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ABSTRACT This study presents a numerical model for the thermal-elastohydrodynamic lubri-
cation of heterogeneous materials in impact motion, in which a rigid ball bounces on a starved
non-Newtonian oil-covered plane surface of an elastic semi-infinite heterogeneous solid with
inhomogeneous inclusions. The impact–rebound process and the microscopic response of the
subsurface inhomogeneous inclusions are investigated. The inclusions are homogenized accord-
ing to Eshelby’s equivalent inclusion method. The Elrod algorithm is adopted to determine the
lubrication starvation based on the solutions of pressure and film thickness, while the lubricant
velocity and shear rate of the non-Newtonian lubricant are derived by using the separation flow
method. The dynamic response of the cases subjected to constant impact mass, momentum,
and energy is discussed to reveal the influence of the initial drop height on the impact–rebound
process. The results imply that the inclusion disturbs the subsurface stress field and affects the
dynamic response of the contact system when the surface pressure is high. The impact energy is
the decisive factor for the stress peak, maximum hydrodynamic force, and restitution coefficient,
while the dynamic response during the early approaching process is controlled by the drop height.

KEY WORDS Thermal-elastohydrodynamic lubrication, Impact motion, Lubrication starvation,
Non-Newtonian behaviour, Inhomogeneous inclusion

1. Introduction
Impact motion is involved in many manufacturing processes, such as shot-peening and ball-forming,

causing dynamic loads on the machine transmission components. Fluid lubricants are usually added
to build an interface layer to improve the machine durability and alleviate the frictional loss. The
rapid variation of loads results in the fluctuations of film thickness, pressure, and temperature. The
lubrication in impact motion is caused by the normal squeeze motion when an impact load is applied,
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and the surface deformation and viscosity due to local high pressure should always be taken into
account for the analysis of the lubrication film.

The first numerical model for the elastohydrodynamic lubrication (EHL) of materials in impact
motion was developed by Christensen [1]. To reduce numerical difficulties, the squeeze action resulting
from the change of deformation was neglected. However, this action was shown to play important
roles in the dynamic response during the initial stage of the impact motion [2] and the whole impact–
rebound process [3–5]. In these theoretical studies, the hydrodynamic force and restitution coefficient
were applied to evaluate the energy dissipation. Additionally, their works showed that the lubricant
was entrapped at the contact interface and formed a central dimple, while the minimum film thickness
occurred at the contact periphery. Similar to the pressure–distance curve at the steady-state rolling
condition, the pressure–time curve of the lubricant film has both a peak and a spike. Safa et al. [6]
verified these results experimentally and further pointed out that the thickness of the central oil film
in the contact remains constant in the major part of the impact–rebound process. Later, the EHL of
the material in impact motion with a small initial impact gap was investigated numerically [7]. It was
found that a periphery dimple occurs instead of the common central dimple, and the location of the
minimum film thickness moves from the central region to the outer region. Within the impact–rebound
cycle, the central film thickness remains almost constant during the load-sustaining stage. Recently, a
unified Reynolds equation for the impact problem and the rolling/sliding problem was proposed based
on the impact velocity [8]. The results showed that the impact velocity evolved linearly with time
during a significant part of the impact process.

With the development of advanced computer and numerical simulation technologies, thermal effects
[9] and lubrication starvation [10] were taken into account to improve the theoretical model. Wang et
al. [9] proposed a model for Newtonian EHL of homogeneous materials in fully flooded conditions.
The central pressure, film thickness, and temperature were investigated. It was concluded that the
thermal effect was either influenced by the impact gap or the initial velocity. Wu et al. [10] rewrote
the Reynolds equation by incorporating the Elrod algorithm and found that the rebound was delayed
by the oil starvation. The starvation condition refers to a lubrication model, in which the amount of
supplied oil is insufficient to fill the inlet gap of the lubricated conjunction. In the early numerical
studies of EHL problems, the meniscus inlet boundary position was introduced as an known parameter
to indicate the starvation conditions and predict the inlet oil layer thickness [11]. However, the meniscus
inlet boundary position depends on the inlet oil thickness in reality. In 1981, Elrod [12] developed a
numerical algorithm that can automatically determine the meniscus position based on the given inlet
oil layer thickness. Since then, the studies on the starvation effect in EHL problems were mostly based
on such an algorithm. The influence of initial drop height on the dynamic response has been explored
with constant impact mass in many studies [6, 7, 9], while more efforts should be devoted to investigate
the effects of the impact momentum and energy.

