2004).

The evidence produced so far on the relevance of olfac-
tory cues in long- and short-range host plant location by P. 
spumarius is fragmentary and inconclusive. Morphologi-
cal studies showed that the antennae of P. spumarius bear a 
lower number of antennal sensory structures than leafhop-
pers and planthoppers (Ranieri et al. 2016). The morphology 
of P. spumarius sensilla suggests that their main function is 
thermo-/hygroreception, notable considering that humidity 
plays a pivotal role in the life cycle of spittlebugs (Weaver 

and King 1954; Tichy and Loftus 1996; Ranieri et al. 2016; 
Cornara et al. 2018a). At any rate, the general organization 
of some basiconic and coeloconic sensilla is consistent with 
an olfactory function (Ranieri et al. 2016), and electroanten-
nographic (EAG) studies confirmed that the antennae of both 
P. spumarius males and females respond to a wide range of 
VOCs belonging to different chemical classes (Germinara 
et al. 2017). Recent experiments also proved that spittlebugs 
are attracted and/or repelled by different aromatic plants, 
and that the response depends on the sex of the insect and 
on the distance from the odor source (Ganassi et al. 2020). 
Cascone and colleagues (2022) observed a negative corre-
lation between the amount of limonene, 3-octanone, cam-
phor, geraniol, and (-)-myrtenol and attractiveness toward 
P. spumarius females. Among EAG-active host plant vola-
tiles, spittlebug females were apparently attracted only by 
( +)-camphor, cis-3-hexenyl-acetate and cis-3-hexen-1-ol 
(Anastasaki et al. 2021; Rodrigues et al. 2022). With regard 
to olive, females were attracted by the blend of VOCs emit-
ted by varieties susceptible to X. fastidiosa (Ogliarola, 
Rotondella and Frantoio) and repelled by a resistant one 
(FS-17), while males were totally unresponsive (Cascone 
et al. 2022).

Besides the evidence produced so far, literature on spit-
tlebug species others than P. spumarius suggest that there 
is room for repellent compounds to be found and exploited. 
The Neotropical spittlebug pest Mahanarva spectabilis¸ for 
instance, likely used olfactory cues to distinguish among 
sugarcane cultivars and pasture grasses, both under green-
house and field conditions. While attractive cultivars were 
most susceptible to nymphs and adults, volatiles emitted by 
a resistant cultivar had a repellent effect, suggesting that 
host suitability may be discriminated through odor cues 
(Auad and De Resende 2018; Silva et al. 2019). By identi-
fying odors that are less attractive for pest insects, it might 
be possible to develop resistant varieties emitting repellent 
volatiles, or to identify plant volatiles that could be used 
to develop repellent tools. Novel techniques in the field of 
genome editing may also be employed to protect plants, con-
sidering that the plant susceptibility to pest attacks may be 
reduced by modifying its emission of kairomones, as sug-
gested by Salvagnin and colleagues (2018).

Host acceptance

Despite decades of effort, knowledge on the biochemical and 
biophysical factors driving the acceptance of host plants by 
xylem feeders is still scattered. Once on a plant, the insect 
proceeds through a sequence of brief stereotypical behav-
iors aimed at discriminating whether the plant could be an 
acceptable food source or oviposition substrate. Each behav-
ioral step is composed of overlapping fixed action patterns, 
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and behavioral responses proceeding to completion without 
sensory feedback are triggered by a specific stimulus or set 
of stimuli (Backus 1985). Host acceptance therefore depends 
on a threshold of positive sensory inputs to the central nerv-
ous system that triggers stylets insertion (probing) and tast-
ing/testing ingestion and maintains ingestion and swallow-
ing. The factors determining host plant acceptance include 
i) intensity of olfactory and gustatory feeding stimulants, ii) 
intensity of deterrents and repellents, iii) metabolic state of 
the insect, including degree of deprivation of specific die-
tary factors and iv) learning resulting from previous feeding 
experience (Fig. 2) (Dethier 1982).

