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Abstract
Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature, which often result in origami-like patterns that
provide inspiration for the engineering of origami designs. Inspired by instability-induced origami patterns, we propose a
computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization. The
bar-and-hinge model is employed for the nonlinear structural analysis, added with a displacement perturbation strategy to
initiate out-of-plane buckling. Borrowing ideas from topology optimization, a continuous crease indicator is introduced as the
design variable to indicate the state of a crease, which is penalized by power functions to establish the mapping relationships
between the crease indicator and hinge properties. Minimizing the structural strain energy with a crease length constraint, we
are able to evolve a thin sheet into an origami structure with an optimized crease pattern. Two examples with different initial
setups are illustrated, demonstrating the effectiveness and feasibility of the method.

Keywords Origami structure · Instability · Topology optimization · Bar-and-hinge model

1 Introduction

The art of origami folds a flat sheet into a three-dimensional
(3D) structure without cutting and adhesion. In recent years,
it has received great attention in the fields of deployable space
structures [1], functional metamaterials [2, 3] and flexible
robotics [4, 5], because of the unusual properties associated
with origami-inspired structures such as negative Poisson’s
ratio [6, 7], multi-stability [8, 9], variable stiffness and con-
figuration [10]. The origin of the unusual properties comes
from the rational arrangement of creases and panels. So far,
origami optimization has mainly focused on regulating the
size, shape and assembly method of typical crease design to
meet or improve a certain performance [11–13]. However,
the conventional origami design methods by regulating and
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adjusting the known crease patterns cannot satisfy the rapidly
growing engineering applications of origami. Therefore, it is
necessary to explore new crease design methods.

The wrinkle patterns induced by instability have been
related to origami structures as the spontaneous fold behavior
results in rich deformation adaptivity, potential functional-
ity and a great assembly property [14, 15]. The well-known
Miura-ori structure and Kresling tube are typical represen-
tatives of origami designs inspired by wrinkle patterns. The
Miura-ori pattern was discovered in a biaxial compression
experiment of a thin, stiff, elastic film supported by a thick,
soft substrate [16], and the Kresling pattern was originally
discovered when twisting thin-walled cylinders [17]. They
both have been used successfully in a variety of applications
[6–8, 18].

Mechanical instability due to local excessive compres-
sion is a common natural phenomenon in our daily life,
which causes a flat thin sheet to spontaneously transform
into a certain 3D wrinkled configuration [19]. This deforma-
tion process results in self-organized wrinkle patterns that
naturally possess the lowest level of energy [20]. These wrin-
kle patterns not only are related to material parameters and
geometric parameters, but also largely depend on boundary
conditions (e.g., loading, deformation constraints, etc.). Dif-
ferent boundary conditions yield drastically different wrinkle
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patterns and hence lead to different origami designs. To trans-
late wrinkle patterns into corresponding origami designs, we
first simulate the wrinkling behavior of thin sheets, and then
identify folding creases by certain selection criteria.

Typically, there are two approaches to simulating thewrin-
kling behaviors of thin film. The first one is to establish a
continuummodel with finite elements [21, 22]. It can provide
detailed physical field information, but needs a lot of ele-
ments to describe local strong curvatures which are common
in wrinkle patterns. Therefore, more computing resources
and time are needed. In addition, local instability may affect
convergence of the analysis on the global behavior [23]. The
second approach is to simplify the thinfilm into a discrete bar-
and-hinge (or spring-mass)model [23–25]. It has an excellent
capability in predicting the global deformation as well as
local folding behaviors. Comparingwith the continuumfinite
element model, origami mechanical analysis conducted with
the bar-and-hinge model needs fewer elements and nodes.
And the number of design variables can also be reduced
greatly for the origami topology optimization. Therefore, the
bar-and-hinge model is the ideal analysis method for our
research goal because of the high computational efficiency
in structural analysis and solving optimization model.

The design problem of crease layout can be formulated
as an origami topology optimization problem [26]. Among
the geometric parameter optimization methods [27–30], the
origami topology optimization has the potential to com-
pletely obtain the new crease pattern without requiring
prescribed initial crease patterns. At present, origami topol-
ogy optimization was limited to key nodal displacement
optimization for actuator designs [26, 30–32]. These designs
were carried out by the following optimization formulation
proposed by Fuchi and Buskohl [26].

