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Abstract What, if anything, is cognitive architecture and

how is it implemented in neural architecture? Focusing on

perceptual organization, this question is addressed by way

of a pluralist approach which, supported by metatheoreti-

cal considerations, combines complementary insights

from representational, connectionist, and dynamic systems

approaches to cognition. This pluralist approach starts from

a representationally inspired model which implements the

intertwined but functionally distinguishable subprocesses

of feedforward feature encoding, horizontal feature bind-

ing, and recurrent feature selection. As sustained by a

review of neuroscientific evidence, these are the subpro-

cesses that are believed to take place in the visual hierarchy

in the brain. Furthermore, the model employs a special

form of processing, called transparallel processing, whose

neural signature is proposed to be gamma-band synchro-

nization in transient horizontal neural assemblies. In neu-

roscience, such assemblies are believed to mediate binding

of similar features. Their formal counterparts in the model

are special input-dependent distributed representations,

called hyperstrings, which allow many similar features to

be processed in a transparallel fashion, that is, simulta-

neously as if only one feature were concerned. This form of

processing does justice to both the high combinatorial

capacity and the high speed of the perceptual organization

process. A naturally following proposal is that those tem-

porarily synchronized neural assemblies are ‘‘gnosons’’,

that is, constituents of flexible self-organizing cognitive

architecture in between the relatively rigid level of neurons

and the still elusive level of consciousness.

Keywords Cognitive architecture � Cognitive processing �
Distributed representations � Feature binding �
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Introduction

The term cognitive architecture refers to computational

models of not only resulting behavior but also structural

properties of intelligent systems. These structural proper-

ties can be physical properties as well as more abstract

properties implemented in physical systems such as com-

puters and brains. There is no consensus about what these

structural properties should be, and indeed, many different

cognitive-architecture models have been proposed (for

extensive reviews and references, see, e.g., Langley et al.

2009; Sun 2004). These models differ, for instance, in

whether they involve fixed or flexible architectures, in what

forms of processing they allow (e.g., serial or parallel

processing), and the extent to which they are based on a set

of symbolic information-processing rules applied by one

central processor or rely on emergent properties of many

interacting processing units. Most models agree, however,

that a cognitive architecture is a parameter-free blueprint

for a system that acts like the human cognitive system as a

whole.

Cognitive-architecture models differ from cognitive

models and expert systems which focus on particular

competences such as language, concept learning, or prob-

lem solving. Even so, many cognitive-architecture models

seek compliance with higher (conscious) cognitive facul-

ties rather than with lower (nonconscious) faculties like
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visual perception. In this article, I do not pretend to present

a full-blown cognitive architecture, but I aim to contribute

to understanding the architecture of the human cognitive

system by discussing a neurally plausible algorithmic

model of perceptual organization.

To give a first gist, this model implements the inter-

twined but functionally distinguishable subprocesses of

feedforward feature encoding, horizontal feature binding,

and recurrent feature selection. As I sustain by a review of

neuroscientific evidence, these are the subprocesses that are

believed to take place in the visual hierarchy in the brain.

The model further employs a special form of processing,

called transparallel processing, whose neural signature is

proposed to be gamma-band synchronization in transient

neural assemblies. This is argued to lead to a picture of

how flexible self-organizing cognitive architecture might

be implemented in the neural architecture of the brain.

Next, by way of further introduction, I briefly sketch the

problem of perceptual organization, the presumed role of

neuronal synchronization in perceptual organization, and

the pluralist approach I adopt to arrive at this picture of

cognitive architecture.

Perceptual organization

Perceptual organization refers to the neuro-cognitive pro-

cess that takes the light in our eyes as input and that

enables us to perceive scenes as structured wholes con-

sisting of objects arranged in space (see Fig. 1). This

automatic process may seem to occur effortlessly, but by

all accounts, it must be very complex and yet very flexible.

To give a gist (following Gray 1999), multiple sets of

features at multiple, sometimes overlapping, locations in a

stimulus must be grouped simultaneously. This implies that

the process must cope with a large number of possible

combinations in parallel, which also suggests that these

possible combinations are engaged in a stimulus-dependent

competition between grouping criteria. This indicates that

the combinatorial capacity of the perceptual organization

process must be very high. This, together with its high

speed (it completes in the range of 100–300 ms), reveals

the truly impressive nature of the perceptual organization

process.

My algorithmic model was developed to account for

both the high combinatorial capacity and the high speed of

the perceptual organization process. To this end, it imple-

ments the earlier-mentioned subprocesses of feedforward

feature encoding, horizontal feature binding, and recurrent

feature selection. Most distinguishing, it employs this

special form of processing, called transparallel processing,

whose neural signature is proposed to be neuronal syn-

chronization. This issue is introduced next.

Neuronal synchronization

Neuronal synchronization is the phenomenon that neurons,

in transient assemblies, temporarily synchronize their

activity. Not to be confused with neuroplasticity which

involves changes in connectivity, such assemblies are

thought to arise when neurons shift their allegiance to

different groups by altering connection strengths (Edelman

1987), which may also imply a shift in the specificity and

function of neurons (Gilbert 1992). Both theoretically

(Milner 1974; von der Malsburg 1981) and empirically

(Eckhorn et al. 1988; Gray and Singer 1989), neuronal

synchronization has been associated with cognitive pro-

cessing, and 30–70 Hz gamma-band synchronization in

particular has been associated with feature binding in

perceptual organization.

As I discuss in section ‘‘The visual hierarchy’’, physical

properties of neuronal synchronization have been studied,

but thus far, it lacked a computational account explaining

what is being processed, and how. My algorithmic model

now suggests that those transient neural assemblies can be

conceived of as cognitive information processors—which I

call ‘‘gnosons’’ (i.e., fundamental particles of cognition) and

which I propose to be the constituents of flexible self-orga-

nizing cognitive architecture. The idea that cognition is a

dynamic process of self-organization is not new (see, e.g.,

Attneave 1982; Kelso 1995; Koffka 1935; Köhler 1920;

Lehar, 2003; Wertheimer 1912, 1923), and the idea that those

assemblies are the building blocks of cognition is not new

either (see, e.g., Buzsáki 2006; Finkel et al. 1998). What my

model adds, however, is the idea that those assemblies are

involved in transparallel feature processing. As I discuss in

section ‘‘A representationally inspired algorithmic account’’,

this special form of processing is enabled by special input-

dependent distributed representations, called hyperstrings,

Yes No

No Yes

Fig. 1 Perceptual organization. Both images at the top can be

interpreted as 3-D cubes and as 2-D mosaics, but as indicated by

‘‘yes’’ and ‘‘no’’, humans preferably interpret the one at the left as a

3-D cube and the one at the right as a 2-D mosaic of triangles
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which allow one processor (also, e.g., a single computer) to

recode many similar features in one go, that is, simulta-

neously as if only one feature were concerned. This is key in

my account of the high combinatorial capacity and speed of

perceptual organization.

Transparallel processing is basically an idea about fea-

ture binding. The classical binding problem is often taken

to refer to binding of different features. This is a form of

binding which I rather would call integration (think of

Treisman and Gelade’s 1980, feature integration theory)

and which, in my model, is the result of feature selection.

Preceding this selection, however, there is also binding of

similar features, and this what neuronal synchronization

seems to mediate (see section ‘‘The visual hierarchy’’).

Binding of similar features may seem a limited basis to

focus on, but in my model, it enables a high combinatorial

capacity and speed which remain effective until selection

and integration (see section ‘‘A representationally inspired

algorithmic account’’). Furthermore, my notion of features

is broader than first-order features, like orientation, as

considered usually in neuroscience. I focus on second-

order features, such as symmetry and repetition, in terms of

correlations between elements in a stimulus. I do not think

this conflicts with existing neuroscientific evidence (cf.

Tyler et al. 2005), and pre-attentive detection of such

second-order features is believed to be an integral part of

the automatic perceptual organization process (Simon

1972; Tyler 1996; van der Helm and Leeuwenberg 1996;

Wagemans 1997).

Pluralist approaches

David Marr (1945–1980) probably would have been thril-

led by the present state of cognitive (neuro)science. When

he died, classical representational theory dominated the

research field, in which connectionism and dynamic sys-

tems theory (DST) had not yet gained the impact they have

nowadays. Even so, in his book Vision (Marr 1982/2010),

he envisioned a theory comprising three separate but

complementary levels of description of the visual system—

the computational, algorithmic, and implementational lev-

els—to which, as I argue in section ‘‘Towards a pluralist

account’’, representational, connectionist, and DST

approaches run sort of parallel. In line with Marr’s com-

plementarity idea, I argue further that insights from all

these three modeling approaches must be combined to

address the question of how cognitive architecture might be

implemented in the neural architecture of the brain.

It is true that, at least according to some, those three

modeling approaches exhibit differences in underlying

philosophy (e.g., DST proponents tend to reject the exis-

tence of representations), and they certainly reflect differ-

ent modeling stances. Roughly, representational theory

proposes that cognition relies on regularity extraction to get

structured mental representations; connectionism proposes

that it relies on activation spreading through a network

connecting pieces of information; and DST proposes that it

relies on dynamic changes in the brain’s neural state. Not

surprising therefore, during the past decades, many things

have been written for and against each of these three

approaches (see, e.g., Fodor and Pylyshyn 1988; Smo-

lensky 1988; van Gelder and Port 1995).

However, instead of thinking that these approaches are

mutually exclusive, I think they are complementary—pre-

cisely because they focus on different aspects. The idea

that intelligent systems need a pluralist approach is already

quite common in artificial intelligence research (cf. Dale

2008; Dale and Spivey 2005; Edelman 2008a; Jilk et al.

2008) and is gaining in acceptance in cognitive science (cf.

Abrahamsen and Bechtel 2006; Bem and Looren de Jong

2006; Kelley 2003; Lehar, 1999, 2003; Pavloski 2011;

Smith and Samuelson 2003). In this article, I aim to go

farther than just promoting this idea. My algorithmic model

was inspired by a representational approach, but I adopt a

pluralist approach to investigate how cognitive architecture

might be implemented in neural architecture. Pivotal in this

investigation is the phenomenon of neuronal synchroniza-

tion which, thus far, has been studied in DST, less so in

connectionism, and to my knowledge not in representa-

tional theory. Also pivotal is the returning topic of dis-

tributed representations, which is argued to connect those

three modeling approaches.

Organization of this article

In this article, insights from representational, connectionist,

and DST approaches are combined to sustain the proposal

that the cognitive architecture of perceptual organization is

constituted by gnosons, that is, by transient neural sub-

networks exhibiting synchronization as a manifestation of

transparallel processing of similar features. To elaborate

these issues, I hardly discuss details of specific models

within the three above-mentioned modeling approaches to

cognition. Rather, I aim to assess differences and parallels

between the modeling tools they provide to understand the

role of neuronal synchronization in perceptual organiza-

tion. To this end, the organization of this article is as

follows.

• In section ‘‘The visual hierarchy’’, I review neurosci-

entific evidence on the intertwined but functionally

distinguishable subprocesses that are believed to con-

stitute the perceptual organization process in the visual

hierarchy in the brain—followed by a discussion of the

dynamics and earlier-proposed meanings of neuronal

synchronization.
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• In section ‘‘A representationally inspired algorithmic

account’’, I discuss my algorithmic model of the

perceptual organization process—introduced by an

overview of theoretical ideas and developments within

the representational approach that underlies this algo-

rithmic model.

• In section ‘‘Towards a pluralist account’’, to substan-

tiate my pluralist approach, I discuss metatheoretical

issues such as metaphors of cognition, levels of

description, and forms of processing—now and again

expanding on traditional views in a way that, in my

view, is appropriate to relate representational, connec-

tionist, and DST approaches to each other.

• In section ‘‘Cognitive architecture’’, I discuss implications

regarding cognitive architecture—grounding gnosons

as constituents of flexible self-organizing cognitive

architecture.

Before I proceed, a few general remarks seem in order.

In this article, I present an idea about the meaning and role

of neuronal synchronization. Whether neuronal synchro-

nization indeed exhibits the specific behaviors I suggest is

a question I gladly leave to future research by expert

experimentators. My objective as a theorist is to provide

arguments for a hopefully innovative idea that is not in

conflict with existing evidence—I think that such ideas are

needed to round the empirical cycle.

Furthermore, this is a multidisciplinary article, and

probably the biggest challenge for such articles is the usage

of different terminologies by different domains. Therefore,

now and again, I state things repeatedly but in different

terminologies, which may look redundant but which is

needed to assess whether statements from different

domains really express different things or merely look

different because they are stated in different ‘‘languages’’.

In other words, without denying that different domains

model things in different ways (I in fact cherish differ-

ences, because that is what complementarity is about), I

want to stress that different languages can also express the

same things.