The first step of the acceptance process is exploration of 
plant after landing. Among piercing-sucking insects, auchen-
orrhynchans exhibit a unique behavior, namely dabbing (the 
insect repeatedly touches the plant with the tip of the labium, 
which bears chemo- and mechanoreceptors). Simultane-
ously, chemicals in the plant’s waxy cuticle solubilize in the 

insect’s saliva, producing a chemical mixture that is sensed 
by labial sensilla (Backus 1985). Basiconic sensilla with 
supposed olfactory function have recently been described 
on the labium of P. spumarius (Ranieri et al. 2020).

Besides chemical cues, the tissue topography of the plant 
is another essential cue in the process of recognizing a suit-
able host. While sharpshooters and aphids insert their stylets 
through flat surfaces, spittlebugs prefer a rounded support 
to grab with the forelegs, pulling it toward their labium 
while pushing the stylets in (Cornara et al. 2019). Besides 
providing stimuli for host recognition and acceptance, the 
plant anatomy could represent a first line of defense against 
spittlebug settling. For example, glandular trichomes func-
tion as feeding barriers in the case of P. spumarius nymphs 
(Hoffman and McEvoy 1985; Smith and Chuang 2014). 
On the other hand, once the insect has access to the plant, 
probing occurs, in that the stylets are inserted into the plant 
tissues searching for gustatory cues driving ingestion and 

Fig. 2  The image depicts some of the cues that may influence the set-
tling of the spittlebug Philaenus spumarius on a plant. Semiochemi-
cals include plant volatiles A and composition of the xylem sap B, 
which provide information regrading the suitability of the plant as 

food source. Semiophysicals comprise vibrational signals emitted by 
C conspecifics and D predators, as well as acoustic signals produced 
by approaching parasitoids E and F visual cues such as color and 
plant structure and shape
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final acceptance. It is important to point out that probing and 
feeding should be considered separate behaviors since each 
is triggered by a primary set of specific gustatory stimuli 
(Sogawa 1976). Among X. fastidiosa vectors, trial inges-
tion and sensing/tasting of xylem sap through the sensilla 
lining the precibarium are pivotal steps underlying host 
plant acceptance (Backus and McLean 1985; Cornara et al. 
2018b; Ranieri et al. 2020). If the plant is not considered an 
“acceptable host” after probing, the stylets are withdrawn 
and feeding does not occur.

Precibarial sensilla are crucial for host acceptance as 
they detect extremely diluted metabolites, such as amino 
acids, organic acids and sugars, present in the xylem sap 
(Prokopy and Owens 1983; Miller and Strickler 1984; Visser 
1986). The latter is an incredibly challenging food source, 
given that it is dilute, nutritionally unbalanced and under 
negative tension. Unique features permit xylem feeders to 
live on this nutritionally poor diet, including i) capacity of 
ingesting voluminous throughput; ii) ability of efficiently 
extracting organic nutrients; iii) assets of symbionts that 
reprocess the amino acid repertoire; and iv) mechanisms 
for disposal of excess nitrogen. As an example, large suck-
ing pump (cibarial) muscles allow xylem feeders to process 
hundreds of body weight equivalents of xylem fluid daily. 
This high throughput is then secreted from the anus and 
is used by spittlebugs nymphs to produce the spittle mass, 
while adults (and nymphs of other species) excrete the liquid 
as a succession of droplets. The flow is so rapid and evident 
that sharpshooters owe their name to this behavior. Besides 
managing the voluminous input of sap, efficient extraction 
of nutrients is crucial and is accomplished by means of a 
bypass. The filter chamber, in which the anterior and pos-
terior extremities of the midgut are closely apposed, shuts 
most xylem sap into the lower reaches of the digestive track. 
This permits the intestines to extract remaining organic com-
pounds more efficiently, resulting in assimilation of more 
than 99% of the nutrients (Andersen et al. 1989). In addi-
tion, to cope with the fact that xylem-sap organics are domi-
nated by a handful of nonessential amino acids, typically 
glutamine and asparagine, xylem feeders have evolved close 
symbiotic relationships with bacteria that convert these com-
pounds into essential amino acids (Ankrah et al. 2020a). The 
carbon skeletons of these organic nitrogen compounds are 
source of energy and building blocks for carbohydrates and 
fats. Overall, these factors enable xylem feeders, despite the 
low absolute levels of nitrogen in xylem sap, to have a surfeit 
of nitrogen which they dispose in form of ammonia, a toxic 
compound. However, diluted ammonia is excreted within the 
copious fluid output (the process is known as ammonotelism 
and is common among insects’ aquatic forms) (Ankrah et al. 
2020b).