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Max g1(α) � cTu

s.t. g2(α) � v0 − 1
N f

N f∑

k�1
α j ≤ 0

0 ≤ α j ≤ 1( j � 1, · · · , N f )

(1)

where g1 is the objective function, and u denotes the nodal
displacement vector. Constant vector c is used to prescribe
the selection of nodes and direction of the target deflection
by assigning “1” or “−1” to locations associated with the
target degrees of freedom. The symbol g2 denotes the crease
constraint, and α j indicates the status of creases, which is
between 0 and 1. When α j � 1, the hinge element is located
on a panel and has a high fold stiffness; when α j � 0,
the hinge element is located at a crease and has a low fold
stiffness.N f is the total number of hinge elements. This
formulation was applied to the displacement optimization
problem of actuators under the load of forces. The creases

are selected based on the contribution to the key nodal dis-
placements, although various algorithms have been used to
solve the formulation. This topologyoptimization framework
is quite similar to the compliant mechanism design formula-
tion [33], and the types of origami patterns it can design are
very limited. With a small twist, we can turn this formulation
into a new one that is capable of discovering a wide range
of origami patterns based on the idea of instability-induced
wrinkle patterns.

The remainder of this paper explains our new formulation
in details, supported by numerical examples. The bar-and-
hingemodel addedwith a displacement perturbation strategy
is employed to simulate the large deformation behavior of a
thin sheet under compression. For origami inspired by the
wrinkle pattern, the creases should be placed at the central
position of the wrinkles where there exists stress concen-
tration. Therefore, a topology optimization framework with
minimum strain energy and crease constraint is established
to automatically assign creases on a thin sheet. Then, numer-
ical examples are given to illustrate the effectiveness and
feasibility of the design method.

2 Mechanical Analysis

2.1 Bar-and-HingeModel

The bar-and-hingemodel [24], as shown in Fig. 1a, is adopted
for simulation due to high computing efficiency and conve-
nient crease definition. In the bar-and-hinge model, in-plane
stretching and compressing are described by the bar ele-
ments. Out-of-plane bending and folding deformations are
depicted by the hinge elements. Based on this setup, a fully
nonlinear, displacement-based quasi-static structural analy-
sis method of origami structures was developed by Liu and
Paulino [23], which has been proven effective in analyzing
the buckling and post-buckling behavior of origami struc-
tures.

For non-rigid origami structures, the rotational deforma-
tion near the crease is far greater than that at the panel. The
folding of a crease and the bendingof a panel can be described
by the folding and bending hinge elements shown in Fig. 1a.
In general, the torsional stiffness of a folding hinge kFR is
far less than that of a bending hinge kBR. The same constitu-
tive equation but with different torsional stiffness provides a
chance for hinge switching, as illustrated in Fig. 1b.

2.2 Displacement Perturbation

For a thin sheet, instability occurs when the in-plane com-
pressive stress exceeds a critical value. In this paper, the
buckling trigger criterion of the bar-and-hinge model is pro-
posed according to the compression state of the bars. As
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(a) (b) 
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Fig. 1 Schematic of mechanical analysis model: a bar-and-hinge model; b stiffness switching for a hinge

Fig. 2 Displacement perturbation to trigger local out-of-plane buckling: a diagram of a bar under compression; b deformation analysis of a
compressed sheet before adding displacement disturbance; c deformation analysis of a compressed sheet after adding displacement disturbance

shown in Fig. 2a, the critical buckling load Fcr of a bar under
compression with one end fixed and the other free is given
as follows:

Fcr � π2E Iy
(2l)2

(2)

where E is the elastic modulus, Iy is the moment of inertia
along the x-axis, and l is the length of a bar.

When the internal force of a compressed bar exceeds the
critical buckling load Fcr, the out-of-plane deformation of a
thin sheet will occur. Here, a displacement perturbation �uz
along the z-direction is added at the free end as follows

�uz � λ
√
l2 − (l2 − �l)2 (3)

where �l � Fcr
AE l� π2 Iy

(2l)2A
l is the axial compressive defor-

mation, and λ is the disturbance control parameter, which
determines the magnitude of the displacement disturbance.
When λ � 0, it indicates that the bar remains undeformed in
the z-axis. When λ � 1, it means that the compressive defor-
mation of the bar is released completely and the displacement
disturbance in the z-axis equals to

√
l2 − (l2 − �l)2. There-

fore, the disturbance control parameter λ is in the range of
(0, 1) because the compressive deformation usually does not
disappear completely. The exact value of λ is hard to obtain
directly because the deformation of a bar after instability is
very complex in a structural system.But numerous numerical
examples show that final wrinkle pattern after post-buckling
analysis always remains the same regardless of the value ofλ.
The deformation diagrams of a thin sheet under displacement
compression before and after adding displacement perturba-
tion are illustrated in Fig. 2b and c. It is obvious that the

post-buckling deformation is induced by applying displace-
ment disturbance.

