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Abstract
For the topology optimization of structures with design-dependent pressure, an intuitive way is to directly describe the
loading boundary of the structure, and then update the load on it. However, boundary recognition is usually cumbersome
and inaccurate. Furthermore, the pressure is always loaded either outside or inside the structure, instead of both. Hence, the
inner enclosed and outer open spaces should be distinguished to recognize the loading surfaces. To handle the above issues, a
thermal-solid–fluid method for topology optimization with design-dependent pressure load is proposed in this paper. In this
method, the specific void phase is defined to be an incompressible hydrostatic fluid, through which the pressure load can be
transferred without any needs for special loading surface recognition. The nonlinear-virtual thermal method (N-VTM) is used
to distinguish the enclosed and open voids by the temperature difference between the enclosed (with higher temperature) and
open (with lower temperature) voids, where the solid areas are treated as the thermal insulation material, and other areas are
filled with the self-heating highly thermally conductive material. The mixed displacement–pressure formulation is used to
model this solid–fluid problem. The method is easily implemented in the standard density approach and its effectiveness is
verified and illustrated by several typical examples at the end of the paper.

Keywords Topology optimization · Design-dependent pressure load · Nonlinear-virtual thermal method · Mixed form

1 Introduction

Since the seminal work of Bendsøe and Kikuchi [1], struc-
tural topology optimization has been developed rapidly and
usedwidely in industrial designs [2, 3].Most, if not all, of the
studies on topology optimization have been focusing on the
optimization problemswithfixed loads.However, the design-
dependent load problems, such as the problemswith pressure
loads, in which both the locations and directions of loads
depend on the design process, are also important and consid-
erable. It is necessary and important to establish relevant and
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efficient topology optimization methods for structures with
pressure loads.

The main challenge of such problems is how to accu-
rately track pressure boundary during the design process. To
solve this challenge, a direct idea is to use the boundary-
based topology optimization methods, such as the level set
method [4–10]. These kinds of methods provide an implicit
description of material boundaries and also enable easier
extraction of their geometric information (normal direc-
tion and curvature), and thus, are particularly suitable for
structural boundary/interface-related design problems. How-
ever, the density-based topology optimization methods, such
as the solid isotropic material with penalization (SIMP)
method [11], are the most important, most mature, and
most widely used method in topology optimization. It is
very important and necessary to develop efficient topol-
ogy optimization methods for structures with pressure loads,
under the frame of density-based topology optimization
method. However, there is no implicit (explicit) boundary in
density-based methods [12–16], which makes the handling
of design-dependent pressure loads difficult. Nevertheless,
many researchers have proposed various pressure bound-
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ary tracking methods according to element density [17–29].
In these methods, the approximate density curve is used to
approximately replace the pressure boundary; however, it is
more or less inaccurate [21] for the recognition of pressure
boundary because the beginning and end locations for the
search procedure must be provided in the iso-density curves
and there are gray elements in the density-based methods.

In fact, the method without pressure boundary recogni-
tion process is promising and effective for solving problems
with pressure loads related to design. There are also some
papers on this aspect. Chen and Kikuchi [30] simulated
pressure loading by approximating it as an equivalent ther-
mal load that is penalized with the design and a "dryness
coefficient" to identify fluid and solid regions. Sigmund
and Clausen [31] used a mixed displacement–pressure (u-
p) formulation based on shear and bulk moduli to transmit
the pressure load from boundaries to the evolving sur-
face, and a similar method was presented by Bruggi and
Cinquini [32]. Based on the bi-directional evolutionary struc-
tural optimization (BESO) method, Picelli et al. [33, 34]
used Laplace’s equation and the steady-state incompressible
Navier–Stokes equations to control the static fluid domain
and the fluid flow domain, respectively, and constructed the
correspondingfluid–structure coupling equations to solve the
design-dependent pressure load problem. Kumar et al. [35,
36] modeled the design-dependent pressure loads on struc-
tures and compliant mechanisms using Darcy’s law coupled
with a "drainage" term.

It is easy to determine where the fluid is located when the
topology is clear. However, there are gray elements in the
SIMP method, and the boundary is not very clear, thus it is
difficult to accurately define the fluid under the SIMP frame-
work. So, it is necessary to establish a method to determine
the areawhere the fluid is located based on the SIMPmethod.