Even if xylem sap is a challenging feeding source, poly-
phagy and frequent host switching enable xylem feeders to 

take advantage of the temporal and spatial dynamic of rap-
idly changing xylem stream nutrients (Mizell III et al. 2008). 
Once a xylem vessel is reached and sap flows through the 
food canal and the precibarium, chemical components of 
the xylem sap should trigger the ingestion, acting as phago-
stimulants. Several studies on both sharpshooters and spit-
tlebugs point toward amino acids, particularly the amides 
glutamine and asparagine, as the main drivers of host plant 
acceptance, shaping xylem-feeders’ abundance and feed-
ing patterns (Brodbeck et al. 1990; Andersen et al. 1992; 
Thompson 1994, 2004). Availability and ratios of amides are 
potentially the most relevant indicators of a host’s nutritional 
value in xylem feeders and other species as well (Andersen 
et al. 1992). Glutamine, for instance, is an essential compo-
nent of insect artificial diets, while asparagine deficiencies 
likely represent a host resistance mechanism against brown 
planthoppers (Auclair and Cartier 1963; Mittler 1972). 
Although not essential, proline can influence feeding pref-
erences as well, because it is presumably indispensable for 
flying (Weeda et al. 1979).

Xylem feeders have to overcome another obstacle: xylem 
sap is energetically costly to extract, due to negative pressure 
within xylem vessels (Raven 1983). Studies on the relation-
ship between xylem-sap tension and feeding in P. spumarius 
suggest that negative tension may not be a limiting factor, 
as far as the ratio between the volumetric energy density of 
sap ingested and the energy spent to withdraw and ingest it 
remains positive. Moreover, cibarial dilator muscles are able 
to overcome tensions up to -15 bar, well above the normal 
range of tensions spittlebugs are expected to encounter under 
field conditions (Bergman et al. 2021). In addition, Beck-
ett et al. (2019) reported that the metabolic rate of actively 
feeding P. spumarius is just 20% greater than during rest-
ing, indicating a relatively low cost of xylem-sap extraction. 
Similarly, xylem tension does not seem to affect the feeding 
rates of H. vitripennis, provided that the nutritional value of 
the host exceeds the costs of feeding under xylem negative 
pressures (Brodbeck et al. 1990; Andersen et al. 1992). The 
net result is that xylem feeders profitably extract the excep-
tionally large quantities of xylem sap required for adequate 
nutrition, as attested by their evolutionary success and status 
as abundant and consequential pests and vectors.

Overall, more precise knowledge of the sensory percep-
tion and specific stimuli that mediate feeding may aid plant 
geneticists in designing cultivars resistant to spittlebugs 
and sharpshooters. Moreover, the role played by xylem-
sap metabolites in shaping host plant acceptance opens the 
possibility for managing populations of xylem feeders by 
manipulating exogenous factors (such as water, fertilizers, 
etc.) that might influence xylem-sap chemistry, potentially 
reducing the host suitability for the insects.
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Substrate‑borne vibrational signals 
as semiophysicals