The above studies were all focused on Newtonian lubricants, assuming that the lubricant viscos-
ity was independent of the lubricant shear strain rate to simplify the problems. However, in reality,
lubricants always possess non-Newtonian properties including the shear-thinning and limiting shear
stress behaviours. Many researchers have paid attention to non-Newtonian EHL problems in tangen-
tial motion conditions. A generalized Reynolds equation was derived by Yang and Wen [13] based on
the equivalent viscosity that coupled the non-Newtonian effects and thermal effects. By applying such
a method, non-Newtonian lubricants with different rheological properties were studied [14, 15]. The
equivalent viscosity and shear rate were solved using a redundant iteration loop controlled by velocity
boundary conditions. Later, Yang et al. [16, 17] put forward a separation flow method to derive ana-
lytical lubricant shear rate and velocity, which assumed the lubricant flow as the superposition of the
Poiseuille flow and Couette flow. Mezlane et al. [18] studied the viscosity wedge deduced by the thermal
effect and squeeze effect of an infinitely long cylinder in a transient non-Newtonian EHL problem by
applying the Carreau–Yasuda rheological model. Recently, some experimental studies were conducted
to investigate the rheological behaviours of non-Newtonian lubricants under the impact load [19, 20].
Nevertheless, few theoretical studies have been carried out for the non-Newtonian lubrication problems
in impact motion conditions.

In previous studies, the materials in contact were commonly assumed to be homogeneous. How-
ever, materials are naturally inhomogeneous, consisting of micro-defects such as inclusions and voids.
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Therefore, it is critical to build a reliable model considering the material inhomogeneity. Micro-defects
and their interactions within materials have been intensively studied [21, 22]. So far, limited studies
have been conducted for materials with near-surface defects under contact loading with or without the
oil film. Zhou et al. [23, 24] employed Eshelby’s equivalent inclusion method (EIM) to model inho-
mogeneous inclusions and developed a semi-analytical solution for materials with multiple inclusions
under contact loading. The EIM was further employed to model the EHL problem of inhomogeneous
materials [25]. Slack et al. [26] proposed an approach for computing the pressure, fluid film thick-
ness, and subsurface stresses by employing the discrete element method. Later, the effects of multiple
inclusions on the pressure profile, film thickness profile, and subsurface elastic fields were investigated
[27, 28]. However, the impact motion, lubrication starvation, and non-Newtonian properties were not
considered in the mentioned solutions.

The present study develops a numerical model for starved thermal-EHL of inhomogeneous material
in impact motion. A rigid ball bounces on an oil-covered plane surface of an elastic semi-infinite
heterogeneous solid with inhomogeneous inclusions. The pressure, film thickness, starvation parameter,
temperature, and subsurface elastic fields during the impact–rebound process are simulated. The EIM,
Elrod algorithm, and separation flow method are adopted sequentially to deal with the effects of
the inhomogeneous inclusions, lubrication starvation, and non-Newtonian properties. The dynamic
response of the cases subjected to constant impact mass, momentum, and energy is discussed to reveal
the influence of the initial drop height on the impact–rebound process.

2. Mathematical Model
The problem considered is modelled as a rigid ball with a radius R that moves downwards under

gravity and hits onto the oil-covered plane surface of an elastic semi-infinite heterogeneous solid with
inclusions, as sketched in Fig. 1. The half-space is bounded by the plane surface z = 0 in an x − y − z
Cartesian coordinate system whose origin is set at the initial dry contact point. The half-space and
ball have the densities ρ1 and ρ2, Young’s moduli E1 and E2, Poisson’s ratios υ1 and υ2, thermal
conductivity k1 and k2, and heat capacity c1 and c2, respectively. The ball freely falls from the initial
drop height h∗

0 onto the oil film with initial layer thickness hoil, density ρ, isotropic viscosity η, thermal
conductivity kf , and heat capacity cf . It is noted that the impact ball applied in this study is a rigid one
with an infinitely large Young’s modulus. The half-space contains n arbitrarily shaped sub-domains
Ωψ (ψ = 1, 2, . . . , n), each of which has different mechanical material constants but the same thermal
material constants with the matrix. Moreover, the influences of thermal deformation and stresses are
small enough to be neglected due to the limiting contact area. The elastic moduli of the matrix and
the subdomains are denoted by Cijkl and Cψ

ijkl (i, j, k, l = x, y, z), respectively (see Ref. [11] for more
details about the elastic moduli, i.e. the fourth-order stiffness tensor). The inhomogeneous inclusions
are considered as the subdomains containing the initial eigenstrain ε0ij .