In this paper, we propose a thermal-solid–fluidmethod for
topology optimization of structures with design-dependent
pressure loads. The voids between the solid structure (may
evolve in the topology optimization process) and the loading
boundary are referred to as the open voids (the voids between
the blue boundary and the yellow boundary in Fig. 1), and the
other voids occurring in the topology optimization process is
referred to as closed voids (such as the voids inside the struc-
ture or those between the structure and other boundaries of
the initial design domain). The open voids are filled with an
incompressible hydrostatic fluid, and the pressure load can be
transferred through the fluid without any need for structure
loading surface recognition. The topologyoptimization prob-
lem is equivalently transferred into amulti-material topology
optimization problem with solid phase material and vir-
tual fluid phase. The N-VTM [37–39] is used to distinguish
the enclosed and open voids by the temperature difference
between the enclosed (with higher temperature) and open
(with lower temperature) voids. Therefore, the distribution of

three materials is described by a thermal-solid–fluid interpo-
lation. Finally, considering that the fluid is an incompressible
material, which leads to the failure of the standard finite
element method (FEM), the mixed displacement–pressure
formulation (mixed form) is used to model this solid–fluid
problem.

The remainder of this paper is organized as follows. In
Sect. 2, the thermal-solid–fluidmethodproposed in this paper
is introduced. In Sect. 3, the topology optimization model
is introduced, and the sensitivity of objective function and
constraint function is derived. In Sect. 4, several examples
are given to verify the effectiveness of themethodproposed in
this paper. Section 5 concludes and discusses the advantages
and disadvantages of this method.

2 Thermal-Solid–Fluid Method

2.1 General Idea

In this method, the incompressible fluid is used to transfer
pressure load, which involves two problems: one is how to
distribute three materials, the other is to solve the finite ele-
ment problem with incompressible material.

For the first problem, a thermal-solid–fluid interpolation
consisting of the density variableμ and temperature variable
T is used to distribute three materials, as shown in Fig. 2.
For the second problem, the incompressible finite element
problem can be solved by the mixed form.

2.2 Thermal-Solid–Fluid Interpolation

In this section, an interpolation function is constructed to
describe the distribution of the three materials. It is easy
to define solid structure through partial differential equation
(PDE) filtering andHeaviside projection, the details of which
can be found in Appendix. The rest is to distinguish between
fluid and void. In this method, fluid always appears either
outside or inside the structure; in other words, it is only nec-
essary to distinguish between enclosed and open voids of
the structure. A temperature field is applied to the design
domain, where the solid areas are treated as the thermal insu-
lationmaterial, and other areas are filledwith the self-heating
highly thermally conductive material. The temperature of the
enclosed void is high and the temperature of the open void
is low by solving a nonlinear thermal problem. Therefore,
enclosed and open voids of the structure are distinguished.
Finally, the thermal-solid–fluid interpolation is constructed,
and the definitions of three materials are shown in Eq. (1).

As shown in Fig. 2, the part in the dashed box shows
the final distribution of three materials. The blue, black, and
white parts represent fluid, solid, and void, respectively.
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Fig. 1 Topology optimization
with design-dependent pressure
boundary: a initial design
domain; b structure topology in
optimization process

update 
Solid 

Closed void 
Closed 

Fluid/Open void 

Design domain 

fΓ

uΓ uΓ

uΓ

)b()a(

fΓ

uΓ uΓ

uΓ

void 

Closed 
void 

Fig. 2 General idea of
thermal-solid–fluid interpolation

Three materials are specifically expressed as follows

Solid: μ

Fluid: (1 − μ)(1 − T )

Void: (1 − μ)T

(1)

where μ represents the initial density field; μ̃ and μ can be
obtained through PDE filtering and Heaviside projection of
variable μ, which is described in Appendix; T and T can
be obtained through the N-VTM and Heaviside projection of
variable μ.

The interpolation functions for element material proper-
ties are described as follows

K (μ, T ) � μpKsolid + (1 − μp)
(
(1 − T

p
)Kfluid + T

p
Kvoid

)

G(μ, T ) � μpGsolid + (1 − μp)
(
(1 − T

p
)Gfluid + T

p
Gvoid

)

(2)

wherep is the penalty factor; Ksolid, Kfluid and Kvoid represent
the bulk moduli of solid, fluid, and void, respectively;Gsolid,
Gfluid and Gvoid represent the shear moduli of solid, fluid,
and void, respectively.