Finally, a multidisciplinary article unavoidably contains

domain-specific parts which reflect textbook material to

some readers—they may skip such parts—but which are

yet necessary to serve other readers. Some readers may also

feel that some parts of this article still lack some pertinent

domain-specific details and related literature references. I

hope, however, that readers agree that such features are

inherent to attempts to find common ground for different

approaches to the same problem.

The visual hierarchy

This section sets the stage for my algorithmic model. First,

with a representationalist eye, I review neuroscientific

evidence on the intertwined but functionally distinguish-

able subprocesses that are believed to take place in the

visual hierarchy in the brain. Then, I discuss the phenom-

enon of neuronal synchronization, DST studies on its

dynamics, and neuroscientific ideas about its role in per-

ceptual organization.

To begin with standard textbook material, the top end of

the visual hierarchy seems to involve a smooth transition

into higher cognitive structures, while the bottom end can

be said to be in the primary visual area V1 in the occipital

lobe, which receives its main input from the lateral

geniculate nucleus (LGN) (see Fig. 2a). In the LGN, a

distinction can be made between retinal input entering the

parvocellular pathway and retinal input entering the mag-

nocellular pathway. Via V1 and higher visual areas, these

pathways bifurcate into a ventral and a dorsal stream which

seem to be dedicated to object perception and spatial per-

ception, respectively (Ungerleider and Mishkin 1982; see

Fig. 2b).

The neural network in the visual hierarchy is organized

with 10–14 distinguishable hierarchical levels (with

Retina

LGN

OC
Visual
cortex

(a)

Object perception

Spatial perception(b)

Fig. 2 Visual pathways. a Retinal signals go, via the optic chiasm

(OC) and the lateral geniculate nucleus (LGN), to the visual cortex;

the OC arranges that the left-hand visual fields of both eyes are

projected onto the right-hand cortex, and vice versa; in the LGN,

retinal signals enter parvocellular and magnocellular paths, which

perform a spatial frequency analysis. b In the visual cortex, the

signals bifurcate into ventral and dorsal streams which are dedicated

to object perception and spatial perception, respectively
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multiple distinguishable areas within each level), contains

many short-range and long-range connections (both within

and between levels), and it can be said to perform dis-

tributed hierarchical processing (Felleman and van Essen

1991). Furthermore, as depicted in Fig. 3, the intertwined

but functionally distinguishable subprocesses of feature

encoding, feature binding, and feature selection seem to be

mediated by feedforward (or ascending), horizontal (or

lateral), and recurrent (or feedback, or reentrant, or

descending) connections, respectively (see, e.g., Lamme

et al. 1998; Lamme and Roelfsema 2000). The horizontal

connections, in particular, have been associated with neu-

ronal synchronization, but for a complete picture, I first

discuss the others by conveying impressions I get from the

available evidence.

Feedforward feature encoding

Feedforward connections seem responsible for a fast bot-

tom-up processing of incoming stimuli. This so-called

feedforward sweep takes about 100 ms to reach the top end

of the visual hierarchy, and it is thought to yield an initial,

autonomous, tuning to features to which the visual system

is sensitive (which does not exclude top-down influences;

see both this and the next subsections). It is generally

thought that, during this feedforward sweep, more complex

things are coded in higher visual areas. Traditional ideas

about this increase in complexity lean upon the concept of

the classical receptive field (cRF). The cRF corresponds to

the region of the retina to which a neuron is connected by

way of feedforward connections (Hubel and Wiesel 1968).

This region is larger in higher visual areas, which suggests

that the difference between simple and complex things

corresponds merely to the spatial difference between small

(or local) and large (or global) features.

However, by way of horizontal and recurrent connec-

tions, neurons also receive input from neurons at the same

and higher levels in the visual hierarchy. This suggests that

a neuron is responsive to local features outside its cRF and

to global features extending beyond its cRF (Gilbert 1992;

Lamme et al. 1998; Salin and Bullier 1995). This suggests

that the feedforward sweep is part of a more intricate

process than just tuning and that, during this process,

higher visual areas accommodate features which, percep-

tually, turn out to be more categorical (cf. Ahissar and

Hochstein 2004; Hochstein and Ahissar 2002). I use the

term categorical to refer to dominant or salient features

which give the gist of a scene—for instance, because they

reflect statistical regularities in the environment (cf. Howe

and Purves 2004, 2005) or because they reflect geometrical

regularities in terms of correlations between elements in a

stimulus (cf. Kimchi and Palmer 1982; Leeuwenberg and

van der Helm 1991; Leeuwenberg et al. 1994).

A more categorical feature may correspond to a larger

feature, but not necessarily so. For instance, in visual

search studies, a target usually is a local feature (e.g., one

red item among many blue items; Treisman and Gelade

1980). The search for such a target is easier as the dis-

tractors are more similar to each other and more different

from the target (Donderi 2006; Duncan and Humphreys

1989; Wolfe 2007). Hence, a target may pop-out but only if

allowed by the distractors. This means that, for a target to

become a pop-out, the distractors have to be processed

first—this may well involve lateral inhibition among sim-

ilar things so that the target rises above the distractors, but

in any case, it seems plausible that the similarity of the

distractors is processed first in lower visual areas and that

the pop-out nature of the target ends up in higher visual

areas.

Recurrent feature selection

Recurrent connections seem responsible for a top-down

selection and integration of different features into percepts.

Somewhat related to the question of whether this subpro-

cess relies on environmental regularities or on stimulus

regularities (see above), a question is whether or not this

subprocess involves top-down processing starting from

beyond the visual hierarchy. For instance, Hochstein and

Ahissar (2002) proposed that, via recurrent connections

from beyond the visual hierarchy, attention can be

deployed in a top-down fashion to any level in the visual

hierarchy (see also Wolfe 2007). This would imply that it

first captures things coded in higher visual areas and that, if

required by task and allowed by time, it may descend along

recurrent connections to capture things coded in lower

Feature encoding

Feature binding

Feature binding

Feature selection

Fig. 3 The three intertwined subprocesses that are believed to take

place in the visual hierarchy in the brain. Feedforward connections

seem responsible for an initial feature encoding; horizontal connec-

tions seem responsible for binding similar features within visual

areas; and recurrent connections seem responsible for selecting and

integrating different features into percepts

Cogn Process (2012) 13:13–40 17
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areas. Given the above picture of the feedforward sweep,

this suggests that a pop-out is not a pop-out because it is

(nonconsciously) processed first during the bottom-up

feedforward sweep, but because its pop-out nature ends up

in higher visual areas so that it is among the first things

(consciously) encountered by top-down attentional

processes.

This picture of the role of recurrent connections in the

deployment of attention agrees with Lamme et al. (1998)

and Lamme and Roelfsema (2000), who also noted that it

may explain the effect of backward masking. A structured

stimulus and a subsequent random mask trigger successive

feedforward sweeps, and the second sweep (by the mask)

then may perturb the trace of the first sweep (by the

stimulus) in lower visual areas, so that attention can cap-

ture only the more categorical stimulus features coded in

higher visual areas. This agrees with the above idea that, in

general, less-structured parts (as in a random mask) are

coded in lower areas than more-structured organizations

into wholes (as in a structured stimulus). It also explains

Leeuwenberg et al. (1985) finding that, if a part and a

whole are presented briefly and with small stimulus onset

asynchrony (SOA), then not only their presentation order

but also their structural relationship determines how well

the part is identified afterward. It further explains van der

Vloed et al. (2007) similar finding which, by way of

example, I discuss next in more detail.

Van der Vloed et al. (2007) considered stimuli com-

posed of one symmetrical (S) or random (R) part sur-

rounding another symmetrical or random part (see Fig. 4).

The parts were presented for 200 ms each, either simulta-

neously (SOA = 0) or not (SOA = 20–100 ms), and the

task was to identify a given stimulus as being partly

symmetrical (for SOA [ 0, presented in the orders SR

or RS) versus either completely random or completely

symmetrical (for SOA [ 0, referred to by RR and SS,

respectively). For SOA = 0, the partly symmetrical stimuli

behaved like normal noisy symmetries, with the well-

known quantitative effect that, compared to symmetry in

the surround, symmetry in the center yields better dis-

crimination from completely random stimuli and worse

discrimination from completely symmetrical stimuli (Bar-

low and Reeves 1979). For SOA[0, however, there was a

qualitative effect of order, no matter whether symmetry

was in the surround or in the center: compared to SOA = 0,

SR showed no difference (just as RR and SS), but RS

yielded better discrimination from RR and worse discrim-

ination from SS.

This order effect again agrees with the idea that, in

general, less-structured (e.g., random) information is coded

in lower areas than more-structured (e.g., symmetry)

information. That is, in SR, the code of the symmetry first

settles relatively high and the code of the later-presented

random information remains relatively low—just as when

the parts were presented simultaneously. In RS, however,

the symmetry—on its way to be coded relatively high—

passes through the lower areas where the code of the pre-

ceding random information already resides; thereby, it

perturbs (or masks) the encoded random information,

resulting in a percept that reflects less randomness than

there really is.

Notice that the foregoing suggests that structural rela-

tionships within and between stimuli presented subse-

quently with small SOA form a factor to be reckoned with

(e.g., in experiments involving priming or masking; see

also Hermens and Herzog 2007). That is, it asserts that

structural factors are at least as relevant as spatio-temporal

factors (probably also in, e.g., apparent motion; see Moore

et al. 2007).

Also notice, however, that the examples above involve

experimental paradigms in which participants respond

consciously, that is, they respond on the basis of attentional

scrutiny of already-encoded percepts. The question there-

fore still is whether the formation of these percepts is

controlled by endogenous, attention-driven, recurrent pro-

cessing starting from beyond the visual hierarchy (see, e.g.,

Lamme et al. 1998; Lamme and Roelfsema 2000) or by

exogenous, stimulus-driven, recurrent processing within

the visual hierarchy (see, e.g., Gray 1999; Moore et al.

2007; Pylyshyn 1999). The latter reflects my modeling

stance in this article, but as I clarify next, it leaves room for

the former (see also, e.g., van Leeuwen et al. 2011).

The combination of feedforward and recurrent process-

ing in the visual hierarchy might be analogous to the cas-

cade formed by a fountain under increasing water pressure.

That is, as the feedforward sweep progresses along

ascending connections, each passed level in the visual

hierarchy forms the starting point of integrative recurrent

Center (200 ms)

Surround (200 ms)

SOA

Fig. 4 Time course of a trial in van der Vloed et al. (2007). First, one

part of the stimulus is presented (here, a symmetrical center). This

part remains visible for 200 ms in total, but after an SOA of

0–100 ms, it is complemented with the remaining part (here, a

random surround). After 200 ms, the first part disappears and the

second part still remains visible for as long as the SOA was so that it

is also visible for 200 ms in total
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processing along descending connections. This yields a

gradual buildup from partial percepts at lower levels in the

hierarchy to complete percepts near its top end. This

implies, on the one hand, that top-down attentional pro-

cesses may intrude before a percept has completed, but on

the other hand, that the perceptual organization process has

already done much of its integrative work by then. To

paraphrase Neisser (1967), before you can pick an apple

from a tree, you first have to perceptually organize the

scene to at least some degree.

Horizontal feature binding

In between the two just-discussed intertwined subprocesses,

horizontal connections seem responsible for binding similar

features. This seems to yield feature constellations from

which, as mentioned above, recurrent processing seems to

select and integrate different features into percepts. For

instance, as Lamme et al. (1998) noted, a well-established

property of horizontal fibers is that they interconnect cells

with similar orientation preferences and that these connec-

tions are strongest when cRFs are also co-axially aligned

(see, e.g., Bosking et al. 1997; Gilbert 1993, 1996; Malach

et al. 1993; Schmidt et al. 1997).

Horizontal binding is a relatively underexposed topic,

but to be clear, it seems to concern binding of similar

features, with, at least in my model, also a very positive

efficiency effect on the subsequent selection and integra-

tion of different features. Notice that, in my model, I focus

on second-order features such as symmetry and repetition.

In section ‘‘Introduction’’, I already mentioned that I do not

think this conflicts with neuroscientific evidence (cf. Tyler

et al. 2005) and that pre-attentive detection of such regu-

larities is believed to be an integral part of the perceptual

organization process (Simon 1972; Tyler 1996; van der

Helm and Leeuwenberg 1996; Wagemans 1997). In fact,

horizontal binding may well be the neuronal counterpart of

the regularity extraction operations which, in representa-

tional theory, are proposed to lead to structured mental

representations.