3 Origami Topology Optimization

3.1 Crease Assignment

In order to endow a hinge with the ability to evolve into a
bending hinge or a folding hinge, an independent and con-
tinuous design variable α is introduced to indicate the state
of a hinge inspired by the independent continuous mapping
(ICM) method [34]. As shown in Fig. 3, α�1 indicates that
it has grown into a folding hinge with crease properties. α�0
denotes that it is a bending hinge and is located at a panel.
0 < α < 1 represents that it is in an intermediate state. The
growth process of α is that one panel is gradually cracked
into two panels. The degradation process of α is regarded as
the process of two panels merging into one panel.

Establishment of the relationship between the crease indi-
cator and corresponding physical properties is the premise
to realizing origami topology optimization. Referring to the
mass and stiffness mapping models in the ICM method
[34], the crease length filter function fL(α) and stiffness fil-
ter function fk(α) are introduced to establish the mapping
relationships between crease indicator α and corresponding
physical properties. The equivalent length and stiffness of a
crease are calculated as follows:

L(α) � fL(α)L
0, fL(α) � α, L(0) � 0, L(1) � L0,

kR(α) � fk(α)k
B
R, fk(α) � 1 − βα3, kR(0) � kBR,

kR(1) � kFR � (1 − β) kBR (4)
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Fig. 3 Physical properties at the upper and lower limits of the crease indicator

where L(α) is the crease equivalent length, L0 is the length
of a hinge, and k(α) is the equivalent torsional stiffness. The
constant coefficient of the stiffness filter function β depends
on the relationshipbetween the torsional stiffness of the bend-
ing and folding hinges. When α � 0, the crease equivalent
length is 0, and the equivalent stiffness is kBR.Whenα � 1, the
crease equivalent length is L0, and the equivalent stiffness is
kFR. By introducing the relationship between the crease indi-
cator and the corresponding equivalent stiffness, the wrinkle
analysis of a thin sheet with an arbitrary set of design vari-
ables can be conducted by the mechanical analysis method
presented in Part 2.

3.2 Topology Optimization Formulation

It is obvious that high levels of strain and stress at the center
lines of the wrinkles contribute significantly to the struc-
tural strain energy. Therefore, the position of creases can be
quickly selected by taking theminimum total strain energy as
the objective function. A topology optimization formulation
for origami induced by instability is established as follows

(5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min g1(α) � UT(u, α) �
N1∑

i�1

UBi (ui ) +
N2∑

j�1

USj (θ j , α j )

s.t . g2(α) �
N2∑

j�1

L0jα j/

N2∑

j�1

L0j ≤ C

0 ≤ α j ≤ 1 ( j � 1, · · · , N2)

where g1 denotes the structural strain energy UT, which is
the sum of the strain energy of all elements.UBi is the strain
energy of bar element i , andUSj is the strain energy of hinge
element j . θ is the dihedral angle, which is determined by
the nodal displacement vector of the corresponding hinge
element. g2 equals the crease dosage. N1 and N2 are the total
numbers of bar and hinge elements, respectively. C is the
upper limit of crease length ratio.

In order to solve Eq. (5), obtaining the explicit objective
equation is a crucial step. UT(u,α) is a smooth function of
vectors u and α. For each α,UT(u,α) has a uniqueminimum
point u � u(α) among all u thatmeet theminimumstructural
potential energy [35]. According to the theorem for min-
functions [36], the partial derivative of total strain energy

with respect to α j is given as follows:

∂UT

∂α j

∣
∣
∣
∣
u�u(α)

� ∂USj (α j )

∂α j
�∂ fk(α j )

∂α j
USj (k

0
R)

� −3βα2
jUSj (k

0
R)�

−3βα2
j

1 − βα3
j

USj (θ j ,α j ) (6)

The first-order linear Taylor expansion of structural strain
energy can be expressed as follows:

g1(α) � UT ≈
N1∑

i�1

UBi (u
(υ)
i )

+
N2∑

j�1

−3β(α(υ)
j )2

1 − β(α(υ)
j )3

USj (θ
(υ)
j ,α(υ)

j )(α − α(υ)) (7)

where the superscript υ is the iterative number of the
optimization algorithm. Because the constant term has no
influence on the optimal result, the objective function can be
rewritten as follows:

g1(α) �
N2∑

j�1

a jα j → Min (8)

where a j�−3β(α(υ)
j )2

1−β(α(υ)
j )3

USj (θ
(υ)
j ,α(υ)

j ). Then, the optimization

formulation can be simplified as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Min g1(α) �
N2∑

i�1

a jα j

s.t. g2(α)�
N2∑

j�1
α j ≤ C × N2

0 ≤ α j ≤ 1( j � 1, · · · , N2)

(9)

Based on the explicit formulation of Eq. (9), the optimal-
ity criteria (OC)-based algorithm [37] is adopted to solve
and update the crease indicator. The convergence condition
of the origami topology optimization framework is given as
follows:
∣
∣
∣
∣
g1(α(υ+1)) − g1(α(υ))

g1(α(υ+1))

∣
∣
∣
∣ ≤ ξ (10)
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Table 1 Material parameters

kBR kFR Ab E

1 0.01 0.2 1 × 104

where ξ is the convergence precision.