2.3 N-VTM

Based on the above analysis, distinguishing between void
and fluid is equivalent to distinguishing between enclosed
and open voids of structure. Now the N-VTM (the basic
idea is shown in Fig. 3) [37–39] is introduced to identify
the enclosed and open voids of structure. As shown in Fig. 3,
the solid areas are treated as the thermal insulation mate-
rial, which has low (near-zero) heat conductivity, while other
areas are filledwith the self-heating highly thermally conduc-
tive material, and a nonlinear thermal problem is described
as follows

{∇(k∇T ) + Q(T ) � 0, in �

T � 0, on ∂�
(3)

Here Q is a temperature-dependent heat source defined as

Q � q

1 + eα(T−1) (4)

whereα is a positive number,which determines the sharpness
of Q.
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Fig. 3 Identification between
open and enclosed voids: a the
general idea of N-VTM;
b temperature distribution after
N-VTM
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In Eqs. (3) and (4), k and q are defined as

{
k � (kmin − 1)μ + 1
q � (1 − μ)q0

(5)

where kmin is a small positive number; andq0 is a proportional
parameter, which is defined as

q0 � λ

max(ỹ)
(6)

where λ is a positive number from 0.02 to 0.2; and ỹ is
obtained by solving the following linear partial differential
equation

{∇2 ỹ + 1 � 0, in �

ỹ � 0, on ∂�
(7)

this linear equation is design-independent, and thus it
requires to be solved only one time for a given optimization
problem.

Finally, the temperature field of the design domain is
obtained, as shown in Fig. 3a, with high temperature in
the enclosed void (red region), and low temperature in the
open void (blue region). And then the 0–1 temperature field
T is obtained through the Heaviside function mentioned in
Appendix. The temperature distribution is shown in Fig. 3b.

2.4 Numerical Solution of ThreeMaterials: Mixed
Form

As mentioned before, the incompressible fluid was used to
transfer the pressure, leading to the failure of the standard
FEM for elastic problems. So the mixed form is chosen to
solve this problem.

The mixed form can be derived by introducing the pres-
sure variable p � KmTε, which can be separated from the
equivalent integral weak form of the equilibrium conditions
in the standard FEM form. More details can be found from
[31, 40].

In theweak form, the equilibrium conditions for themixed
form can be written as follows
∫

�

δεTDdεd� −
∫

�

δεTmpd� −
∫

�

δuT f d� −
∫

� f

δuTTd� � 0

(8)

Here, m � {1, 1, 1, 0, 0, 0}T in 3D, m � {1, 1, 0}T in 2D,
Dd � 2G

(
I0 − 1

3mmT
)
in 3D, Dd � 2G

(
I0 − 1

2mmT
)

in 2D, and I0 is a diagonal matrix with the entries
1
2 {2, 2, 2, 1, 1, 1}T in 3D and 1

2 {2, 2, 1}T in 2D.
Since the pressure variable is separated as an independent

variable, another equation is needed. It is noted that p/K �
mTε is satisfied for isotropic material, and the weak form of
p/K � mTε can be written as
∫

�

δp (p/K − mTε)d� � 0 (9)

After discretization of the weak forms (8) and (9), the
mixed-form linear system to be solved has the format

[
K C
CT −D

]{
U
P

}
�

{
F
0

}
(10)

where

K �
∑
e

K e �
∑
e

∫

�e

BTDdBd�

C �
∑
e

Ce �
∑
e

∫

�e

BTmN pd�

D �
∑
e

De �
∑
e

∫

�e

NT
p
1

K
N pd�

F �
∑
e

Fe �
∑
e

(
∫

�e

NT
u f d� +

∫

� f ,e

NT
uTd�)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where Nu and N p are the displacement shape functionmatrix
and pressure shape function matrix, respectively.

C is the P − Fv−s(pressure − force) matrix. The exter-
nal load F can be divided into Fv−s and Fd−s . Fv−s and
Fd−s cause the volume strain and deviatoric strain of the
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structure, respectively. The relationship between Fv−s and
its corresponding element pressure is CP�Fv−s .