By incorporating the Elrod algorithm [12], the general Reynolds equation of the impact motion
under the starved condition can be rewritten as
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The fraction film content θ, defined as the ratio of the film thickness hL to the geometry gap h, is
introduced to deal with the lubrication starvation. Therefore, the complementary condition is written
as

p(1 − θ) = 0 (3)
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Fig. 1. Schematic of starved thermal-EHL of the inhomogeneous material subjected to impact

where 0 ≤ θ ≤ 1 should be satisfied. The boundary and initial conditions for Eq. (1) are given as
{

p (xin, y, t) = p (xout, y, t) = p (x, yin, t) = p (x, yout, t) = 0
p(x, y, t) � 0 (xin < x < xout, yin < y < yout)

(4)

The geometry gap h is defined as

h(x, y, t) = h0(t) +
x2+y2

2R
+ Uz(x, y, t) (5)

The normal elastic deformation Uz can be decomposed into two parts: the surface deformation U e
z

induced by the external pressure and the disturbed deformation U∗
z due to the eigenstrains. The surface

deformation U e
z is solved by the integral equation as

Ue
z (x, y) =

2
πE∗

∫∫
p (x′, y′)√

(x − x′)2 + (y − y′)2
dx′dy′ (6)

where E* is the composite Young’s Modulus defined as
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(
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1
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+

1 − ν2
2

E2

)-1
(7)

The disturbed deformation U∗
z is calculated based on the EIM by homogenizing the subsurface

inclusions with unknown equivalent eigenstrains ε∗
ij . Further detailed calculations of the eigenstrains

and the disturbed deformation can be found in “Appendix.”
The rigid body approach h0 is controlled by dynamic relations as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0(kΔt + Δt) = h0(kΔt) + v0(kΔt) · Δt +
1
2
a0(kΔt) · (Δt)2

v0(kΔt + Δt) = v0(kΔt) + a0(kΔt) · Δt

a0(kΔt + Δt) =
1

m0

∫∫
p

(x, y, kΔt + Δt)dxdy − g

(8)

where k is the number of the time interval in the calculation, and v0 and a0 are the velocity and
acceleration of the ball, respectively. By assuming the ball falls freely at t = 0, the initial conditions
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of these dynamic relations are ⎧⎨
⎩

h0(0) = hoil

v0(0) = −√
2g (h∗
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a0(0) = −g

(9)

The temperature variation of the oil film is controlled by the energy equation as
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The initial and boundary conditions of Eq. (10) read

T (x, y, z, t)|t=0 = T0 (12)

and {
T (xin, y, z, t) = 0
T (x, yin, z, t) = 0 (13)

respectively.
The energy equations for both solids are⎧⎨
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with the initial conditions {
T (x, y, z1, t) |t=0 = T0

T (x, y, z2, t)|t=0 = T0
(15)

and boundary conditions
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The symbol d = 3.15aHz represents the depth of the computational domain (aHz is Hertzian contact
radius) [29], and z1 and z2 represent the z-axes of the two solids, respectively. On the two oil–solid
interfaces, the heat flux continuity conditions given by⎧⎨
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must be satisfied.
The lubricant density ρ (p, T ) is specified by the Dowson–Higginson relation [30] as

ρ(p, T ) = ρR

[
1 +

0.6 × 10−9p

1 + 1.7 × 10−9p
− 6.5 × 10−4 (T − TR)

]
(18)

where p is the pressure in GPa, ρR is the reference density at the ambient condition, and T is the
temperature in K.

Numerous rheological models based on experimental data have been proposed to describe the shear-
thinning and/or limiting shear stress behaviours, such as the Eyring model, Carreau–Yasuda model,
Elsharkawy–Hamrock model, and Bair–Winer model, among which the Bair–Winer model has a broad
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application when comes to modelling the EHL problems with non-Newtonian lubricants [11]. The
Bair–Winer model is adopted in this study and written as [31]

τ

τL
= 1 − exp

(
−γ̇

ηRoe

τL

)
(19)

The limiting shear stress τL, the typical stress beyond which the limiting shear stress behaviour
significantly affects the lubrication, can be obtained by
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(
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p
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The initial limiting shear stress τL0 = 2MPa and the temperature coefficient β = 585K under
ambient conditions [14]. Additionally, the Roelands viscosity ηRoe is employed to specify the viscosity–
pressure–temperature relationship and written as