The subprocess of horizontal feature binding seems to

start in V1 and seems to be followed by feature recoding in

higher visual areas (Pollen 1999; see also Eckhorn 1999;

Gray 1999; Tyler et al. 2005). Furthermore, I can only

imagine that it is intertwined with the already intertwined

subprocesses of feedforward feature encoding and recur-

rent feature selection. In any case, such intertwining is key

in my model (see section ‘‘A representationally inspired

algorithmic account’’). Finally, the horizontal feature

binding seems to be mediated by transient neural assem-

blies which also have been implicated in the phenomenon

of neuronal synchronization (see, e.g., Eckhorn 1999;

Eckhorn et al. 1988; Engel et al. 1990; Gilbert 1992; Gray

et al. 1989, 1990; Gray and Singer 1989). Because my

investigation into cognitive architecture revolves around a

computational account of this phenomenon, I next discuss

it in more detail.

Neuronal synchronization

In representational approaches, a mental representation of a

scene (or a percept, or a Gestalt) is said to carry informa-

tion about the perceptual structure of the scene—that is,

about properties (such as shape, parts, and spatial

arrangement) of the perceived objects. DST proponents

tend to reject the existence of representations, but the term

representation can also be said to refer to a relatively stable

cognitive state which arises during the dynamic neural

process (cf. Kelso 1995). Such a state constitutes the

brain’s response to a scene, and it can therefore be said to

represent what representationalists call the information

about the perceptual structure of the scene (cf. Bem and

Looren de Jong 2006).

In any case, for a specific scene, this response (or this

information) must also be given (or represented), probably

isomorphically, by a specific neural activation pattern

(Köhler 1920; Lehar 1999, 2003; Pavloski 2011). That is, it

is no surprise that, as shown in brain-imaging studies,

different stimuli evoke different neural responses. The

question, however, is how to explain these differences.

Therefore, cracking the neural code is a central issue in

neuroscience. Traditionally, the spike rate of neurons (i.e.,

the firing rate, or the rate of action potentials) is seen as an

important component of the neural code. For instance, the

spike rate of neurons may increase as the intensity of a

stimulus increases (Adrian and Zotterman 1926). Nowa-

days, however, as I discuss next, correlations which rely on

the precise timing of spikes are seen as being probably

more important.

It has been argued that, in general, correlations between

spike trains can only reduce, and never increase, the total

amount of information in spike trains (Johnson 1980a, b).

This, however, may hold if one adopts Shannon’s (1948)

classical probabilistic quantification of information, but not

if one adopts modern descriptive quantifications of infor-

mation (see Li and Vitányi 1997; van der Helm 2000). For

instance, the equality of two equal messages (e.g., spike

trains) is not coded in these messages themselves, so that

this equality forms a message in itself. This message may

be conveyed by a code which captures the correlation

between the two equal messages so that, this way, corre-

lations increase the total amount of conveyable information

(Nirenberg and Latham 2003).

Particularly interesting are temporal correlations in the

form of neuronal synchronization. As said, neuronal syn-

chronization is the phenomenon that neurons, in transient
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assemblies, temporarily synchronize their activity (the

aggregate of their cRFs then forms what Eckhorn 1999

called an association field). It has been related to cortical

integration and, more generally, to cognitive processing

(Milner 1974; von der Malsburg 1981). It is true that, as

Shadlen and Movshon (1999) noted, one speaks of syn-

chronization when neurons fire within a fairly arbitrarily

chosen small time window, that is, the spikes do not have

to be completely coincident in time. Empirically, however,

it is a well-established phenomenon that has been associ-

ated with a broad range of cognitive processes (for reviews,

see, e.g., Finkel et al. 1998; Gray 1999).

For instance, oscillatory synchronization in the theta,

alpha, and beta bands (4–30 Hz) seems involved in inter-

actions between relatively distant brain structures, while

oscillatory synchronization in the gamma band (30–70 Hz)

seems involved in relatively local computations (see, e.g.,

Kopell et al. 2000; von Stein and Sarnthein 2000). More

specifically, theta, alpha, and beta synchronization have

been found to be correlated with, for instance, top-down

processes dealing with aspects of memory, expectancy, and

task (see, e.g., Kahana 2006; van der Togt et al. 2006; von

Stein et al. 2000). Furthermore, gamma synchronization

has been found to be correlated particularly with visual

processes—such as those dealing with change detection,

interocular rivalry, feature binding, Gestalt formation, and

form discrimination (see, e.g., Börgers et al. 2005; Fries

et al. 1997; Keil et al. 1999; Lu et al. 2006; Singer and

Gray 1995; Womelsdorf et al. 2006).

In this article, I have this ‘‘visual’’ gamma synchroni-

zation in mind. Next, I first briefly review DST research

into the dynamics of synchronization, and then I discuss

existing neuroscientific ideas about its function and

meaning.

The dynamics of synchronization

Synchronization is a long-standing topic in DST (see, e.g.,

Pikovsky et al. 2001; Wu 2007). It probably started with

Huygens (1673/1986) who observed that two pendulum

clocks, coupled by suspending them from the same wooden

beam, tend to synchronize their motion. From a DST point

of view, this topic is intriguing because, in general, DST

describes system behavior that, at first glance, seems cha-

otic and unpredictable—such systems seem to defy an

orderly thing like synchronization (Pecora and Carroll

1990). To describe seemingly chaotic system behavior,

DST uses the powerful mathematical tools called nonlinear

partial differential equations (NPDEs) which, traditionally,

find application mainly in physics (e.g., to make weather

forecasts).

A differential equation typically describes the develop-

ment of a system over time (where the ‘‘system’’ may be

anything one chooses it to be). It does not specify system

states as such but, instead, it specifies the difference

between any one state and the next (with arbitrarily small

time steps). This implies that, to determine actual system

states, also a starting state must be given. So-called linear

differential equations can usually be solved analytically

(yielding one formula which, for every starting state,

specifies subsequent system states) and imply that a change

in the starting state yields a proportional change in sub-

sequent states. This does not hold for NPDEs, however. For

different starting states, an NPDE may have different

solutions, and a small change in the starting state may yield

a dramatic change in subsequent states. Therefore, actual

system states can usually only be determined numerically,

that is, by way of subsequent applications of the NPDE.

To add some flavor, the state space refers to the set of all

states, over all starting states, a system may arrive at

according to an NPDE. A trajectory then is the sequence of

states the system passes from a specific starting state, and

an attractor is a state for which the system can be said to

have a preference, that is, a relatively stable state reached

for relatively many nearby starting states. Applied to per-

ceptual organization, attractors can be said to correspond to

cognitive states, or percepts (Eliasmith 2001)—they should

not be too stable, though, because the system must be able

to switch from one percept to another (Spivey 2007; van

Leeuwen 2007). Furthermore, a strong point of DST is that

potential behavior of a system under various imaginable

settings can be investigated by varying parameters in the

starting state or in the NPDE. This method is also used in

DST studies on synchronization in networks, mostly in the

context of vision research.

For instance, van Leeuwen et al. (1997) performed

simulations with a sparsely connected network of nonlinear

maps. They found that the coupling strength between the

maps, in proportion to the rate of chaotic divergence,

determines whether rapid transitions occur between

unsynchronized and synchronized states of varying

assemblies of maps (see also Buzsáki and Draguhn 2004).

Furthermore, for networks of locally coupled integrate-

and-fire oscillators, Campbell et al. (1999) investigated

(de)synchronization parameters and found that the time to

synchronize seems proportional to the logarithm of the

network size, or in other words, that synchronization

propagates exponentially. Moreover, gamma and beta

rhythms seem to have different synchronization properties

(Kopell et al. 2000), and for gamma rhythms, the time to

synchronize seems to fit the gamma cycle (Harris et al.

2003).

These are in fact just a few of the many studies into the

dynamics of synchronization in networks (see also, e.g.,

Izhikevich 2006; Li 1998; Roelfsema et al. 1996; Sporns

et al. 1991; Yen and Finkel 1998; Yen et al. 1999). This
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DST research does not affect the information-processing

ideas in the model I discuss in section ‘‘A representation-

ally inspired algorithmic account’’, but it does provide

necessary complementary insights into a question left open

by this model. That is, in Marr’s (1982/2010) terms, this

DST research is not about the computational goal or

algorithmic method of the information process I attribute to

gnosons (i.e., the transient assemblies of synchronized

neurons), but it is about how the implementational means

might allow gnosons to go in and out of existence.

Proposed meanings of synchronization

As said, neuronal synchronization seems to occur most

notably in neural assemblies formed by horizontal con-

nections, and these assemblies are also thought to mediate

the binding of similar features. A binding function, but then

referring to integration of different features, is reflected in

the temporal correlation hypothesis (Milner 1974; von der

Malsburg 1981; for a review, see Gray 1999). This

hypothesis holds that synchronization binds those neurons

that, together, represent one perceptual entity, say, an

object or a Gestalt (see also Eckhorn et al. 2001; but see

also Thiele and Stoner 2003). I think that synchronization

is indeed related to perceptual organization, but I do not

think it is a binding force, because that would beg the

question of which neurons are to be bound (Shadlen and

Movshon 1999). In other words, synchronization may

signal what is going on, namely, perceptual organization,

but it does not account for how perceptual organizations

are computed.

Other ideas about neuronal synchronization are, for

instance, that it underlies consciousness (Crick and Koch

1990; later, Crick and Koch 2003, rejected this idea),

or that it is under the control of selective attention

(Womelsdorf and Fries 2007), or that it is a marker that a

steady state has been achieved (Pollen 1999), or that its

strength is an index of the salience of features (Finkel

et al., 1998; Salinas and Sejnowski 2001). In line with the

latter idea, Fries (2005) proposed that more strongly syn-

chronized assemblies in a visual area are locked on more

easily by higher visual areas.

These ideas all sound plausible and may all contain

some truth: as Sejnowski and Paulsen (2006) argued,

neuronal synchronization may reflect a flexible and effi-

cient mechanism subserving the representation of infor-

mation, the regulation of the flow of information, and the

storage and retrieval of information (see also Tallon-Bau-

dry 2009). All those ideas, however, are about cognitive

factors associated with synchronization rather than about

the nature of the underlying cognitive process itself.

Therefore, instead of saying that synchronization mediates

cognitive processes, I prefer to say that it is a manifestation

of cognitive processing—just as the bubbles in boiling

water are a manifestation of the boiling process (see also

Bojak and Liley 2007; Shadlen and Movshon 1999).

This does not make synchronization less interesting—on

the contrary, it raises the question of what form of pro-

cessing it might be a manifestation. The goal of this pro-

cess seems to be feature binding, but its method does not

seem to be a simple form of parallel processing. In section

‘‘Forms of processing’’, I go into more detail on forms of

processing, but basically, parallel processing is performed

by different agents who simultaneously do different things.

When these agents simultaneously do the same thing,

however, they seem to enter another processing mode—

think of flash mobs or of groups of singers going from

cacophony to harmony. Indeed, considering the complexity

of perceptual organization, with its high combinatorial

capacity and high speed, it must be a special form of

processing that manifests itself by synchronization. In the

next section, I discuss my algorithmic model of perceptual

organization, incorporating not only the three intertwined

subprocesses discussed above but also this special form of

processing, called transparallel processing, whose neural

signature is proposed to be neuronal synchronization.

A representationally inspired algorithmic account

In this section, I discuss my algorithmic model of per-

ceptual organization. To give a proper impression of this

model, it is expedient to begin by reviewing Leeuwen-

berg’s (1969, 1971) structural information theory (SIT),

which is its underlying representational approach. SIT’s

information-theoretic approach differs fundamentally from

Shannon’s (1948) classical approach in that it starts from a

totally different idea about how information is to be mea-

sured (for more details, see van der Helm 2000; see also

Luce 2003). In the 1980s, SIT received considerable crit-

icism, but as this section may be proof of, it has fully

recovered from that criticism, and nowadays, it is probably

the most elaborated representational approach to perceptual

organization (Palmer 1999).

Structural information theory

For a proper appreciation of SIT, it is crucial to distinguish

between the theory and the representational coding model

implemented in my algorithmic model. SIT’s theory, on the

one hand, is a coherent set of ideas about visual form

perception (see this section ‘‘Structural information the-

ory’’)—its central idea being that the visual system selects

the most simple interpretation of a given stimulus. SIT’s

coding model and my implementation thereof, on the other

hand, constitute a formal model that implements SIT’s
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theoretical ideas, but then applied to patterned sequences of

symbols (see section ‘‘A transparallel processing model’’).

This distinction is crucial because, as I address first, a

persistent misunderstanding about SIT seems to be that it is

thought to assume that the visual system converts visual

stimuli into symbol strings

As I discuss more extensively in section ‘‘Metaphors of

cognition’’, any formal model uses and manipulates sym-

bols. This holds for SIT’s model, just as it holds for DST

and connectionist models. To design a formal model, the

modeler decides what the symbols stand for, and more

importantly, which principles are implemented. In DST

models, these principles are reflected by NPDEs; in con-

nectionist models, they are reflected by activation spread-

ing through networks; and in SIT’s model, they are

reflected by regularity extracting operations. Notice that, in

each case, the principles are implemented to capture rela-

tionships between the things the symbols stand for, and that

in this respect, SIT’s model is no exception.