D is the P − V p(pressure − volume) matrix. The unit
of DP is m3, which corresponds to the volume. The work
done under pressure P is equivalent to the work done by
the external load Fv−s (PTV p � PTDP � UTFv−s).
Therefore, the relationship between the volume V p and the
element pressure P is V p � DP .

3 Topology OptimizationModel
and Sensitivity Analysis

3.1 Topology OptimizationModel

A minimum compliance topology optimization problem is
considered in the paper. It is noted that the objective function
contains the strain energy of fluid domain that shouldn’t be
included. However, because of the incompressibility of fluid,
the strain energy stored in the fluid domain is negligible com-
pared to the solid domain. The volume of the solid material
is constrained in this problem. The topology optimization
model is as follows

find: μ � {μ1, μ2, . . . , μN }T

min : W (μ) � 1

2
FTU

s.t :

[
K C
CT −D

]{
U
P

}
�

{
F
0

}

gV �
N∑

e�1

veμe(μe)/
N∑

e�1

ve − f0 ≤ 0

0 < μmin ≤ μe ≤ 1, e � 1, 2, . . . N (12)

where ve is the volume of elements, N is the number of
elements, andμmin is the minimum value of design variables
to avoid matrix singularity in the mixed form.

3.2 Sensitivity of Objective Function

Based on the theory of mixed from, the stress can be written
as σ � mp+ Ddε, then the objective function can be written
as

W � 1

2
FTU � 1

2
εTσ � 1

2

(
εTmp + εTDdε

)
(13)

and the discrete form of Eq. (13) is as follows

W � 1

2

(
UTBTmN p P + UTBTDd BU

) � 1

2

(
UTCP + UTKU

)

(14)

Taking the derivative with respect to a design variable, we
get

∂W

∂μ
� 1

2

(
UT ∂K

∂μ
U + 2UTK

∂U
∂μ

+
∂UT

∂μ
CP + UTC

∂ P
∂μ

)

(15)

note that the state equation in Eq. (12) can be written as

{
KU + CP � F
CTU − DP � 0

(16)

The derivative of Eq. (16) for the design variables μ is
described as follows

{
∂K
∂μ

U + K ∂U
∂μ

+ C ∂P
∂μ

� 0

CT ∂U
∂μ

− ∂D
∂μ

P − D ∂P
∂μ

� 0
(17)

Substituting Eq. (17) into Eq. (16) and paying attention to
the symmetry, the sensitivity of the objective function can be
written as

∂W

∂μ
� −1

2
UT ∂K

∂μ
U +

1

2
PT ∂D

∂μ
P (18)

in the above formulation, the two derivations of design vari-
ables can be obtained by the chain rule, as shown below

∂K
∂μ

� K E

(
∂G

∂μ

∂μ

∂μ̃

∂μ̃

∂μ
+

∂G

∂T

∂T

∂T

∂T

∂μ

∂μ

∂μ̃

∂μ̃

∂μ

)

∂D
∂μ

� − DE
K 2

(
∂K

∂μ

∂μ

∂μ̃

∂μ̃

∂μ
+

∂K

∂T

∂T

∂T

∂T

∂μ

∂μ

∂μ̃

∂μ̃

∂μ

) (19)

where K E is part of K that has nothing to do with G, and
DE is part of D that has nothing to dowith K. K andG is the
interpolated bulk and shearmoduli, respectively (seeEq. (2)).
The parts in parentheses can be obtained through PDE filter-
ing, Heaviside projection, and the N-VTM described before.

3.3 Sensitivity of Constraint Function

Material consumption is only considered in this paper, and
the constraint function can be written as

gV �
N∑

e�1

veμe(μe)

/
N∑

e�1

ve − f0 ≤ 0 (20)

Taking the derivative with respect to a design variable, one
has

dgV
dμ

� dμ

dμ̃

dμ̃

dμ
(21)
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Fig. 4 Topology optimization of arch-like structure: a design domain of arch-like structure; b optimization process of arch-like structure with
structure topologies and temperature field
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Fig. 5 Design domain of piston

here, it can be obtained by deriving the PDE filtering and
Heaviside projection function.

So far, all sensitivity information has been obtained. The
optimization algorithm MMA [41, 42] is used in this paper.