ηRoe = ηR exp

{
(ln ηR + 9.67)

[
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where

ZP =
2.19 × 1.98
ln ηR + 9.67

, S =
β (TR − 138)
ln ηR + 9.67

(22)

and ηR is the reference lubricant viscosity at the ambient condition.
According to the separation flow method, the Couette flow is hardly influenced by the non-

Newtonian properties, while the velocity distribution of the Poiseuille flow is symmetrical about the
centreline and the value is equal to zero at boundaries [17]. Thus, the shear rate γ̇ of the lubricant in
the rheological model can be derived and written as⎧⎨

⎩
γ̇zx=∂u

∂z = f
(

∂p
∂x

(
z − h

2

)
, ηRoe

)
γ̇zy=∂v

∂z = f
(

∂p
∂y

(
z − h

2

)
, ηRoe

) (23)

Subsequently, the shear stress τ is obtained by introducing the predicted shear rate γ̇ into the
rheological equations, and the lubricant viscosity η is calculated using τ divided by γ̇. The lubricant
velocity is obtained by integrating the shear rate with respect to z. The resulted shear rate and velocity
are written as ⎧⎨
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respectively.

3. Numerical Techniques
To formulate the Reynolds and elastic deformation equations in Sect. 2, a cubic computational

domain is set at xin ≤ x ≤ xout, yin ≤ y ≤ yout, and 0 ≤ z ≤ zbtm with Nx × Ny × Nz cuboid
elements having the same size of Δx × Δy × Δz. Each element is indexed by a sequence of three
integers [α0, β0, γ0] (0 ≤ α0 ≤ Nx − 1, 0 ≤ β0 ≤ Ny − 1, 0 ≤ γ0 ≤ Nz − 1). The Poiseuille flow terms
and squeeze term of the Reynolds equation are discretized using the second-order central scheme and
first-order backward scheme, respectively. The temperature computation is implemented in a cubic
domain with a depth range of 7.3aHz, which is discretized by Nzf equidistance nodes in the z-direction
across the film, and Nzs non-equidistant nodes in the z1- and z2-directions within the half-space and
ball, respectively. The element lengths along the x- and y-directions are also fixed at Δx and Δy,
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Read p, h, θ, and ρ1 at step k-1 and
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ijε
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*
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ijσ

Yes

Calculate for a given p by the integral equation

Fig. 2. Iterative algorithm for solving the problem of thermal-EHL of materials in impact motion at each time instant

respectively (see Ref. [29] for more details). The energy equations are discretized using the first-order
backward scheme.

The entire problem couples the lubricated contact and the homogenization of heterogeneous mate-
rials. An iterative algorithm as shown in Fig. 2 is developed to obtain solutions of the contact pressure,
film thickness, fractional film content, temperature, and subsurface stress field at each time instant.
The calculational procedure is comprised of the computations of pressure, temperature, and disturbed
deformation.

First, pressure p, film thickness h, fractional film content θ, and equivalent density ρ1 at the previous
step and dynamic parameters h0, v0, and a0 at the current step are read in as the initial values. The
Reynolds equation, film thickness equation, and Elrod algorithm are solved sequentially by assuming
the temperature and disturbed deformation are known. This iterative procedure is repeated until the
relative difference between the summations of the pressure from two adjacent steps is smaller than
10−3. Second, the new values of pressure and film thickness are taken into the temperature iteration
to iteratively obtain the new temperature distribution until the relative difference of the temperature
summations is smaller than 10−3. Third, the eigenstrain ε∗

ij and eigenstress σ∗
ij are calculated according

to the EIM until the relative difference of the eigenstrain summations is smaller than 10−6. Finally,
the disturbed deformation is calculated for the given pressure and eigenstrain. The global loop at the
current time instant is terminated until the relative difference of the maximum deformation by the
eigenstrain is smaller than 10−3.

The differential Reynolds equation and energy equation are solved using the successive overrelax-
ation (SOR) method, while the governing equation of the equivalent homogeneous inclusions is solved
using the conjugate gradient method (CGM). Discrete convolution and fast Fourier transform (DC-
FFT) with duplicated padding technique are used to determine the surface deformation and stress
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Ω

Fig. 3. Schematic of a cuboidal inclusion beneath a half-space surface

caused by the eigenstrains (see Ref. [24] for more details). The multi-grid (MG) method, which can
be considered as a hierarchical SOR algorithm, was widely used in many studies of EHL problems to
improve the computational efficiency [9, 10]. Several discretization grids of different densities were used
alternately following a certain cyclic pattern in order to accelerate the solution process and efficiently
reduce the numerical errors of various wavelengths. However, it has been reported by Zhu [32] and
Pu et al. [33] that the MG algorithm may not be desirable for EHL cases with thin film and mixed
lubrication conditions. Furthermore, because the most time-consuming process of the calculation is the
iterative determination of the eigenstrains in the inhomogeneity zones, the time consumption is almost
at the same level whether employing the MG method or not. In this study, the computational grid is
fixed at a single level, and the FFT is utilized to improve the calculation efficiency.