It is true that, in the SIT literature, relatively much

attention has been paid to how symbol strings might rep-

resent interpretations of visual stimuli, but this merely

serves to illustrate how, in the empirical practice, the for-

mal principles might be applied to visual stimuli in order to

get testable quantitative predictions. That is, to be clear,

SIT does not assume that the visual system converts visual

stimuli into symbol strings. Furthermore, like any theory,

SIT has limitations and open ends. For instance, it does not

provide an algorithm that can take visual stimuli as input;

hence, in the empirical practice, it is up to experimentators

to choose and analyze relevant candidate interpretations in

a perceptually plausible way. This may involve both 2-D

and 3-D interpretations, and what matters in such analyses

is that SIT’s theory assumes that the visual system employs

the same information-processing principles as those which

SIT’s model considers for strings.

Theoretical starting points

Representational approaches aim to gain insight into cog-

nitive processes, and they do so by modeling systematici-

ties in the output as a function of the input (i.e., what

characterizes the nature of the output?). In the past, rep-

resentational models may not have paid much attention to

process mechanisms, but the idea of course was and still is

that unraveling input-output systematicities is a first and

necessary step towards proposing process mechanisms—

after all, one has to know the goal before proposing a

method to reach that goal. To this end, they focus on the

informational content of mental representations which, as

indicated before, can be taken to be relatively stable cog-

nitive states arising during a dynamic neural process.

Unlike DST and connectionist approaches, representational

approaches assume this process involves regularity

extraction to get structured representations.

SIT takes the output to be a perceptual organization of

an incoming visual stimulus. Detection of regularities such

as symmetry and repetition subserves object perception and

is believed to be an integral part of this perceptual orga-

nization process (Simon 1972; Tyler 1996; Wagemans

1997). Accordingly, SIT assumes that such regularities are

extracted to construct candidate interpretations for a given

stimulus, that is, candidate hierarchical organizations of the

stimulus in terms of wholes and parts. It assumes further

that the interpretation with the most simple descriptive

code (i.e., the code that captures a maximum of regularity)

is selected as the preferred interpretation.

SIT’s selection criterion, which is called the simplicity

principle, is a descendant of Hochberg and McAlister’s

(1953) minimum principle. Both are modern information-

theoretical translations of the law of Prägnanz which

Koffka (1935) proposed as a general principle in cognition

(cf. Attneave 1954). In vision, this law has been proposed

to underlie the various Gestalt laws of perceptual grouping

(e.g., the laws of proximity, symmetry, similarity, and

closure; Wertheimer 1923). Inspired by the minimum

principle in physics, which refers to the tendency of

physical systems to settle into relatively stable energy

states, it states more specifically: of several geometrically

possible organizations that one will actually occur which

possesses the best, the most stable shape (Koffka 1935).

Hence, SIT models such a stable state as corresponding

to a most simple descriptive code. As I discuss later on,

connectionism models it as corresponding to a steady

pattern of activation in a network, which, in DST terms,

corresponds to an attractor in the network’s state space.

Indeed, nowadays, all three approaches to cognition tend to

find their roots in the Gestaltist motto that the whole is

something else than the sum of its parts (cf. Sundqvist

2003; van der Helm 2006). Hence, they all aim to model

aspects of the same thing—albeit in different terms and

with noteworthy modeling differences.

For instance, to obtain good data fits, DST and con-

nectionist modeling involves tuning of model parameters,

whereas SIT’s approach is basically parameter-free (see

section ‘‘A transparallel processing model’’). Furthermore,

unlike DST, both connectionism and SIT assume a com-

petition between simultaneously present candidate out-

puts—but with a crucial difference. In connectionist

models, a pre-defined network represents an output space

for all possible inputs, and the process of activation

spreading merely serves to select, for a given input, an

output from this total output space. This contrasts with my

SIT model which (a) first constructs an output space for

only the input at hand and (b) then selects an output from

this limited, input-dependent, output space. The selection
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in (b) is performed in a way that, computationally, is

comparable to connectionist activation spreading (see

section ‘‘Distributed processing’’). The construction in

(a), however, is not standard in connectionist modeling

and is probably the most distinguishing aspect of my

model (see also sections ‘‘A transparallel processing

model’’, ‘‘Connectionist modeling’’, and ‘‘Distributed

representations’’).

Theoretical developments

Since the 1960s, and in interaction with empirical research,

SIT developed from a classical coding model of pattern

classification (Leeuwenberg 1969, 1971; cf. Simon 1972)

into a competitive theory of perceptual organization (Pal-

mer 1999). To further specify the theoretical context of my

algorithmic model, I next give a brief overview of these

developments (see the included literature references for

further details).

Nowadays, SIT includes a theoretically sound and

empirically successful quantification of pattern complexity

(van der Helm 1994; van der Helm et al. 1992), and an

empirically successful quantitative model of amodal com-

pletion (van Lier 1999; van Lier et al. 1994). To predict

preferred interpretations, this model applies a distinction

and interaction between (viewpoint-independent) structural

properties of candidate distal objects and (viewpoint-

dependent) spatial relationships between these objects—

reflecting the distinction and interaction between object

perception and spatial perception, or between the ventral

and dorsal streams in the brain (see Fig. 2b). Using findings

from algorithmic information theory (see Li and Vitányi

1997), a Bayesian translation of this model led to the

assessment that the simplicity principle is a general-pur-

pose principle in that it promises to be fairly veridical in

many different environments. This contrasts, in my view

favorably, with the likelihood principle (von Helmholtz

1909/1962) which is a special-purpose principle in that it,

by definition, is highly veridical in only one environment

(for more details, see van der Helm 2000, 2002, 2007,

2011).

In addition, SIT nowadays includes an empirically

successful quantitative model of symmetry perception (van

der Helm and Leeuwenberg 1996, 1999, 2004). This model

does not start from the traditionally considered transfor-

mational formalization of regularity (Garner 1974; Palmer

1983) which suits object recognition, but from a formal-

ization that suits object perception (van der Helm and

Leeuwenberg 1991). The latter defines visually relevant

regularities as being holographic and hierarchically trans-

parent. To give a gist, a stimulus regularity is holographic

if all its substructures reflect the same kind of regularity;

this allows its code to be built step-wise by going from

small to large substructures (think of an organism pre-

serving its shape symmetry while growing). Furthermore, a

stimulus regularity is hierarchically transparent if regular-

ities nested in its code are stimulus regularities too (i.e., are

also accessible separately from this code); this ensures that

codes specify stimulus organizations with properly nested

wholes and parts.

The properties of holography and hierarchical trans-

parency pinpoint the unique formal status of the regulari-

ties called repetition, symmetry, and alternation (the latter

covers, e.g., Glass patterns; Glass 1969). These regularities

are generally considered to be visual regularities (i.e.,

regularities to which the visual system is sensitive), and in

SIT, they are proposed to be extracted to construct candi-

date organizations of a given stimulus. As I discuss next,

these regularities also have remarkable computational

properties.

A transparallel processing model

SIT’s formal model of perceptual organization takes

symbol strings as input. As said, this does not mean that

SIT assumes that the visual system converts visual

stimuli into strings—instead, the idea is that the visual

system employs the same information-processing prin-

ciples as those which SIT’s model considers for strings.

The main principle is the simplicity principle, which

implies that all candidate organizations of an input are

considered and that the one with the most simple

descriptive code is selected as the preferred organiza-

tion. This principle is theoretically and empirically

sound (see previous subsection), but it also suggests a

daunting tractability problem (cf. Hatfield and Epstein

1985). Next, for strings, I first explicate this problem,

and then I discuss my solution.

Defining the problem

To construct all candidate hierarchical organizations of a

string, SIT’s formal model encodes the string by means of

coding rules which extract the hierarchically transparent

holographic regularities called repetition (or iteration I),

symmetry (S), and alternation (A). These coding rules can

be applied to any substring of the input string, and a code

of the entire input string consists of a string of symbols and

coded substrings, such that decoding the code returns the

input string. In formal terms, SIT’s coding language is

defined by:

Definition 1 A code X of a string X is a string t1t2. . .tm of

code terms ti such that X ¼ Dðt1Þ. . .DðtmÞ, where the

decoding function D : t! DðtÞ takes one of the following

forms:
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I-form: n � ðyÞ ! yyy. . .y (n times

y;

n C 2)

S-form: S½ðx1Þðx2Þ. . .ðxnÞ; ðpÞ� ! x1x2. . .xn p xn. . .x2x1 (n C 1)

A-form: hðyÞi=hðx1Þðx2Þ. . .ðxnÞi ! yx1 yx2 . . . yxn (n C 2)

A-form: hðx1Þðx2Þ. . .ðxnÞi=hðyÞi ! x1y x2y . . . xny (n C 2)

Otherwise: D(t) = t

for strings y, p, and xi (i ¼ 1; 2; . . .; n). The code parts

ðyÞ; ðpÞ, and ðxiÞ are chunks; the chunk ðyÞ in an I-form or

an A-form is a repeat; the chunk ðpÞ in an S-form is a pivot

which, as a limit case, may be empty; the chunk string

ðx1Þðx2Þ. . .ðxnÞ in an S-form is an S-argument consisting of

S-chunks ðxiÞ, and in an A-form, it is an A-argument

consisting of A-chunks ðxiÞ.

Hence, a code may involve not only recursive encodings

of strings inside chunks, that is, from (y) into ðyÞ, but also

hierarchically recursive encodings of S- or A-arguments

ðx1Þðx2Þ. . .ðxnÞ into ðx1Þðx2Þ. . .ðxnÞ. For instance, below, a

string is encoded in two ways, and for each code, the

resulting hierarchical organization of the string is given:

String: X = abacdacdababacdacdab

Code 1: X ¼ a b 2 � ðacdÞ S½ðaÞðbÞ; ðaÞ� 2 � ðcdaÞ b
Organization: a b (acd)(acd) (a)(b)(a)(b)(a) (cda)(cda) b

Code 2: X ¼ 2 � ðhðaÞi=hS½ððbÞÞððcdÞÞ�iÞ
Organization: ( ((a)(b)) ((a)(cd)) ((a)(cd)) ((a)(b)) )

( ((a)(b)) ((a)(cd)) ((a)(cd)) ((a)(b)) )

Code 1 does not involve recursive encodings, but Code

2 does: it is an I-form with a repeat that has been encoded

into an A-form with an A-argument that, in turn, has been

encoded into an S-form. These examples also illustrate the

problem that a string generally has many codes—which all

have to be considered to select a most simple one.

Notice that the exact definition of SIT’s complexity

metric is not relevant in this article (the number of

remaining symbols in a code can be taken as a good

approximation) and that the problem lies in the huge

number of candidate codes. This is analogous to the

problem the visual system faces (see section ‘‘Introduc-

tion’’). In fact, to expand this analogy, the code 2�(ab) of

string abab, for instance, reflects a higher-level organiza-

tion 2�(y) in which y refers to lower-level parts ab. This is

analogous to how I imagine that wholes and parts are

represented at different levels in the visual hierarchy in the

brain (see section ‘‘The visual hierarchy’’).

One may infer from Def. 1 that I-forms do not pose a big

computational problem, but that a substring of length k can

be encoded into O(2k) S-forms and O(k2k) A-forms. [The

‘‘big O’’ notation O(g), with g some function, has a precise

mathematical definition, but it means essentially ‘‘in the

order of magnitude of g’’.] To pinpoint a most simple one,

also most simple codes of the arguments of these S- and

A-forms have to be determined, and so on—with O(log

N) recursion steps because, for a substring of length k, the

argument of a covering S- or A-form has maximally length

k/2. Hence, if each S- and A-argument were to be recoded

separately, then the entire process would require a super-

exponential O(2N log N) amount of work which, to both

computers and brains, could easily require more time than

is available in this universe (cf. van Rooij 2008).

To solve this problem, I implemented the transparallel

processing algorithm I presented earlier (see van der Helm

2004, also for its full formal and tractability details). Only

later, I realized that the three intertwined subprocesses of

feature encoding, feature binding, and feature selection—

which this algorithm implements—correspond to the three

subprocesses which, in neuroscience, are believed to take

place in the visual hierarchy in the brain (see Fig. 5). To

specify this correspondence, I next sketch how I modeled

the three subprocesses, with a special eye for feature

binding which is relevant to the synchronization issue (see

section ‘‘Towards a pluralist account’’) and, thereby, also

(a) (b)Feature selection

Feature binding

Feature binding

Feature encoding

All−pairs shortest path method

Hyperstrings

Hyperstrings

All−substrings identification

Fig. 5 a Copy of Fig. 3,

depicting the three intertwined

subprocesses that are believed

to take place in the visual

hierarchy in the brain. b The

three corresponding and also

intertwined methods

implemented in the transparallel

processing model of perceptual

organization
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to the cognitive architecture issue (see section ‘‘Cognitive

architecture’’).