From a vibrational point of view, plants are noisy environ-
ments, where both biotic and abiotic factors provide specific 
constraints that shape insect communication systems and 
host preferences (Šturm et al. 2022). Many arthropods use 
substrate-borne vibrations in combination with other modal-
ities to gather information from the environment, and it is 
estimated that at least 150,000 insect species rely exclusively 
on vibrational communication (Virant-Doberlet and Cokl 
2004; Cocroft and Rodríguez 2005). As noted above, this 
is the case in Auchenorrhyncha, whose mechanoreceptors 
are tuned to perceive species-specific signals emitted by co- 
and heterospecifics (Virant-Doberlet and Cokl 2004; Hill 
and Wessel 2016). Consequently, substrate-borne vibrations 
are semiophysicals that travel through plants and convey 
essential information regarding the environment (e.g., for 
determining whether the plant is a favorable host for living, 
feeding, mating and ovipositing), while reducing the risks 
of being predated (Cocroft and Rodríguez 2005; Virant-
Doberlet et al. 2019; Nieri et al. 2021).

Given that communication can take place only when 
signal prevails over noise (Wiley 1983), the signal trans-
mission properties of plants can ultimately influence how 
insects select and use their hosts (Joyce et al. 2014; Mor-
timer 2017). In fact, even if wind and rain are ubiquitous 
sources of abiotic noise, the vibrations that they induce in 
the plant structure can differ depending on the plant species 
or even between parts of the same plant (Barth et al. 1988; 
McVean and Field 1996). A plant influences insect com-
munication not only by conveying noise but also by acting 
as a signal filter, framing which signal features are trans-
mitted and how (Michelsen et al. 1982; Magal et al. 2000). 
In some cases, closely related insect species or subspecies 
have evolved distinct signals as a result of adaptation to host 
plants with different signal transmission properties (McNett 
and Cocroft 2008). Indeed, such coevolution between insects 
and plants mechanical features usually occurs in insect spe-
cialist species, whose life cycle occurs on the same host 
(Čokl et al. 2005).

Given the wide and varied nature of their hosts, poly-
phagous species such as P. spumarius are likely not adapted 
to particular plant structures. While other biotic factors are 
important in shaping the relationships between the spittlebug 
and plants, the presence of signaling co- and heterospecifics 
could be used by P. spumarius to evaluate the suitability of 
plants as hosts, not only as a food source, but also as mat-
ing and oviposition sites. In this species, mating success 
accordingly depends upon the establishment of a vibrational 
duet between a male and a female, in that female vibrational 
signals trigger pair formation and guide the male toward 

the partner (Avosani et al. 2020). Even so, females call only 
when sexually mature, thus after the breakage of the ovar-
ian parapause, when eggs start to develop in their ovaries. 
Depending on the geographical range, the sexually maturity 
occurs from late summer or autumn until oviposition and 
death of the female (Avosani et al. 2021b; Cornara et al. 
2018a). Given that female signals may influence the per-
sistence of males on plant substrates, especially at the end 
of summer, they could be used in the framework of BM 
approaches. Moreover, female could use signals emitted by 
other females on the same plant to evaluate suitable ovipo-
sition sites given that aggregation could be common even 
among P. spumarius adults, and not only among nymphs 
aggregating and sharing their spittle to enhance their prob-
ability of survival (Mangan and Wutz 1983; Wise et al. 
2006; Bodino et al. 2021a, b). Even if a recent study indi-
cates a prevailing role of intraspecific volatiles in aggregat-
ing ovipositing females (Sevarika et al. 2022), we cannot 
exclude that vibrational signals could concur to it. Like-
wise, if vibrational signals could attract or hold spittlebugs 
on plants, it might be possible to keep infective spittlebugs 
inside “trap” crops, reducing their movement toward olive 
trees, especially when applied to plants that are preferred by 
P. spumarius. In this regard, it has been shown that Lavan-
dula angustifolia and, in particular, Taraxacum officinale 
are more suitable hosts for spittlebugs nymphs and adults 
compared to other species common in olive groves (Morente 
et al. 2022). The authors suggested avoiding the two plant 
species as ground cover plants in crops vulnerable to X. fas-
tidiosa, but there could be room for evaluating them as trap 
crop, potentially integrating other (e.g., vibrational) stimuli.