4. Results and Discussions
4.1. Operating Conditions

In this section, the contact pressure, film thickness, fractional film content, temperature, and sub-
surface elastic fields of a rigid ball that freely falls onto an elastic half-space with a single cuboidal stiff
inclusion are simulated. The Reynolds equation and elastic deformation equations are implemented at
the computational domain set at −3.0aHz ≤ x ≤ 3.0aHz, −3.0aHz ≤ y ≤ 3.0aHz, and 0 ≤ z ≤ 2.0aHz

with 129 × 129 × 32 discretization grids equally spaced. In the temperature computation domain, the
node numbers across the oil film and solids along the z-direction are 10 and 6, respectively. The time
steep Δt is 0.05 µs in this study.

According to Ref. [34], a macro-inclusion with an edge length of 5–80 µm may be formed in inter-
stitial free steels and cause severe surface quality problems. A single inclusion with its edge length of
0.75aHz (about 64.5 µm) is focused on in this study, as shown in Fig. 3. It has been realized that the
inclusion may influence the contact within a certain depth range; otherwise, the inclusion may not
induce any disturbance to the contact. In this case, the inclusion is centred at (0, 0, 0.75aHz ) to reveal
its effect on the impact contact.

To discuss the effect of the initial drop height of the ball with constant impact mass, momentum,
and energy on the dynamic response of the system, seven cases with different values of impact mass
m0 and initial drop height h∗

0 are studied as depicted in Table 1. The universal geometric and material
parameters of all the cases are listed in Table 2.

To analyze the results conveniently, the dimensionless coordinate system and temperature, respec-
tively, normalized by the Hertzian contact radius aHz and ambient temperature TR are presented in
the following figures.

4.2. Model Verification

The central pressure, central film thickness, and central temperature obtained from the present
model are compared with those obtained by Wang et al. [9] for the Newtonian lubricant, as shown in
Fig. 4. The starvation condition is not considered in both models, meaning θ = 1 in the simulations.
The input parameters of the validation case have the same values as those summarized in Table 1,
except that E1 = E2 = 250 GPa and aHz = 0.145 mm. It is observed that the results from the two
models agree well with each other.
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Table 1. Impact parameters of different cases

Case Initial drop
height
h∗
0 (mm)

Initial impact
velocity
v0(m · s−1)

Impact mass
m0 (kg)

Initial impact
momentum
m0v0 (N · s)

Initial impact
energy
m0v

2
0/2 (J)

1 2 0.198 0.067 0.013 0.001
2 5 0.313 0.067 0.021 0.003
3 10 0.443 0.067 0.030 0.007
4 2 0.198 0.106 0.021 0.002
5 10 0.443 0.047 0.021 0.005
6 2 0.198 0.167 0.033 0.003
7 10 0.443 0.033 0.015 0.003

Table 2. Geometric and material parameters

Parameter Value

Radius R (mm) 12.7
Inlet oil layer thickness hoil (µm) 10
Ambient temperature TR (K) 303
Young’s modulus of the half-space E1 (GPa) 105
Poisson ratio of the half-space υ1 0.3
Young’s modulus of the inclusion Ei(GPa) 210
Poisson ratio of the inclusion υi 0.3
Heat capacity of contact solids c1 and c2(J · kg−1 · K−1) 470
Thermal conductivity of contact solids k1 and k2 (W · m−1 · K−1) 46
Reference density ρR (kg · m−3) 870
Reference viscosity ηR(Pa · s) 0.432
Viscose-temperature coefficient β (K−1) 0.046
Heat capacity of lubricant cf(J · kg−1 · K−1) 2000
Thermal conductivity of lubricant kf (W · m−1 · K−1) 0.14
Hertzian contact radius aHz(mm) 0.086
Maximum Hertzian pressure pHz (GPa) 1.0

The results of the Bair–Winer lubricant are also displayed in Fig. 4, and they are consistent with
those found in the study of the EHL problem in tangential motion conditions [13]. The non-Newtonian
behaviours affect the pressure and thickness around the pressure spike region. The film thickness is
increased by the large shear rate, which is induced by the non-Newtonian behaviours. The central
temperature–time traces of Newtonian and non-Newtonian lubricants are quite different. Besides, the
influence of the non-Newtonian behaviours is enhanced by the increase of initial drop height.