Feature encoding

In the model, the subprocess of feature encoding involves

an exhaustive search for hierarchically transparent holo-

graphic regularities (i.e., repetitions, symmetries, and

alternations) in the input string, and hierarchically recur-

sively, in the arguments of S- and A-forms. This subpro-

cess corresponds to the feedforward sweep yielding an

initial tuning, from lower to higher visual areas, to regu-

larities to which the visual system is sensitive.

The search for regularities in the input string or in an S-

or A-argument starts with a so-called all-substrings iden-

tification. This preprocess assigns identical numerals to

identical substrings, so that the regularity search can

identify identical substrings by these numerals instead of

by, each time, a cumbersome symbol-by-symbol compar-

ison. A naive method to do this preprocess would require

O(N4) computing steps for a string of length N, but the

model uses an O(N2) method which, in computer science,

informally is called a smart method (I return to such

methods in section ‘‘Distributed processing’’).

Hence, this preprocess corresponds to an initial pick-up

of information by which identical stimulus parts as such are

encoded by identical neuronal responses. After this pre-

process, it is easy to find separate regularities, but because

of the hierarchically recursive nature of the search for

regularities, a naive algorithm for an exhaustive search

would require an unacceptable superexponential amount of

work and time (see previous subsection). As I discuss next,

a solution to this problem lies in feature binding by

hyperstrings.

Feature binding

In the model, feature binding is implemented by gathering

similar regularities in so-called hyperstrings—not as a goal

in itself, but to allow for transparallel recoding of these

regularities. To specify this crucial point, I begin with van

der Helm’s (2004) graph-theoretical definition of hyper-

strings (for details on graph theory, see Harary 1994).

Definition 2 A hyperstring is a simple semi-Hamiltonian

directed acyclic graph (V, E) with a labeling of the edges in

E such that, for all vertices i; j; p; q 2 V , either

p(i, j) = p(p, q) or p(i, j) \ p(p, q) = [, where a sub-

string set p(v1,v2) is the set of label strings represented by

the paths from vertex v1 to vertex v2; the subgraph formed

by the vertices and edges in these paths is a hypersubstring.

Hence, a hyperstring is a graph with, for N nodes, O(N2)

links between the nodes and O(2N) paths from the first node

to the last node (see Fig. 6 for an example). Each of the

links represents a string element, so that each of the paths

through the graph represents a string (in which the nodes

represent locations). In other words, a hyperstring on

N nodes is a distributed representation of O(2N) strings, that

is, it represents O(2N) strings in a distributed fashion

(notice that this characteristic is usually associated with

connectionist modeling). Presently most relevant is the

special property of hyperstrings that substring sets repre-

sented by hypersubstrings are either identical or disjoint—

never something in between. For instance, in Fig. 6, the

substrings sets p(1,4) and p(5,8) are identical, that is, they

both represent the substrings abc, ay, and xc. The relevance

hereof may be explicated, in two steps, by means of the

following examples.

The string ababfababgbabafbaba of length N = 19

can be encoded into O(2N) S-forms, for instance into

S[(a)(b)(a)(b)(f)(a)(b)(a)(b), (g)] and S[(aba)(b)(f)(a)

(bab), (g)]. In Fig. 7a, the arguments of all these S-forms

have been gathered in a distributed representation. For

instance, the arguments of the two S-forms above are

represented by the path along all vertices and by the path

along vertices 1, 4, 5, 6, 7, and 10, respectively. In

general, after the above-mentioned O(N2) all-substrings

identification, the arguments of all S- and A-forms in a

string can be gathered in O(N) distributed representa-

tions like the one in Fig. 7a. Such a distributed repre-

sentation can be constructed in O(N2) computing steps

and, crucially, it consists provably of one or more

independent hyperstrings (van der Helm 2004). In other

words, the arguments of S- and A-forms group by nature

into hyperstrings, so that, during the encoding, one does

not have to check whether they do form hyperstrings—

which is precisely what one would expect of an automatic

binding mechanism.

5432 6 7 8 91

xx

yy

v

w

gfa b c a b c

Fig. 6 A hyperstring. The 15 paths from vertex 1 to vertex 9

represent normal strings; for instance, the path along vertices 1, 3, 4,

5, 9 represents the string xcfw. Characteristic of hyperstrings is that

the substring sets represented by hypersubstrings are either com-

pletely identical or completely disjoint, that is, never something in

between. Here, as indicated in gray, the substring sets p(1,4) and

p(5,8) are identical: the paths from vertex 1 to vertex 4 represent the

same substrings (i.e., abc, ay, and xc) as those represented by the

paths from vertex 5 to vertex 8
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Furthermore, Fig. 7b shows that a small change in the

input string may imply that substring sets represented by

hypersubstrings turn from completely identical to com-

pletely disjoint. This illustrates that substring sets repre-

sented by hypersubstrings are either identical or disjoint,

which implies that a hyperstring can be treated as if it were

a single normal string. More specifically, it implies that all

O(2N) S- or A-arguments in a hyperstring can be recoded

simultaneously as if only one S- or A-argument were

concerned, that is, in one go or, as I call it, in a transparallel

fashion. For instance, the hyperstring in Fig. 7a can be seen

as a string h1h2. . .h9 in which the substrings h1. . .h4 and

h6. . .h9 are identical because the substrings sets p(1,5) and

p(6,10) are identical. This implies that the string h1h2. . .h9

can be recoded into the S-form S½ðh1. . .h4Þ; ðh5Þ�, without

bothering about the different options h1. . .h4 stands for

(i.e., as if only one option were concerned).

Here, h1. . .h4 stands for the substring set comprising

(a)(b)(a)(b), (aba)(b), and (a)(bab), so that S½ðh1. . .h4Þ; ðh5Þ�
stands for the S-forms S[((a)(b)(a)(b)), ((f))], S[((aba)(b)),

((f))], and S[((a)(bab)), ((f))]. Eventually, one of these initial

options may have to be selected, but also my selection method

is indifferent to the number of these options (see below). The

crucial point thus is that these options never have to be pro-

cessed separately.

Hence, the underlying idea is that the visual system is

sensitive to specific regularities (determined by identity

relationships between parts), and that similar regularities

automatically yield (or are bound into) hyperstring-like

assemblies which allow these similar regularities to be

hierarchically recoded in a transparallel fashion. Notice

that this yields the combination of combinatorial capacity

and speed the perceptual organization process is believed

to have. Furthermore, notice that the hierarchically recur-

sive recoding of hyperstrings yields a tree of hyperstrings,

which represents all possible codes (of only the input

string) in a hierarchical distributed representation. The final

step then is to backtrace this hyperstring tree to select a

most simple code of the input string.

Feature selection

In section ‘‘Recurrent feature selection’’, I used the analogy

of the cascade formed by a fountain under increasing water

pressure, to illustrate what I think is the role of recurrent

processing in the perceptual organization process. To

recall, as the feedforward sweep progresses along ascend-

ing connections, each passed level in the visual hierarchy

forms the starting point of integrative recurrent processing

along descending connections. This yields a gradual

buildup from partial percepts at lower levels in the visual

hierarchy to complete percepts near the top end of the

visual hierarchy. The model proceeds in the same way.

Already during the buildup of the hyperstring tree by the

intertwined subprocesses of feature encoding and feature

binding, the subprocess of feature selection starts to select

most simple codes of increasingly larger (hyper)substrings,

to select eventually a most simple code of the entire input

string. This selection mechanism is implemented by

applying, to each hyperstring, the O(N3) all-pairs version of

Dijkstra’s (1959) O(N2) shortest path method (cf. Cormen

et al. 1994; van der Helm and Leeuwenberg 1986). This is

the method which, as I mentioned earlier and as I illustrate

in section ‘‘Distributed processing’’, is comparable to

selection by activation spreading in connectionist models.

It is true that the encoding of a (hyper)string yields

candidate subcodes of its (hyper)substrings, which in case

of a hyperstring, add to the options represented initially in

the hyperstring (see previous subsection). However, the

intertwined selection of most simple subcodes implies that,

no matter the number of these initial options, the maximum

number of options in case of a hyperstring remains the

same as in case of a single normal string. Hence, the

transparallel treatment of those initial options also allows

the selection mechanism to deal with a hyperstring as if it

were a single normal string. In other words, the mechanism

to select different features preserves the combination of

high combinatorial capacity and high speed yielded by the

transparallel recoding of similar features.
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Fig. 7 Hyperstrings of symmetry arguments. a The hyperstring

representing the arguments of all S-forms into which the string

ababfababgbabafbaba can be encoded. b The hyperstring

representing the arguments of all S-forms into which the slightly

different string ababfababgbabafabab can be encoded. The substring

sets p(1,5) and p(6,10) are identical in (a) but disjoint in (b)
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As said, full formal and tractability details can be found

in van der Helm (2004), but to sum up, for a hyperstring on

N nodes, the all-substrings identification requires O(N2)

computing steps. Furthermore, the construction of all

hyperstrings representing S- and A-arguments requires

O(N3) steps, that is, O(N2) steps for each of O(N) distrib-

uted representations. Finally, the all-pairs shortest path

method requires O(N3) steps. Thus, for each hyperstring in

the hyperstring tree, O(N3) steps are required. The depth of

the hierarchical recursion is O(log N), so that the total

process requires O(N3?log N) steps.

This contrasts very favorably with the superexponential

O(2N log N) amount of work a naive algorithm would

require. Due to the factor log N, the model should probably

be qualified as weakly exponential or near-tractable, but

the O(N3?log N) is a generous worst-case upperbound, and

in the average case, this factor log N hardly seems a

problem. One could also restrict the hierarchical depth to

the number of hierarchical levels in the visual hierarchy in

the brain (see section ‘‘The visual hierarchy’’), which

would yield a fully tractable model.

Towards a pluralist account

Above, starting from a representational approach, I dis-

cussed an algorithmic model which is neurally plausible in

that it incorporates the intertwined but functionally dis-

tinguishable subprocesses of feature encoding, feature

binding, and feature selection. A pivotal point now is that

this model has additional value in that it suggests that

transparallel processing by hyperstrings provides a com-

putational account of synchronization in transient neural

assemblies—which complements DST research into this

phenomenon. Even if details of this proposal turn out to be

controversial, I think its pluralist nature indicates a prom-

ising direction for research in cognitive (neuro)science. To

substantiate this, I next give a pragmatic line-up of meta-

theoretical considerations which now and again expand on

traditional views in a way that, in my view, is appropriate

to relate representational, connectionist, and DST approa-

ches to each other. First, I discuss philosophical metaphors

of cognition; then, I discuss Marr’s (1982/2010) paradig-

matic levels of description; finally, I discuss generic forms

of processing to position the ones in my model.

Metaphors of cognition

Reality is something we experience subjectively. People

may agree something is an objective reality, but this

agreement is based on shared subjective experiences. Like

traditional story-telling and religion, science is basically an

endeavor to understand or control what many people

experience as reality, using metaphors whether or not

expressed in concrete theories and models. The idea that

science is about useful metaphors instead of objective

truths may be uncomfortable, but to vision scientists in

particular, it is evident that reality is in the eye of the

beholder (cf. Lyons 1977; Socrates, 469–399 BC).

The currently dominant but often challenged metaphor

in cognitive science is the computer metaphor. It is related

to Putnam’s (1961/1980) computational theory of mind

which, in the tradition of functionalism, promotes the idea

that the workings of the mind can be understood in terms of

information processing defined as computation, that is,

as the conversion of an input by a set of rules into an

output (see also, e.g., Edelman 2008b; Fodor 1981, 1997

2001; Haugeland 1982; Newell and Simon 1972; Pylyshyn

1984).

Opponents of this idea usually argue that the brain is a

dynamic physical system and that the mind should be

described accordingly (e.g., Smolensky 1988; van Gelder

and Port 1995). However, having been trained in both, I see

differences but no opposition. Some dynamicists, and

perhaps even some computationalists, may interpret com-

putationalism as assuming that the brain really manipulates

discrete symbols, but as I argue next, this interpretation

mistakes modeling tools for the things being modeled.

First, to be clear, the usage of symbols is inherent to all

formal modeling, also within dynamic systems approaches.

The very idea of formalization is that things, at a certain

semantic level, are labeled by symbols—not for the sake of

it, but to capture potentially relevant relationships between

these things. For instance, in physics, formulas like New-

ton’s F = ma are not assumed to be real things in nature

but are merely tools to describe allegedly relevant rela-

tionships between allegedly relevant things in nature.

Furthermore, even within the same research domain, for-

mal models may differ in modeling tools, but this is often

merely because some tools are more convenient than others

to investigate potentially relevant relationships between

things at the chosen semantic level.