4 Benchmark Problem

In this section, the topology optimization method is used to
design the crease pattern of a thin sheet with simple in-plane
load boundary conditions. All the examples have the same
material parameters, which are shown in Table 1, where Ab is
the cross-sectional area of a bar, and E is the elastic modulus.
For all examples, the convergence precision ξ is 0.001.

4.1 A Straight Fold

The first example is a benchmark problem whose solution is
obviously a simple straight fold. The geometry and boundary
conditions of the structure are depicted in Fig. 4a. Point A
is fixed, and a displacement load of 1.5 is applied at point
B along the y-direction. Here, we discuss the influence of
the background grid on the optimal crease pattern. A sheet
without any creases is considered the initial design. Then, two
different background grids are applied on the sheet, which
are illustrated in Fig. 4b and c.

Figure 5 illustrates the iterative curves of total energy and
crease length ratio. The sheet is easy to lose stability under
axial compression, and shows the deformation mode of fold-
ing in half. A straight crease is the optimal design for both
initial models A and B from the perspective of strain energy.
From the iterative curves, we can find that the total strain
energy falls first, then converges stably. The crease length
ratio increases first and then reaches stable convergence. Sta-
ble iterative convergence curves of total energy and actual
crease length demonstrate the effectiveness of the optimiza-
tion design method. The energy iteration curve also shows
that a reasonable arrangement of creases makes a huge con-
tribution to energy reduction during folding.

4.2 Tent/Waterbomb

In this example, we explore the instability-induced origami
designs of a thin square sheet under biaxial compression. The
geometry and boundary conditions are shown in Fig. 6a. The
x- and y-directions of the middle point E are fixed, and it
can only move along the z-direction. The midpoints of the
four sides are fixed along the z-direction. A displacement of
1 toward the middle point E is applied at points A-D. The
four initial bar-and-hinge models are shown in Fig. 6 b–e.
Figure 7 gives the iterative history of the total energy and
crease length ratio.

From Fig. 7, although the cases starting with model B
and C suffer from shock, the iterative processes of strain
energy and crease length ratio are of stable convergence. By
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Fig. 4 Mechanical model: a geometry and boundary conditions; b initial model A; c initial model B
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Fig. 5 Iterative curves of total energy and crease length ratio with different background grids of a sheet: a starting with initial model A; b starting
with initial model B
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Fig. 6 Mechanical model: a boundary conditions; b initial model A; c initial model B; d initial model C; e initial model D
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Fig. 7 Iterative curves of total energy and crease length ratio with different initial crease patterns: a starting with initial model A; b starting with
initial model B; c starting with initial model C; d starting with initial model D

observing the phenomenon of rocket configuration appear-
ing in cases B and C, it is thought that local penetration
causes the anomalous mechanical analysis results. This phe-
nomenon is probably caused by the bifurcation behavior [38].
Unreasonable initial path information also leads to wrong
mechanical analysis results. Under such load conditions, the
buckling-induced origami designs tend to become a tent or a
waterbomb with 8 creases. The final total energies of the tent
and the waterbomb are 0.243 and 0.284, and the final crease
consumptions are 0.540 and0.420, respectively.Both designs
are reasonable from the aspect of strain energy and crease
consumption. Besides, it can be found that the final origami
designs depend on the initial crease distribution of the thin
sheet, but are generally different from the initial designs.

5 Summary and Outlook

In this paper, we propose a computational origami design
method based on topology optimization on a bar-and-hinge
model by minimizing the total strain energy of buckled pat-
terns. The straight fold and tent/waterbomb designs demon-
strate and prove the effectiveness and feasibility of the design
method. From the numerical examples, we find that:

(1) The creases perpendicular to in-plane compression are
the most easily triggered creases.

(2) The optimized design not only is related to the loading
condition, but also relies on the initial design.
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For a thin sheet with the known wrinkle pattern, it is
easy to give the upper limit of crease length ratio. But it is
hard to define the crease constraint directly when the poten-
tial wrinkle pattern remains unknown. Preliminary wrinkle
analysis or repetitive optimization trials are required to find
a suitable constraint. Therefore, it is urgent to establish
an automatic crease assignment method without presetting
crease constraint. Furthermore, numerical instability caused
by bifurcation also needs to be overcome in order to ensure
stable convergence of the iterative framework.
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