4 Numerical Examples

Some two-dimensional calculation examples are given below
to verify the effectiveness of the thermal-solid–fluid method.
Some optimization parameters in the following examples are
the same. The threshold parameters η1 and η2 in the projec-
tion process are both 0.5, and the sharpness parameters β1,
β2 and α in the N-VTM double every 50 steps (or at conver-
gence), increasing from 1 to 128. Any changes to the above
parameters will be discussed in detail. In addition, kmin and
λ in the N-VTM do not change during the optimization pro-
cess, and their values are 10−9 and 0.1, respectively. The filter
radius will be specifically introduced in each example. The
given bulk modulus and shear modulus of the solid material
are 0.83 and 0.38, respectively, which is equivalent to the
case where the elastic modulus is 1 and Poisson’s ratio is
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Fig. 6 Influence of Kfluid on compliance and optimized topologies of piston: a optimized topologies of this method with different Kfluid; b optimized
topology in [31]

0.3. Kvoid, Gvoid, and Gfluid are set to 10−9, and Kfluid will
be discussed below in detail.

4.1 Arch-Like Structure

As shown in Fig. 4a, theminimum compliance problem simi-
lar to the arch-like structure under the external static pressure
load on the three sides is considered. Sincewe know the result
of this optimization problem, the feasibility and effectiveness
of the method proposed in this article can be preliminarily
verified in this example. In this example, the design domain is
discretized by 24,000 (200×120) square elements, the three
sides are under uniform pressure, and the total force is 1. The
volume fraction, the filter radius R, and Kfluid are set to 0.3,
6, and 1, respectively. The Poisson’s ratio of fluid material
can be calculated as 0.5, which meets the requirements of the
incompressible property.

As shown in Fig. 4b, this method converges quickly. In
particular, the objective function tends to be stable after the
20th iteration, and the structure topology changes little after
the 20th iteration. Observing the temperature field in Fig. 4b,
the area with high temperature is always inside the structure,
so the fluid and void can be well distinguished, which shows
the successful application of N-VTM. So the feasibility and
effectiveness of our method are verified preliminarily.

4.2 Piston

In this example, we discuss the influence of Kfluid on struc-
ture topology, which provides a reference for the selection of
parameters in the subsequent examples. The Kfluid selected
in this example can ensure the incompressibility of the fluid.

The design domain of this example is divided into 360×
120 grids, and the volume fraction and the filter radius R
are set to 0.3 and 6, respectively. The displacement bound-
ary conditions are shown in Fig. 5. The top surface bears a
uniformly distributed load, and the total load is 1 N.

Figure 6 shows the optimized topologies of the method in
this paper and the optimized topologies in [31], respectively.
The common point of the two methods is that they both use
the mixed form. The difference is that in this paper, only
one design variable is used to describe the topology; while in
[31], two design variables are used. The Kfluid in [31] is taken
as 10, while ffluid in Fig. 6b represents the volume fraction of
fluid. It can be found that the volume of fluid is constrained
in [31], but when ffluid becomes larger, the fluid will exist
inside the structure, and the topology is similar to the last two
topologies, which are the worst two results in this example
using this method. In addition, the ffluid corresponding to the
optimal topology is usually unknown, and it is inappropriate
to optimize the result by adjusting ffluid. However, in this
method, there is no need to limit the volume of the fluid, and
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Fig. 7 Design domain and optimized topologies of underwater struc-
tures: a original design domain; b design domain with fixed supports;
c design domain with roller supports; d optimized topology of the orig-

inal design,W � 1.27×106; f optimized topology of design with fixed
supports, W � 3.1 × 104; g optimized topology of design with roller
supports, W � 3.4 × 104

the appropriate volume fraction of fluid can be automatically
optimized by selecting the appropriate Kfluid.

It can be seen from Fig. 6a that when Kfluid is less than
10, the optimized structure has smaller compliance and better
performance. However, if Kfluid is too small, the optimization
result will tend to be load-independent. In addition, com-
pliance increases significantly when Kfluid increases. In the
optimization process, the temperature inside the structure is
not sufficiently high due to greater bulk modulus and gray
elements, which will lead to the existence of fluid inside
the structure. In the later stage of optimization, the fluid no
longer exists inside the structure because of clearer projec-
tion,which results in greater compliance. In order to avoid the
two problems above, Kfluid must be appropriate. According
to the example and experience, the range of Kfluid is chosen
from 1 to 10.