Second, in my view, computationalism does not assume

that the brain manipulates discrete symbols (which, to me,

would be as odd as assuming that nature applies formulas

like Newton’s F = ma). It merely uses conversion rules as

formal tools to model the semantic structure of relatively

stable cognitive states—independently of how the brain

goes physically from one state to the next. These physical

transitions, in turn, are modeled in dynamicism using other

formal tools, namely, differential equations. Hence,

whereas computationalism focuses on semantic structure,

dynamicism focuses on physical change. This is analogous

to the difference between the semantic structure of a

computer algorithm, on the one hand, and the electrical

currents in a computer, on the other hand.
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Indeed, already before the dynamics versus computation

debate began, Neisser (1967) characterized cognition as a

dynamic information-processing system whose mental

operations might be described in computational terms. In

other words, instead of either dynamics or computation, it

is both, and theories about either aspect may contribute

equally to a more comprehensive understanding of cogni-

tion as a whole, precisely because they address different

aspects. One might object that they use different tools and

metaphors, but this is precisely one of the challenges which

I, also in this article on perceptual organization, aim to

overcome to understand cognition as a whole (see also

Mitchell 1998).

For instance, thanks to Gestalt psychology (Koffka

1935; Köhler, 1920; Wertheimer 1912, 1923), it is nowa-

days commonly accepted that a percept is a relatively

stable cognitive state which arises during a dynamic neural

process. Initially, representational theory focused on the

informational content of such stable cognitive states, and

later, DST focused on the dynamics of the neural transi-

tions from any one state to the next—of course, insight in

both aspects is needed for a full understanding of percep-

tual organization. Connectionism is, in many respects, in

between representational theory and DST, and as men-

tioned, all three approaches nowadays tend to find their

roots in the Gestaltist motto that the whole is something

else than the sum of its parts. That is, all three approaches

aim to account for nonlinear behavior, meaning that a small

change in the input may yield a dramatic change in the

output. This is often presented as a trade-mark of DST, but

it also holds for many connectionist and representational

models (including SIT’s model).

To return to the computer metaphor, it is of course just a

metaphor, and by its metaphorical nature, it is about gen-

eral processing principles rather than about specific process

instantiations. Yet, related to the latter, I would like to

make the following distinction between a narrow version

(as the metaphor sometimes is interpreted by opponents)

and a broad version (as the metaphor usually is interpreted

by proponents):

Narrow computer metaphor: The digital computer is

a model of the neural brain.

Broad computer metaphor (a.k.a. information-pro-

cessing metaphor): Information processing by com-

puters is a model of cognitive processing by the brain.

The narrow computer metaphor, on the one hand, fol-

lows the tradition of comparing the brain to the most

sophisticated machine known at the time. In the past,

machines such as the clock and the steam-engine had

served as model of the brain, and in the twentieth century,

it was the computer’s turn to serve as model. A concrete

model within this tradition aims to capture the serial

development over time of a system that, as a whole, goes

from one state to the next. Such a system may, for instance,

be a single neuron, or a group of neurons, or the brain as a

whole. DST proponents may tend to reject the computer

metaphor (e.g., van Gelder and Port 1995), but DST

models do fit in this tradition: as I discussed in section

‘‘The dynamics of synchronization’’, DST employs differ-

ential equations, which describe the strictly serial process

by which a system goes from one state to the next.

The broad computer metaphor, on the other hand,

suggests that cognitive processing can be modeled use-

fully in terms of information close to the everyday

meaning of the word; these are also the terms in which

computers can be programmed to process things. Hence,

in contrast to previous metaphors, the broad computer

metaphor does not refer to the hardware principle that the

brain is a physical system, but it refers to software prin-

ciples implemented in the brain to allow for cognition

(see also Neisser 1967).

Such software principles are, in representational

models, modeled by regularity extracting operations to

get structured representations, and in connectionist

models, by activation spreading through a network. Such

a network typically is a distributed representation which,

via combinations of connected pieces of information,

represents many wholes. This concept stems from graph

theory (see Harary 1994), and it is powerful in that the

metaphor of interacting pieces can be used to efficiently

evaluate many wholes (for more details, see section

‘‘Distributed processing’’). Notice, however, that also my

representationally inspired algorithmic model employs

distributed representations (see section ‘‘A transparallel

processing model’’).

The latter suggests that the concept of distributed

representations may bridge the gap between representa-

tional theory and connectionism. Furthermore, as I dis-

cussed in section ‘‘The dynamics of synchronization’’,

synchronization in networks is a topic in DST. It is true

that DST models the states of such a network as a whole

rather than individual interpretations represented by those

states, but implicitly, such a network can also be seen as a

distributed representation. This suggests that the concept

of distributed representations may bridge the gap between

connectionism and DST as well (see also, e.g., Spencer

et al. 2009). Indeed, I think that, regarding cognitive

architecture, distributed representations constitute the

proverbial coin, with DST highlighting its neuronal side

and representational theory highlighting its cognitive

side. This may leave less room for connectionism as a

theory, but it asserts connectionist modeling as a most

powerful tool to implement realistic simulations of ideas

within DST and representational theory (see also section

‘‘Connectionist modeling’’).
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Levels of description

Proponents of representational theory, connectionism, or

DST may have criticized the others for not telling the

whole story, but I actually think that none of these

approaches alone tells the whole story. However, I also

think that, together, they might tell a more complete story.

For instance, as indicated above, connectionist modeling

has both a representational side and a dynamic systems

side, which suggests that the three approaches form a

continuum (cf. Bem and Looren de Jong 2006). In other

words, I think that the three approaches are complementary

rather than mutually exclusive.

This agrees with Marr’s (1982/2010) distinction between

three separate but complementary levels of description of

information processing systems:

1. The computational level—at which the goal of a

system is specified in terms of systematicities in the

system’s output as a function of its input. Applied to

the visual system, this level concerns the question of

what logic defines the nature of resulting mental

representations of incoming stimuli.

2. The algorithmic level—at which the method of a

system is specified in terms of the mechanisms that

transform the system’s input into its output. Applied to

the visual system, this level concerns the question of

how its input and output are represented and how one

is transformed in the other.

3. The implementational level—at which the means of a

system is specified in terms of the hardware of the

system. Applied to the visual system, this level

concerns the question of how those representations

and transformations are neurally realized.

To avoid misunderstandings, notice that Marr’s distinction

is a general distinction which can be applied recursively to

any part of any system (or to any part of any model thereof)

and that, just as Marr did, I apply to the visual system.

The labels Marr assigned to these levels were inspired

by the rise of computers: computer programmers are well

aware of the problem to compute something (the goal) by

way of an algorithm (the method) implemented in certain

hardware (the means). Others assigned different labels to

basically the same levels. For instance, Dennett (1978)

labeled them similarly by the intentional stance, the design

stance, and the physical stance; Glass et al. (1979) labeled

them similarly by the levels of content, form, and medium;

and Pylyshyn (1984) labeled them similarly by the

semantic level, the syntactic level, and the physical level.

In fact, the relevance of the distinction between goal,

method, and means was already emphasized by Aristotle

(384–322 BC), and indeed, whatever the labels are, the

distinction is relevant in many domains. For instance,

cooks are well aware of the problem to prepare a dish (the

goal) by way of a recipe (the method) using certain

ingredients (the means). Furthermore, in evolution theory,

Darwin (1859) specified the goal (i.e., survival), Mendel

(1866/1965) specified the method (i.e., heredity rules), and

Watson and Crick (1953) specified the means (i.e., DNA).

The foregoing illustrates that the computational, algo-

rithmic, and implementational levels yield descriptions of

different aspects, and that they are complementary in that,

together, they may explain how the goal is reached by a

method that is allowed by the means. Cognitive

(neuro)science still has a long way to go before it may

arrive at a comprehensive theory which, even then, might

well accommodate explanations at different levels of

description. For instance, neuroscientists may argue that

near-death and love experiences are the result of bio-

chemical processes in the brain—and they may be right—

but this does not yet do justice to people’s conscious

experiences which call for another story. In other words, I

am open to what is called a metaphysical (or ontological)

reading of pluralism (which assumes that a ‘‘grand unifying

theory’’ is possible), but for the moment, I adopt an

explanatory (or epistemological) reading of pluralism—

which, more pragmatically, focuses on differences and

parallels between existing explanations at different levels

of description to see whether and how they might be

combined (see also, e.g., Jilk et al. 2008).

Of course, it remains perfectly legitimate to focus on

only the one or two levels of description that are most

relevant to a research question at hand. Yet, also then, it is

fruitful to have an eye for ideas that are compatible with all

three levels—as I experienced in research on symmetry

perception (see Csathó, van der Vloed and van der Helm

2003; Treder and van der Helm 2007; van der Helm and

Leeuwenberg 1999, 2004). Furthermore, there are no strict

borders between the three levels, but the distinction is

useful not only to position ideas in the total field of cog-

nitive science but also to assess whether ideas formulated

at different levels, and thereby perhaps seemingly opposed,

might yet be compatible.

Representational theory, connectionism, and DST are

not confined to one level of description each, but their

operating bases can be said to be the computational level,

the algorithmic level, and the implementational level,

respectively. That is, all three approaches are (at least

verbally) concerned with all three levels, but as a rule,

representational models start from ideas about the nature of

mental representations, connectionist models from ideas

about the transformations from input to output, and DST

models from ideas about the neural realizations. This

suggests that, like Marr’s levels, also these three approa-

ches are complementary rather than mutually exclusive. As

mentioned in section ‘‘Introduction’’, I aim to go farther
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than just promoting this idea which can also be framed as

follows.

Notice that a distinction can be made between repre-

sentations and processes. The brain does not make this

distinction, as DST proponents surely emphasize, but it is a

crucial scientific distinction because it stresses that there

are two basic questions: (a) the ‘‘what’’ question, which is

the mostly computational and partly algorithmic question I

addressed in section ‘‘A representationally inspired algo-

rithmic account’’, and (b) the ‘‘how’’ question, which is the

partly algorithmic and mostly implementational question I

addressed in section ‘‘The visual hierarchy’’. This distinc-

tion reverberates the distinction which, according to Koffka

(1935), Wertheimer made between the molar (or behav-

ioral, or cognitive) and molecular (or physiological, or

neural) levels.

As Marr noted, answering the what and how questions

may be totally different endeavors, but answers to both

questions are needed for a complete understanding. For

instance, one might argue that gamma synchronization has

already been explained in some sense by the empirically

supported association with perceptual organization (see

section ‘‘Proposed meanings of synchronization’’). Side-

stepping my feeling that this association is not an expla-

nation but rather an observation to be explained, it could

indeed be said to explain synchronization in some sense,

namely, in the sense that it provides sort of an answer to the

question of what synchronization is involved in—however,

it does not answer the question of how it is involved.

Traditionally, representational models focus on the what

question, whereas DST models focus on the how question

(with, again, connectionist models somewhere in between).

Thus far, DST approaches have addressed the phenomenon

of synchronization (see section ‘‘The dynamics of syn-

chronization’’), but to my knowledge, representational

approaches have not (in section ‘‘Distributed representa-

tions’’, I discuss the few connectionist models that

addressed it). The additional value of my algorithmic

model now is that it implements a representational speci-

fication of this association with perceptual organization,

employing a special form of processing that might be the

form of cognitive processing that manifests itself by neu-

ronal synchronization.

Forms of processing

Apart from the foregoing philosophical and paradigmatic

issues, there is the metatheoretical issue of the forms of

processing a theory or model might employ in its pro-

posed process from input to output. Therefore, here, I

discuss generic forms of processing to position the ones

employed in my algorithmic model of perceptual

organization.

To be clear, I do not aim to present a detailed taxonomy.

For instance, Flynn (1972) distinguished classes of com-

puter processes involving single or multiple instruction

streams executed serially or in parallel on single or mul-

tiple data streams. Furthermore, Townsend (Townsend and

Nozawa 1995) distinguished elementary cognitive pro-

cesses, classifying them in terms of architecture, capacity,

and stopping rule. Such taxonomies are helpful but also

known to be nonexhaustive, and due to the novelty of

transparallel processing, my model does not seem to fit

neatly in existing taxonomies. Closest seems to be its

qualification, in Townsend’s terms, as an exhaustive pro-

cess using a coactive architecture yielding supercapacity—

where coactive means that input from separate parallel

channels is consolidated in a resultant common processor.

This is not only close to what hyperstrings do, but it is also

what Townsend feels is needed to account for perceptual

organization.

What both taxonomies do indicate is that, apart from the

number of processors involved, one also has to reckon with

the structure of the data operated on. I therefore begin with

the notion of distributed processing which sounds like

referring to a specific form of processing, but which rather

refers to a specific organization of data to be processed.