Another possible approach is to interfere with the mating 
communication in order to reduce male–female encounters. 
Attempt of vibrational mating disruption already proved to 
be effective in several leafhoppers and planthoppers in labo-
ratory conditions but also at the field level, as in the case 
of the leafhoppers S. titanus and H. vitripennis (Krugner 
and Gordon 2018; Mazzoni et al. 2019, Nieri and Mazzoni 
2019, Feng et al. 2022). Similarly, trials conducted under 
laboratory conditions demonstrated a significant reduction 
of P. spumarius mating when virgin pairs were exposed 
to synthetic vibrational signals that masked the frequency 
pattern of the natural mating signals (Avosani et al. 2022). 
Given the promising results, research should unveil whether 
the synthetic vibrational signal affects multiple behaviors 
simultaneously, as in the case of S. titanus, in which the 
disturbance noise used for mating disruption significantly 
decreased the time spent by males and females on vibrated 
plants and reduced oviposition (Zaffaroni Caorsi et al. 2022).

These approaches based on vibrations are promising 
because they manipulate highly conserved communication 
modalities that mediate behaviors crucial for the species sur-
vival, such as reproduction. However, a deep knowledge of 
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insect phenology in association with the vibrational behavior 
of the species are required. As mentioned before, in P. spu-
marius vibrational signals have different roles in the course 
of the summer because females start to be active and sensi-
tive to male signals only in correspondence of the ovariole 
development (Akassou et al. 2021; Avosani et al. 2021a). For 
this reason, methods of interference and/or capture are more 
likely to succeed only if applied in the proper time windows, 
similarly to semiochemicals in field applications (Suckling 
2000a, 2000b).

As mentioned above, the plant is an intricate network 
of signaling and eavesdropping arthropods, thus an insect 
has to overcome the noise coming from conspecifics and 
heterospecifics, while avoiding being detected by unwanted 
receivers such as predators and parasitoids (Virant-Doberlet 
et al. 2011, 2019). In some species, vibrations are used to 
cooperate, while in others to compete, or to mediate spacing 
(Greenfield 1994, 2014). Though parasitoids and predators 
can exploit vibrations emitted by preys to locate them, the 
opposite is also true (Virant-Doberlet et al. 2019): prey can 
discriminate between approaching predators and non-pred-
ators and respond accordingly. Depending on the species, 
escaping a predator could mean jumping or dropping off the 
plant, startling the predator, freezing or engaging in warning 
displays (Tsubaki et al. 2014; Kang et al. 2017; Takanashi 
et al. 2019). Philaenus spumarius is equipped with a large 
and complex array of abdominal mechanoreceptors that may 
serve to perceive environmental vibrations (Ehlers et al. 
2022). If P. spumarius detects predators through vibrations 
and avoids them by leaving the host plant, similar vibra-
tional signals could be used as repellent stimuli, potentially 
reducing the suitability of hosts. For instance, nonspecific 
vibrations (white noise) induce aphids to leave host plants 
consistently reducing the population density (Parent et al. 
2022). A specific signal, such as a predator or an intraspe-
cific distress signal, could be used to develop an effective 
behavioral manipulation strategy that can overcome the 
risk of habituation (Foster and Harris 1997), although even 
predator signals, not coupled with actual threat, could be 
soon become ineffective, as suggested by Aflitto and Thaler 
(2020). Overall, the combination of attractive and repellent 
substrate-borne signals could lead to the development of 
push-and-pull vibrational approaches to reduce the settling 
of adult spittlebugs into olive trees.