4.3 Underwater Structures

Three examples with different boundary conditions are
shown in Fig. 7. The design domain is discretized by 64,000
(400×160) square elements. and only 1/4 of the entire struc-

ture is considered. The volume fraction is 0.25, and the filter
radius R and Kfluid are set to 6 and 10, respectively. The load
per unit area is 1 N.

The last three figures in Fig. 7 show that boundary con-
ditions have a great impact on the structure. For similar
structures, the performance of the structure can be improved
by adding supports in the design. In this example, the struc-
tural stiffness is increased approximately 40 times by adding
supports, which is a very good phenomenon. In fact, adding
supports is also in line with the engineering practice. This
problem has also been studied by Ibhadode et al. [28], Li
et al. [27], and Du and Olhoff [18]. In addition, the results
of these examples fully demonstrate the effectiveness of our
method.

4.4 Pressurized Chamber

The description of this problem is shown in Fig. 8a. The
design domain is discretized by 60,000 (300×200) square
elements. The channel part and the black part of the design
domain are non-designable domains. The filter radius R and
Kfluid are set to 6 and10, respectively, and the volume fraction
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Fig. 8 Topology optimization of the pressure chamber: a design domain
of pressure chamber; b optimized topology of the pressure chamber in
this method; c Hammer and Olhoff [17] (SIMP); d Chen and Kikuchi

[30] (SIMP); e Zhang et al. [23] (SIMP); f Picelli et al. [33] (BESO);
g Picelli et al. [43] (LSM); h Neofytou et al. [9] (LSM)

is set to 0.3. In this example, the fluid should be distributed
inside the structure. So the zero thermal boundary conditions
in N-VTM should be applied inside the design domain, and
the fluid will appear inside the structure.

Figure 8b shows the optimized topology in this method,
which is very similar to the first three results based on the
SIMPmethod in Fig. 8. These results show that the top struc-
tural member appears to be thicker with solid covering the
area on top of the horizontal fluid region, and the support at
the right-hand side corner is thinner. However, the result of
this method shows a clearer topology, without small features
such as those in Fig. 8c, and the result has few gray elements.
Besides, the topological clarity is equivalent to that of the last
three results based on discrete methods or boundary-based
methods in Fig. 8. The topology shown in the last three fig-

ures of Fig. 8 is relatively uniform as a whole, not as thick on
the left and thin on the right as in the SIMP-based method.
These differences are possibly due to the slightly different
shape of the pressure region used in these examples.

In general, this method shows similar effects to discrete
methods or boundary-based methods (e.g., LSM), while
retaining some characteristics of the SIMP method.

5 Conclusion

In this paper, based on the MMA optimization algorithm,
solid, fluid, and void are distinguished by the thermal-
solid–fluid method, and incompressible fluid is used to
transfer the pressure load by solving the mixed form, and the
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topology optimization with design-dependent pressure load
is realized. In this method, we have realized the automatic
distribution of fluid, which well distinguishes the area where
the fluid appears. Then, the feasibility and effectiveness of the
method are verified by four examples: the arch-like structure,
the piston, the underwater structures, and the pressurized
chamber.Good results can be obtained for a variety of design-
dependent pressure load topology optimization, which has
a guiding effect on practical applications. However, this
method still has some problems, for example, the numeri-
cal instability caused by the mixed form and the N-VTM.

The research in this paper currently only considers two-
dimensional topology optimization problems, and further
studies are still needed on three-dimensional topology opti-
mization problems, better finite element methods to replace
themixed form, and improving the algorithm tomake it more
efficient and stable.
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Appendix: PDE Filtering and Heaviside
Projection

Here, the PDE filter based on a Helmholtz-type partial dif-
ferential equation [44] is applied for smoothing the design
variable field

−r2∇2μ̃ + μ̃ � μ (22)

where the length scale parameter r is dependent on the filter
radius R in the standard linear filter

r � R

2
√
3

(23)

In addition, the following continuous Heaviside function
[45] is used for projection

μ � H (μ̃, η, β) � tanh(βη) + tanh(β(μ̃ − η))

tanh(βη) + tanh(β(1 − η))
(24)

where β and η determine the sharpness and threshold of the
projection function, respectively; β increases gradually with
iteration; and η is taken as 0.5.
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