Distributed processing

The term distributed processing is often used to refer to a

process that, instead of being executed by one processor, is

divided over a number of processors. The latter does not

yield a reduction in the work to be done, but it may yield a

proportional reduction in the time needed—at least, if those

processors operate in parallel. For instance, in the search

for extraterrestial intelligence project (SETI), a central

computer divides the sky into parts, and it assigns each part

to a different computer which analyzes this part and which

returns its findings to the central computer. Thus, each of

the computers does only part of the total job, and the total

job is done by the computer network as a whole, which

therefore is said to perform distributed processing. Saving

time this way is of course relevant in practice, but theo-

retically, most interesting is the division of the sky into

parts, which implies that the central computer maintains a

distributed representation of the sky.

I therefore prefer to define distributed processing more

generally (i.e., independently of the number of processors

involved) as referring to a process that operates on a dis-

tributed representation of the data to be processed. Defined

this way, distributed processing can yield a reduction in

work (and, thereby, also in time): as I discuss in a moment,

there are distributed representations which a process may

exploit effectively to substantially reduce work. This is not

the case in the SETI project, but it is part and parcel of my
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algorithmic model and also of connectionist models. In

these models, the work reduction depends on the nature of

the distributed representations employed and not on the

number of processors involved. For instance, connectionist

models usually postulate networks of processors operating

in parallel. Such a network is therefore said to perform

parallel distributed processing. One might object that this

usually is sustained only by a simulation on a single seri-

ally processing computer but, though the simulation takes

extra time, this does not affect the proposed work-reducing

principles. The only difference is that, in the simulation,

the computer can be said to perform serial distributed

processing.

In general, a distributed representation is a data structure

that can be visualized by a set of interconnected nodes, in

which pieces of information are represented by the nodes,

or by the links, or by both. An example is the Internet,

which connects pieces of information stored at different

places. In the 1980s, distributed representations became

popular in cognitive science due to connectionism, but

already since the 1950s, properties and applications of

distributed representations have been studied extensively in

graph theory, which is a subdomain of both mathematics

and computer science (cf. Harary 1994).

Work-reducing distributed representations are typically

like road maps in which roads are represented by links

between nodes representing places, so that routes are rep-

resented in a distributed fashion by successive links. Dif-

ferent wholes (i.e., routes) thus share parts (i.e., roads), and

this is key to achieve a reduction in work. That is, for

N nodes, such a distributed representation typically repre-

sents O(2N) wholes by way of only O(N2) parts. A process

that has to search or select a specific whole, for instance,

may exploit this and may confine itself to evaluating the

O(N2) parts instead of the O(2N) wholes. This principle is

part and parcel of what, in computer science, informally is

called smart processing—because it typically reduces an

exponential O(2N) amount of work to a polynomial O(N2)

amount of work. For instance, suffix trees (cf. Gusfield

1997) and the data structure used in deterministic finite

automatons (Hopcroft and Ullman 1979) are, in computer

science, well-known distributed representations used in

smart search algorithms.

These smart methods can all be said to rely on inter-

actions between parts in order to arrive at wholes—which,

noteworthy, is also a central Gestalt principle. In fact, my

model implements the subprocess of feature encoding

using a smart method that implicitly uses suffix trees.

Furthermore, it implements the subprocess of feature

selection using Dijkstra’s (1959) shortest path method,

which falls in the same category of smart selection algo-

rithms as the selection by activation spreading in connec-

tionist models (see Fig. 8 for an informal connectionist

translation of Dijkstra’s method). Its implementation of the

subprocess of feature binding, however, takes the foregoing

to a new level by using hyperstrings, which enables a

reduction of exponential O(2N) amounts of work to con-

stant O(1) amounts of work. To position this form of

processing further, I next go into some more detail on the

role of distributed representations in connectionist

modeling.

Connectionist modeling

Inspired by the brain’s neural network, connectionism

entertains the idea that cognitive behavior arises from

activation spreading in a network that represents pieces of

information in its nodes, or in its links, or in both

(Churchland 1986, 2002; Churchland and Sejnowsky 1990,

1992; Smolensky 1988). The nodes are taken to be parallel

processors, each typically doing little more than (a) sum its

incoming activation, (b) change its state according to some

function of this sum, and (c) modulate the activation it

transmits as a function of some weight (cf. Fodor and

Pylyshyn 1988). Hence, each node performs only part of

the total job, and the network is therefore said to perform

parallel distributed processing.

A seminal example is McClelland and Rumelhart’s

(1981) model of word recognition. Roughly, their net-

work consists of (a) an input layer of nodes responding to

letter strokes in pictures of words, (b) an output layer of

nodes representing words, and (c) an intermediate layer of

nodes which regulate the flow of activation between the

input and output layers (in this model, these nodes rep-

resent letters, but in other models, this layer is also called

a layer of hidden nodes). When fed with a picture of a

word, activation spreads through the network until it

settles in a relatively stable state—then, the most highly

activated output node is taken to represent the word in the

picture.

Nowadays, connectionist models come in many flavors

(cf. Bechtel and Abrahamsen 2002). For instance, the

represented pieces of information may or may not be at

different levels of aggregation—if they are, as in the

example above, the network is said to be hierarchical (cf.

Miikkulainen and Dyer 1991). Furthermore, so-called

feedforward networks do not allow activation to flow in

circles, whereas so-called recurrent networks do. More-

over, in so-called localist networks, the output is given by a

node, whereas in so-called distributed networks, it is given

by a trace of successive links (or by the entire pattern of

activation). The latter distinction corresponds to Smo-

lensky’s (1988) symbolic-subsymbolic distinction and is

formally merely a matter of decomposition (Fodor and

Pylyshyn 1988; Bechtel 1994). In contrast to localist net-

works, however, distributed networks allow for a flexible
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clustering of represented ‘‘subsymbolic’’ parts into aggre-

gates representing ‘‘symbolic’’ wholes.

In applications, a network typically is first fed with

many inputs to tune its activation-spreading parameters

such that the desired outputs tend to result; this training

technique is called backpropagation. Subsequently, it is

tested by feeding it novel inputs—then, a network is said to

be robust if its performance is insensitive to small varia-

tions in the parameter setting, and if it also performs well,

it is proposed to capture a relevant systematicity in the

input domain. This systematicity may or may not be

specified explicitly, but it seems in line with the philosophy

of connectionism to say that it is an emergent property

which arises ‘‘automagically’’ from the process of activa-

tion spreading.

The foregoing shows that connectionism uses powerful

modeling tools which seem suited to simulate cognition.

However, backpropagation is basically just a form of data

fitting, which suggests that connectionism may not be suffi-

cient to explain cognition. For instance, I concur with Fodor

and Pylyshyn (1988) who argued that connectionism may

provide, at best, an account of the neural structures in which

representational cognitive architecture is implemented (see

also Bechtel 1994; Fodor and Mclaughlin 1990).

Furthermore, standard connectionism rejects the repre-

sentational idea that the brain performs regularity
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Fig. 8 Parallel distributed processing implementation of Dijkstra’s

(1959) shortest path method to select an optimal flow path in a hilly

tube system with six distribution nodes (nodes 0,1,…,5). The fluid

used is such that it hardens within one time unit once it stops flowing.

A link between two nodes i and j is a soft tube that expands as the

fluid runs through it and consists of at most j - i straight segments

having slopes such that the fluid takes one time unit to cross a

segment. Every node has a separate outlet for each outgoing tube, but

only one inlet for all incoming tubes. An inlet has the same cross

section as one fluid-filled tube, so, when the fluid reaches the inlet

through one or more tubes, the remaining tubes are automatically

sealed off. At time T = 0, the fluid starts to be poured into node 0 and

reaches node 2 at time T = 1, sealing off the tube between nodes 1

and 2. At time T = 2, the fluid has filled this dead-end tube, and the

then nonflowing fluid therein has hardened at time T = 3. By then,

the fluid has also already reached node 5. After that, there is still some

filling of dead-end tubes and hardening of the fluid therein, but at

times T C 5, the only remaining flow path consists of a minimal

number of segments
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extraction to get structured representations of incoming

stimuli. This connectionist stance implies, as mentioned

earlier, that activation spreading is merely a mechanism to

select outputs from a pre-defined output space for all

possible inputs. Considering all three subprocesses that are

believed to take place in the visual hierarchy (see section

‘‘The visual hierarchy’’), however, I think it is more

plausible that, preceding such a selection, feedforward

encoding and horizontal binding create an output space for

only the input at hand. This is what my model does, and as

I discuss in section ‘‘Distributed representations’’, this does

not exclude connectionist modeling, but it does call for a

more flexible version thereof.

Finally, neuronal synchronization occurs in a neural

network that can be said to perform parallel distributed

processing. DST research focuses on how synchronization

might arise in such a network (see section ‘‘The dynamics

of synchronization’’), and this is also the natural way in

which connectionism might look at it. This, however,

ignores that synchronization reflects a processing mode

which, at least in representational terms, seems to yield a

combinatorial capacity and speed that surpass the capacity

and speed of standard parallel distributed processing (see

section ‘‘Proposed meanings of synchronization’’). This

issue touches upon the question—discussed next—of how

a process may operate on data whether or not organized in

a distributed fashion.

From subserial to transparallel processing

Many everyday processes are hybrid in that they involve a

combination of serial and parallel processing (see also

Wolfe 2003). For instance, in a relay race, the teams run in

parallel (i.e., simultaneously), but the members of each

team run serially (i.e., one after the other). Likewise, at the

checkout in a supermarket, the cashiers work in parallel,

but each cashier processes customer carts serially. As I

discuss here, however, there is more to processing than

this traditional dichotomy between serial and parallel

processing.

I begin with the observation that, at the checkout in a

supermarket, an additional form of processing can be dis-

tinguished. That is, not only are the cashiers working in

parallel, each cashier processing customer carts serially,

but the different carts are also presented serially by dif-

ferent customers. This example indicates that, under

appropriate specifications of ‘‘items’’ and ‘‘processors’’, not

just two but at least three forms of processing can be dis-

tinguished (see also Fig. 9):

1. subserial processing, in which items are processed one

after the other by different processors;

2. serial processing, in which items are processed one

after the other by one processor;

3. parallel processing, in which items are processed

simultaneously by different processors.

The supermarket example illustrates that these are three

natural forms of processing—which probably occur also in

the brain (where a processor may be defined by a neuron or

by a group of neurons). Furthermore, the line-up of these

three forms of processing in Fig. 9 suggests the existence

of the form of processing I defined by:

4. transparallel processing, in which items are processed

simultaneously by one processor.

Transparallel processing may look like science-fiction, but

as I argued in section ‘‘A transparallel processing model’’,

it is mathematically sound and has already been imple-

mented in my model of perceptual organization. In fact, as

I illustrate next, it is also a natural form of processing.

Imagine that, for some odd reason, the longest pencil

among a number of pencils is to be selected (see Fig. 10a).

Then, one or many persons could measure the lengths of

the pencils in a (sub)serial or parallel fashion—after which

the longest pencil can be selected by comparing the out-

comes of the measurements (see Fig. 10b). A much smarter

method, however, would be if one person gathers all pen-

cils in one bundle and places the bundle upright on a

table—after which the longest pencil can be selected in a

glance (see Fig. 10c). The smart part of this (of course also

hybrid) method is that, once gathered, the pencils are not

treated as separate items by one or many processors (here,

persons) in a (sub)serial or parallel fashion, but that they

are treated in a transparallel fashion, that is, simultaneously

by one processor as if they constitute one item (i.e., a

bundle).

To be clear, this example should not be confused with

Dewdney’s (1984) spaghetti metaphor which illustrates a

sorting algorithm. My example illustrates that, in some

cases, items can be gathered in one bin after which they can

be treated simultaneously as if only one item were

One item
at a time

Many items
at a time

Many
processors

Serial
processing

Parallel
processingprocessing

Subserial

processor
One

processing
Transparallel

Fig. 9 Forms of processing defined by numbers of processors and

items processed at a time
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concerned. In my model of perceptual organization, such

transparallel processing has a positive efficiency effect on

feature selection and integration, but it is employed pri-

marily to efficiently recode similar features. To this end, as

I discussed in section ‘‘A representationally inspired

algorithmic account’’, those similar features are gathered in

distributed representations called hyperstrings, which

allows those features to be recoded in one go, that is, in a

transparallel fashion. Hence, the binding role of the bundle

in the pencil example is analogous to the binding role of

hyperstrings in my model, but hyperstrings serve a more

sophisticated purpose, namely, transparallel recoding of

similar features. This transparallel recoding by way of

hyperstrings can be seen as a special form of distributed

processing, and as I argue in the next section, it leads to a

concrete pluralist picture of cognitive architecture.