Interestingly, in addition to deterring permanent settle-
ment on the plant, substrate-borne vibrations could affect 
spittlebugs probing and feeding behaviors, as recently dem-
onstrated by Avosani et al. (2021b). In their pioneering 
study, vibrational stimuli employed against P. spumarius 
reduced its feeding activity on an herbaceous plant, although 
the same stimuli had no effect when applied to olive plant-
lets, probably because the signal was filtered differently 
by the olives structure. Nonetheless, this proof-of-concept 

demonstrated that the spittlebug host acceptance is suscepti-
ble to vibrational interference, and paves the way for further 
research (Avosani et al. 2021b). Considering that P. spu-
marius is a native and abundant species in all the Palearctic 
region, a feeding deterrent strategy is promising in  light of 
the fight against X. fastidiosa, as it could reduce the trans-
mission of the bacterium by lowering the number of vectors 
feeding on the plant and the contact between insect stylets 
and plant xylem. The signal used by Avosani and colleagues 
(2021a) consisted in a modified female distress signal, but it 
would be interesting to assess whether a fright stimulus, such 
as vibrations coming from a predator, could be even more 
effective in deterring feeding or in repelling P. spumarius 
from hosts.

Conclusions

The aim of this review was to outline the primary interac-
tions between host plants and pests that govern attraction 
toward the host, acceptance and settling, and to suggest 
approaches to disrupt these interactions in the frame of an 
integrated pest management strategy. We were particularly 
interested in profiling environmentally and economically 
sustainable strategies that could prevent further spread of 
the bacterium X. fastidiosa in Europe based on the interfer-
ence with the processes governing host finding and settling 
in its vector, P. spumarius.

As mentioned before, the epidemiology of the X. fastidi-
osa depends on the completion of steps (host plant detec-
tion, acceptance and feeding) by its insect vectors in order 
to spread to healthy plants and, consequently, to survive and 
evolve (Chatterjee et al. 2008; Retchless et al 2014; Sicard 
et al 2018). Transmission of the bacterium is mainly associ-
ated with two factors, namely vector transmission efficiency 
and vector activity, the latter being the combination of the 
abundance of insect vectors on the host plant and their time 
of permanence. Considering the transmission of the strain 
ST53 to olive by the meadow spittlebug, a relatively low effi-
ciency is compensated by high population densities residing 
on olive canopies for months (Cornara et al. 2017; Bodino 
et al. 2019, 2021a). Another aspect to consider is that bac-
terial cells inoculation seems to occur a few minutes after 
stylets insertion into the host plant and contact with a xylem 
vessel (Cornara et al. 2020). Therefore, a successful and sus-
tainable strategy aimed at disrupting X. fastidiosa transmis-
sion and spread should aim at (i) avoiding vector-host plant 
contact, and (ii) reducing host plant suitability.

Compelling evidence suggests that odors might indeed 
play a role in host localization by adult spittlebugs, even 
though developing attractive semiochemicals and trap-
ping devices seems still challenging, considering that more 
information are needed regarding the candidate compounds’ 
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active space and concentration needed to successfully guide 
P. spumarius toward the odor source (Ranieri et al. 2016; 
Anastasaki et al. 2021; Cascone et al. 2022; Sevarika et al. 
2022). On the other hand, if repellent or deterrent odors 
are identified (i.e., from emissions of plants unsuitable for 
P. spumarius), there is room for designing push-and-pull 
techniques, even if practical aspects such as application and 
persistence of the chemical compounds on the olive canopy 
and/or coexisting alternative hosts must be ascertained.

Visual stimuli might be essential within host finding 
and have been greatly neglected in the case of X. fastidi-
osa vectors. For example, yellow sticky traps are inadequate 
for monitoring P. spumarius in olive orchards, especially 
if insect densities are low (Morente et al. 2018). Instead 
of focusing on colors as perceived by humans, sticky traps 
could be improved by changing the shape, the use of con-
trasting colors, and spectral reflectance relevant for the 
insects (Farnier et al. 2014). Furthermore, the landscape 
composition of olive orchards could contribute to orientating 
P. spumarius toward the host plants. In our opinion, it would 
be crucial to assess whether the contrast between the bare 
soil and the plant canopy could encourage adult spittlebugs 
to move toward olive trees and other woody plants when the 
ground cover is removed. In such scenario, the practice of 
removing the herbaceous cover to reduce nymphal popula-
tions may be a further trigger for spittlebug dispersal toward 
olive canopies. If this is the case, diverse types of mulches 
could be tested in olive groves, in order to evaluate if any of 
them could lower the number of adult spittlebugs landing on 
olive trees. Mulches within the olive orchards could be for 
example coupled with colored sticky traps and other attract-
ants designed to draw P. spumarius out of the orchards.