4.3. Essential Features of Solutions

The pressure, film thickness, fractional film content, and mid-layer temperature profiles of case 2 at
nine instants along the x-axis in the impact–rebound process are given in Figs. 5, 6, and 7. The results
of the homogenous material under the same operating condition are also presented for comparison. At
the first instant (t = 0.05 µs) that the ball comes into contact with the oil, the pressure is not zero and
fractional film content θ is 1.0 at that contact point. For the rest of the parts, the pressure is zero and
θ < 1.0. With the enlargement of the contact area, the pressure domain is expanded, while the area
where θ = 1.0 is enlarged accordingly. From 40 to 8 µs, the contact pressure is rapidly increased and
produces a significant elastic deformation to form the oil entrapment. The position of the minimum
film thickness is located at the peripheral contact area. The pressured area is extended in the impact
process until the majority of the θ profile achieves 1.0.

As the rebound process starts, the oil at the periphery starts to flow out of the contact area so that
the pressure at the corresponding position increases to balance the outflow. Specifically, the peripheral
pressure is increased and there is a gap between the oil layer and the ball surface. As the process
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Fig. 4. Comparison between the results obtained by Wang et al. [9] and the present model: a central pressure, b central
film thickness, and c dimensionless central temperature

continues, θ is reduced gradually and the peripheral pressure is further increased. Outside the contact
area, the gap between the ball surface and the oil surface is increased gradually. The elastic deformation
at the periphery location is increased by the increase of the pressure so that a periphery entrapment is
formed, as shown in Fig. 5g–i. As the rebound process continues, the minimum film thickness recovers
to the contact centre.

Similar patterns can be found in the profile shapes of the pressure and mid-layer temperature
distributions in Fig. 7, which is consistent with the solutions for the EHL of materials in tangential
motion [13]. In the initial impact stage, the maximum mid-layer temperature occurs at the contact
centre. In the subsequent stages, it shifts to the contact periphery in the rebound process and returns
to the contact centre at last.

It is seen that the pressure, film thickness, fractional film content, and mid-layer temperature
profiles of homogeneous and inhomogeneous materials in the x-direction are similar even if the pressure
distributions around the inclusion are different. Moreover, the pressure of the inhomogeneous material
shifts from the contact centre to the contact periphery at an earlier instant and the contact area is
reduced due to the stiff inclusion at the same instant. It indicates that the impact duration is reduced
by the stiff inclusion.

The inclusion-disturbed von Mises stress on the x − z plane and y − z plane is displayed in Fig. 8.
The consistency of the stress on the x − z plane and y − z plane is due to the symmetry of this
pure squeeze problem, which also demonstrates the reasonability of the developed numerical model.
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Fig. 5. Variations of the pressure and film thickness profiles in the x-direction: a t = 0.05µs, b t = 10µs, c t = 40 µs, d
t = 80 µs, e t = 100 µs, f t = 115 µs, g t = 130 µs, h t = 135 µs, and i t = 140 µs

The stress concentrations are found along the inclusion edges where the crack nucleation is likely to
start, and the von Mises stress inside is larger than that outside during the approaching process as
the inclusion is stiffer than the substrate. The maximum stress moves from the inclusion centre to the
top surface in the rebound process. At the end of the rebound process, the stress outside the inclusion
is increased rapidly and beyond the stress value inside. The maximum von Mises stress occurs at the
subsurface instead of the plane surface of the half-space. Consistent with the contact pressure, the
maximum von Mises stress appears at the central vertical axis during the approaching process, then
moves to the contact periphery during the rebound process, and finally returns to the central vertical
axis abruptly.

The variations of the central pressure pcen, central film thickness hcen, minimum film thickness
hmin, central temperature Tcen, and maximum von Mises stress σvon with time are plotted in Fig. 9.
The normal velocity v0 of the ball and the hydrodynamic force pz throughout the impact–rebound
process are also shown. The pressure spike in Fig. 9a for either the inhomogeneous material or the
inhomogeneous material reaches a value of about 14 GPa, which is significantly higher than the yield
strength of common metal materials and may produce surface damage in the rebound process. The
central contact pressure is increased by the inclusion during the approaching process. According to
energy conservation, the impact–rebound duration of the inhomogeneous material is shorter than that
of the homogeneous material as shown in Fig. 9a.