Cognitive architecture

Going from brain to model, my model of perceptual

organization is neurally plausible in that it incorporates the

intertwined but functionally distinguishable subprocesses

of feature encoding, feature binding, and feature selec-

tion—which, in neuroscience, are believed to take place in

the visual hierarchy (see Fig. 5). To recall, the subprocess

of feature encoding reflects an initial feedforward tuning of

visual areas to features to which the visual system is sen-

sitive; the intertwined subprocess of feature selection

reflects a recurrent integration of different features into

percepts; and, in between, the subprocess of feature bind-

ing reflects a horizontal binding of similar features. The

latter subprocess may be a relatively underexposed topic in

neuroscience, but it can be seen as the neuronal counterpart

of the regularity extraction which, in representational the-

ory, is proposed to lead to structured mental representa-

tions. Furthermore, at least in my model, it is key to allow

for transparallel processing by hyperstrings—which, to

my knowledge, is the first representationally inspired

mechanism proposed to do justice to both the high com-

binatorial capacity and the high speed of the perceptual

organization process.

Inversely, going from model to brain, this transparallel

mechanism may fill a gap in the understanding of neuronal

synchronization. The model suggests that hyperstrings can

be seen as formal counterparts of the transient horizontal

assemblies of synchronized neurons which, in neurosci-

ence, are thought to be responsible for binding similar

features. Thereby, it also suggests that the synchronization

in these assemblies can be seen as a manifestation of

transparallel processing. In this sense, transparallel pro-

cessing by hyperstrings provides a computational expla-

nation of the dynamic phenomenon of synchronization in

transient neural assemblies. This proposal of course needs

further investigation (see also below), but as said, for one

thing, it does justice to both the high combinatorial

capacity and the high speed of the perceptual organization

process.

Although my model was developed starting from a

representational approach, it reflects a truly pluralist

account in the spirit of Marr (1982/2010). First, it tran-

scends traditional definitions of representational and

connectionist approaches, in that it puts the representa-

tional idea that cognition relies on regularity extraction to

get structured representations in a more dynamic per-

spective together with a more flexible version of the

connectionist idea that cognition relies on activation

spreading through a network. Second, its transparallel

mechanism relates plausibly to neuronal synchronization,

so that it also honors the DST idea that cognition relies on

dynamic changes in the brain’s neural state. To summa-

rize this like I did in section ‘‘Metaphors of cognition’’, I

think that, regarding cognitive architecture, distributed

representations (as highlighted in connectionism) consti-

tute the proverbial coin, with DST highlighting its neu-

ronal side and representational theory highlighting its

cognitive side. To discuss this further, I first revisit dis-

tributed representations.

Fig. 10 Transparallel pencil selection. a Suppose the longest pencil

is to be selected from among a number of pencils. b Then, one or

many persons could measure the lengths of the pencils in a subserial,

serial, or parallel fashion—after which the longest pencil can be

selected by comparing the outcomes of the measurements. c A

smarter, transparallel, method would be if one person gathers all

pencils in one bundle and places the bundle upright on a table—after

which the longest pencil can be selected in a glance
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Distributed representations

In connectionist terms, the hyperstrings in my model are

distributed networks in which nodes represent locations in

a localist fashion, while links represent spatial features

(i.e., visual regularities) in a distributed fashion. Further-

more, they are the constituents of hyperstring trees which,

in connectionist terms, are hierarchical networks. In such a

hyperstring tree, a hyperstring is constituted by horizontal

links representing featural information at some level of

aggregation, and it is anchored vertically by the spatial

information in the nodes. Moreover, backtracing a hyper-

string tree to select a most simple code is a recurrent

process. Hence, my model shares various characteristics

with standard connectionist modeling, and in fact, a

hyperstring tree corresponds to a recurrent hierarchical

distributed network yielding a most highly activated trace

of links as output.

Though beyond the scope of this article, it would be

interesting to implement a formal connectionist version of

this model. Inherent to the idea of complementarity, such a

connectionist version does not have to be a literal transla-

tion. For instance, the strength of outcomes usually is a

discrete variable in representational models and a contin-

uous variable in connectionist models. This difference,

however, seems without much consequence because, in the

end, the ranking of outcomes is what matters most.

A more delicate point concerns neuronal synchroniza-

tion which, to my knowledge, is a topic addressed by only

few connectionist models (e.g., Hummel and Biederman

1992; Hummel and Holyoak 2003, 2005; Shastri and

Ajjanagadde 1993). These models do not associate syn-

chronization with binding of similar features, but with

integration of different features. The neuroscientific evi-

dence is admittedly still too scanty to decide, but it may

well be associated with both. For instance, different sets of

similar features might be represented in different assem-

blies of synchronized neurons, and the integration of dif-

ferent features might be reflected by simultaneous

synchronization of these assemblies. Anyway, notice that

my model does associate it with both. It suggests that

synchronization already starts pre-selection with the bind-

ing of similar features (reflecting a regularity extraction

that is absent in standard connectionist modeling) into

hyperstring-like assemblies of synchronized neurons,

whose combinatorial capacity is primarily exploited to

efficiently recode similar features but, subsequently, also to

efficiently select and integrate different features.

Furthermore, a major difference with standard connec-

tionist modeling is that the hierarchical distributed network

in my model does not refer to a relatively rigid neural

network but to a cognitive network that shapes itself flex-

ibly to the input at hand (which implies an efficient usage

of storage resources without increasing the order of mag-

nitude of work to be done; see the end of section ‘‘A

representationally inspired algorithmic account’’). Just as I

implemented my model in a computer, this flexible cog-

nitive network is assumed to be implemented in the brain.

As I discuss next, precisely this triggers a concrete picture

of cognitive architecture.

From neurons to gnosons

As I mentioned in section ‘‘Introduction’’, the idea that

cognition is a dynamic process of self-organization is not

new, and the idea that transient assemblies of synchronized

neurons are the building blocks of cognition is not new

either. That is, nowadays, it is widely accepted that neu-

ronal synchronization is a cognitively relevant phenome-

non, and gamma synchronization in particular has been

associated strongly with perceptual organization (see sec-

tion ‘‘Proposed meanings of synchronization’’). Thus far,

however, this idea lacked a computational explanation. My

transparallel processing model now opens a concrete plu-

ralist perspective on the cognitive architecture of percep-

tual organization. That is, it suggests the following picture.

Perceptual organization is mediated by a self-organiz-

ing, hierarchical, cognitive network which arises in the

neural network of the brain. This network shapes itself to

the input at hand and consists of hyperstring-like neural

assemblies which signal their presence by synchronization

of the neurons involved. These assemblies, or gnosons as I

call them, are formed automatically by the extraction of

regularities to which the visual system is sensitive. They

represent similar regularities in a distributed fashion, sup-

plying high combinatorial capacity and high speed by

allowing many similar regularities to be hierarchically

recoded in one go, that is, as if only one feature were

concerned. These assemblies, with the high combinatorial

capacity and high speed they supply, remain effective

during the selection and integration of different features

into percepts.

Of course, my model does not cover everything, and I

cordially invite other researchers to provide additional

input on how gnoson-forming regularity extraction might

take place in the neural network of the brain, for instance.

My present point, however, is that my model gives rise to a

picture of flexible cognitive architecture constituted by

self-organizing gnoson hierarchies arising in the relatively

rigid neural architecture of the brain.

To conclude, the concept of gnosons may be grounded

further as follows. Pascal (1658/1950) observed that a

particular description of things usually reflects just one of

an indefinite number of semantically related nominalistic

levels in a hierarchy of possible descriptions. That is,

concepts used at some level build on (or can be
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decomposed into) lower-level concepts and form the

building blocks for (or can be combined into) higher-level

concepts. Both upward and downward in such a hierarchy

of descriptions, there always seems to be room for addi-

tional levels, each with its own new concepts. For instance,

particle physics currently takes quarks as the concepts at

the lowest description level in physics, but superstring

theory is an attempt to model them, at a still lower level, as

vibrations of tiny supersymmetric strings (see Greene

2003).

Going upward, from quarks to consciousness, there are

various levels of description, among which are the levels of

atoms, molecules, and neurons. These concepts are taken to

stand for the functional entities, or ‘‘processors’’, at their

respective levels. In between neurons and consciousness,

there is cognition, and it seems fair to assume that, size-

wise, cognitive processors must lie between individual

neurons and the brain as a whole. For instance, in the past,

the perceptron (a small single-layered network; Rosenblatt

1958) and the cognitron (a small multi-layered network;

Fukushima 1975) have been proposed as formal counter-

parts of cognitive processing units. This line of thinking is

continued by my proposal to conceive of input-dependent

hyperstrings as formal counterparts of gnosons and to

conceive of gnosons as constituents of flexible cognitive

architecture.

Conclusion

Cognitive (neuro)science still has a long way to go before it

may arrive at a comprehensive theory of perceptual orga-

nization, let alone of cognition as a whole. As I argued in

this article, however, such a comprehensive theory might

be obtained by combining complementary insights from

representational theory, connectionism, and DST. Inherent

to the idea of complementarity, insights from these dif-

ferent approaches do not have to be literal translations of

each other. Rather, they might concern the different, but

complementary, questions of (a) what is the nature of the

outcomes of a process; (b) how does the process proceed;

and (c) how are the process and its outcomes neurally

realized.

In search for answers, I started from a representationally

inspired algorithmic model which (a) is neurally plausible

in that it implements intertwined but functionally distin-

guishable subprocesses which, in neuroscience, are

believed to take place in the visual hierarchy in the brain;

and (b) suggests that synchronization in transient neural

assemblies in the visual hierarchy is a manifestation of

transparallel processing. In the model, this special form of

processing relies on hyperstrings, that is, special distributed

representations which allow many similar features to be

recoded simultaneously as if only one feature were con-

cerned. A naturally following suggestion is that those

temporarily synchronized neural assemblies, or gnosons as

I call them, are constituents of flexible cognitive architec-

ture implemented in the relatively rigid neural architecture

of the brain.

This proposal qualifies rather than challenges existing

ideas about neuronal synchronization in the visual hierar-

chy, but its specifics of course need further investigation.

Furthermore, I feel it is open to modulating effects of

attention, but also this needs further investigation. For one

thing, however, this proposal sketches a concrete pluralist

picture of a neurally plausible cognitive architecture which

accounts for the high combinatorial capacity and high

speed of the human perceptual organization process.
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Csathó Á, van der Vloed G, van der Helm PA (2003) Blobs strengthen

repetition but weaken symmetry. Vis Res 43:993–1007

Dale R (2008) The possibility of a pluralist cognitive science. J Exp

Theor Artif Intell 20:155–179

Dale R, Spivey M (2005) From apples and oranges to symbolic

dynamics: a framework for conciliating notions of cognitive

representation. J Exp Theor Artif Intell 17:317–342

Darwin C (1859) On the origin of species by means of natural

selection, or the preservation of favoured races in the struggle for

life. John Murray, London

Dennett DC (1978) Brainstorms: philosophical essays on mind and

psychology. Harvester, Brighton

Dewdney AK (1984) On the spaghetti computer and other analog

gadgets for problem solving. Sci Am 250:19–26

Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numer Math 1:269–271

Donderi DC (2006) Visual complexity: a review. Psychol Bull

132:73–97

Duncan J, Humphreys GW (1989) Visual search and stimulus

similarity. Psychol Rev 96:433–458

Eckhorn R (1999) Neural mechanisms of visual feature binding

investigated with microelectrodes and models. Visual Cogn 3,

4:231–265

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M,

Reitboeck HJ (1988) Coherent oscillations: a mechanisms of

feature linking in the visual cortex? Biol Cybern 60:121–130

Eckhorn R, Bruns A, Saam M, Gail A, Gabriel A, Brinksmeyer HJ

(2001) Flexible cortical gamma-band correlations suggest neural

principles of visual processing. Visual Cogn 8:519–530

Edelman GM (1987) Neural darwinism: the theory of neuronal group

selection. Basic Books, New York

Edelman S (2008a) On the nature of minds, or: truth and

consequences. J Exp Theor Artif Intell 20:181–196

Edelman S (2008b) Computing the mind: how the mind really works.

Oxford University Press, Oxford

Eliasmith C (2001) Attractive and in-discrete. Mind Mach

11:417–426

Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent

neuronal oscillations in cat visual cortex: intercolumnar interac-

tion as determined by cross-correlation analysis. Eur J Neurosci

2:588–606

Felleman DJ, van Essen DC (1991) Distributed hierarchical process-

ing in the primate cerebral cortex. Cereb Cortex 1:1–47

Finkel LH, Yen S-C, Menschik ED (1998) Synchronization: the

computational currency of cognition. In: Niklasson L, Boden M,

Ziemke T (eds) ICANN 98, proceedings of the 8th international

conference on artificial neural networks. (Skövde, Sweden, 2–4
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Köhler W (1920) Die physischen gestalten in Ruhe und im stationären
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