Another interesting approach to test is represented by 
intercropping, since it may potentially reduce the coloni-
zation of plants susceptible to X. fastidiosa by adult spit-
tlebugs, as the latter could find shelter and feeding sources 
alternative to olive trees. At any rate, woody hosts that tol-
erate summer drought, and are not hosts of the bacterium 
would be the most suitable ones. An additional benefit of 
intercropping relies on the potential increase in predators 
and parasitoids within the orchard (Ju et al. 2019), which 
could enhance biocontrol and/or reduce settling of spittle-
bugs. Even so, intercropping may influence pest manage-
ment in truly diverse ways, based on local conditions and 
specific interactions within the agroecosystem. Tests are 
therefore needed to assess whether this would be a feasible 
approach for the European outbreaks, and whether it could 
be used to reduce the transmission of X. fastidiosa.

Besides interfering with host plant location and landing, 
effective BM strategies should include measures aimed at 
reducing the chances for a spittlebug to settle on the target 
plant. If chemical compounds are not used by P. spumarius 

as olfactory cues in host localization, they likely convey piv-
otal information on host suitability during probing. There 
may be deterrent compounds involved in host resistance that 
reduce suitability of certain plant species or cultivars, thus 
decreasing vector feeding activities and bacterium transmis-
sion. By elucidating the compounds and the mechanisms 
involved in resistance to both X. fastidiosa and the vector, it 
may be possible to breed resistant or tolerant olive varieties 
or to stimulate similar responses in susceptible cultivars. 
Screening for resistant genotypes is of crucial importance, 
as olive cultivars expressing repellent and deterrent traits 
are urgently needed to allow infected areas to be replanted 
and us to witness the blossoming of new olive trees resist-
ant to the vector, the pathogen, or both. Several decades of 
effort to breed pasture grass cultivars resistant to Neotropical 
spittlebug pests offers a note of caution. Although there was 
some success in breeding and screening for nymph resistant 
strains, this resistance did not carry over to adults (Agu-
irre et al. 2013). In practice, succession of new tolerant and 
resistant plantings in pastures did not result in control of 
spittlebugs, partly because tolerance engendered high pest 
populations. The case of P. spumarius is not directly analo-
gous, since this spittlebug function as a vector and neither 
it harms directly by feeding nor olives are nymphal hosts. 
Nonetheless, the large literature on Neotropical spittlebug 
pests of sugarcane and cultivated pasture grasses probably 
harbors useful lessons for P. spumarius control in Europe.

Finally, vibrations, as well as chemical compounds, play a 
key role in the short-range communication and host accept-
ance of insects (Strauß et al. 2021). As suggested by sev-
eral authors, hi-jacking insect vibrational communication 
makes it possible to manipulate behaviors, including mat-
ing, permanence on hosts, oviposition and feeding (Eriksson 
et al. 2012; Takanashi et al. 2019; Avosani et al. 2021a, b; 
Nieri et al. 2021; Zaffaroni-Caorsi et al. 2022). Philaenus 
spumarius relies on substrate-borne vibrations to commu-
nicate with conspecifics, to perceive the environment and, 
potentially, to detect natural enemies. By achieving deeper 
knowledge regarding the role of vibrations in determining 
host suitability, it may be possible to identify semiophysicals 
that can be used in concomitance to other cues to attract spit-
tlebugs toward trap crops, repel them from olive trees and/
or deter feeding, overall reducing interactions with the plant 
and constraining the spread of X. fastidiosa.

To conclude, there are diverse BM strategies targeting 
insect–plant interactions that can be evaluated in the future 
and that could, if effective, be combined with other inte-
grated pest management tools and approaches, such as bio-
control, biopesticides and cultural practices, to protect olive 
groves from inoculation with the fastidious bacterium.
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