In Fig. 9b, c, both the central film thickness–time and minimum film thickness–time traces have a
constriction formed to balance the pressure spike. The central film thickness hcen of the inhomogeneous



Vol. 34, No. 6 X. Bai et al.: Modelling of Non-Newtonian Starved Thermal-elastohydrodynamic Lubrication 965

(g)

Fr
ac

tio
na

l f
ilm

 c
on

te
nt

(a) (b) (c)

(d) (e) (f)

(h) (i)

Fr
ac

tio
na

l f
ilm

 c
on

te
nt

Fr
ac

tio
na

l f
ilm

 co
nt

en
t

X X X

Fig. 6. Variations of the fractional film content profiles in the x-direction: a t = 0.05 µs, b t = 10 µs, c t = 40 µs, d
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material is decreased gradually during the major part of the impact process (25–125 µs) rather than
being remained constant as that of the homogeneous material. The contact pressure of the inhomoge-
neous material is concentrated around the region where the inclusion is embedded below, comparing
with the solutions for the homogeneous material in Fig. 5a. Therefore, a part of the lubricant flows
towards the contact periphery where the pressure is lower, making the central film thickness smaller,
the minimum film thickness larger, and the pressure in the contact periphery smaller.

It is seen in Fig. 9d that the temperature is increased quickly during the initial approaching process,
followed by a drop caused by the reduction of the film thickness before reaching the spike. The heat
in the EHL of materials in impact motion is mainly produced by the compressive work that is highly
related to the contact area. Since the contact area at the end of the rebound process is small, the spike
of central temperature is not as significant as that of the central pressure.

As shown in Fig. 9e, the maximum von Mises stress–time trace of the inhomogeneous material has
an obvious rise during the major part of the impact process (25 to 125 µs) compared with that of
the homogeneous material. The difference indicates that the inclusion mainly disturbs the stress field
during the middle of the impact–rebound process when the contact pressure is relatively high. In the
later part of the rebound process, a very small damping caused by the oscillation of the maximum
contact pressure occurs, which is followed by a spike for both the inhomogeneous and homogeneous
materials.
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Fig. 9. Dynamic response of homogeneous and inhomogeneous materials: a central pressure, b central film thickness, c
minimum film thickness, d dimensionless central temperature, e maximum subsurface von Mises stress, and f ball velocity
and hydrodynamic force

It is seen in Fig. 9f that the influences of the stiff inclusion on the ball velocity and hydrody-
namic force are small enough to be neglected. The leaving velocity of the ball as it escapes from the
10-µm-thick layer of lubricant is estimated to be 0.280 m · s−1, with the restitution coefficient of 0.893.
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The hydrodynamic force profiles in the approaching process and rebound process are approximately
symmetrical about the rebound instant t = 90 µs.

4.4. Influence of the Initial Drop Height

4.4.1. Constant mass

Solutions for the drop heights of 2 mm (case 1), 5 mm (case 2), and 10 mm (case 3) are shown in
Fig. 10. In the case of constant impact mass, with the increase of the initial drop height h∗

0, the peaks
of the central pressure pcen, von Mises stress σvon, hydrodynamic force pz, and central temperature
Tcen increase. However, h∗

0 has a reverse effect on the spike of pcen. The case with a larger h∗
0 has a

shorter impact duration and produces a thicker film layer and a larger film dimple. Consequently, less
oil flows out from the contact centre to balance the pressure spike. The leaving velocities of the ball
dropping from 2 and 10 mm are 0.160 and 0.409 m · s−1, with the restitution coefficients of 0.808 and
0.924, respectively. It implies that the larger is the initial drop height, the less momentum and energy
are lost in the impact–rebound process.

Figure 11 shows the distributions of pressure, film thickness, and fractional film thickness of cases 1–
3 at t = 40, 115 and 140 µs. Identical to the discussions of the essential features of case 2 in Sect. 4.3,
a central dimple is formed in the impact process and a periphery dimple is formed in the rebound
process. Both the maximum pressure and minimum film thickness occur at the contact periphery. The
film with a greater central thickness is thinner at the contact periphery, and vice versa. Moreover,
the difference of the pressure at the contact periphery among the three cases is similar to that of the
central pressure. Since the result differences induced by the loading conditions can be revealed by the
time traces, the solutions for cases with constant momentum, energy, and drop height at fixed times
are not shown here.

4.4.2 Constant momentum

The dynamic response of cases with the same impact momentum (i.e. cases 2, 4, and 5) is compared
in Fig. 12. The effects of the initial drop height h∗

0 on the contact pressure, film thickness, temperature,
stress field, and hydrodynamic force are in accordance with the conclusions from the cases with constant
impact mass. Nonetheless, the difference among the dynamic response of cases with different initial drop
heights is reduced because of the change of impact mass. The leaving velocities of the ball dropping
from 2 and 10 mm are 0.170 and 0.400m · s−1, with the restitution coefficients of 0.858 and 0.903,
respectively. It is demonstrated again that the larger is the initial drop height, the less momentum and
energy are lost in the impact–rebound process.

4.4.3 Constant energy

In Fig. 13, the dynamic response of cases with the same impact energy (i.e. cases 2, 6, and 7) is
depicted. It is consistent with the results in the above two subsections that the film thickness and
the spike of the central pressure pcen grow with the initial drop height h∗

0. However, the peaks of the
central pressure and central temperature increase with h∗

0 more slowly than those of the cases with
constant mass or momentum. Furthermore, the effects of h∗

0 on the peaks of the von Mises stress and
hydrodynamic force pz are too small to be observed. Moreover, although the initial drop velocities
of cases 2, 6, and 7 are different, their resultant restitution coefficients are all approximately 0.893.
Therefore, it can be concluded that the impact energy is the decisive factor for the stress peaks,
maximum hydrodynamic force, and restitution coefficient.

Based on the above analysis on the influence of the initial drop height h∗
0, it is found that the impact

duration increases with the rise of h∗
0. Additionally, impact mass m0 also affects the impact duration

positively, as shown in Fig. 14. Therefore, the impact duration may be controlled by the coupling of
h∗
0 and m0 rather than the impact momentum or energy. Moreover, the dynamic response during the

early approaching process remains unchanged with the variation of h∗
0, indicating that the dynamic

response during the early approaching process is controlled by the initial drop height.



970 ACTA MECHANICA SOLIDA SINICA 2021

C
en

tr
al

 p
re

ss
u

re
 p

ce
n
 (

G
P

a)

Time t (μs)

(a)

C
en

tr
al

 f
il

m
 t

h
ic

k
n

es
s 

h c
en

 (
μ

m
)

Time t (μs)

(b)
M

in
im

u
m

 f
il

m
 t

h
ic

k
n

es
s 

h m
in

 (
μ

m
)

Time t (μs)

(c)

Time t (μs)

(d)

D
im

en
si

o
n

le
ss

 c
en

tr
al

 t
em

p
er

at
u

re
 T

ce
n

M
ax

im
u

m
 v

o
n

 M
is

es
 S

tr
es

s 
(σ

v
o

n
) m

ax
 (

G
P

a)

Time t (μs)

(e)
v0

Time t (s)

(f)

pz

F
o
rc

e
p z

(k
N

)

S
p

ee
d

v 0
( m

·s
– 1

)
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Fig. 11. Variations of the pressure and film thickness profiles in the x-direction: a t = 40 µs, b t = 115 µs, and c
t = 140 µs

5. Concluding Remarks
In this paper, the material inhomogeneity is involved in the EHL problem in impact motion by

means of Eshelby’s equivalent inclusion method. The developed model of the EHL problem for impact
motion conditions integrates the non-Newtonian, thermal, starvation, and material inhomogeneity
effects together in a strongly nonlinear equation system. By comparing the results of the homogeneous
and inhomogeneous materials, it is found that the pattern of central pressure–time trace is similar to
that of the pressure–distance trace at the steady-state rolling condition, and the inclusion disturbs the
stress field and affects the dynamic response during the middle of the impact–rebound process when the
contact pressure is high. Specifically, the impact duration and central film thickness are reduced by the
stiff inclusion, while the pressure at the contact centre and the film thickness at the contact periphery
are increased. However, the influences of the stiff inclusion on the ball velocity and hydrodynamic force
are small enough to be neglected. Apart from the impact mass, the impact momentum and energy
are concerned to investigate the influence of the initial drop height on the dynamic response of the
EHL problems that were seldom discussed previously. The results show that the impact energy is the
decisive factor for the stress peak, maximum hydrodynamic force, and restitution coefficient, while the
dynamic response during the early approaching process is controlled by the initial drop height.

Some further research topics may be triggered by the present study: (i) the effect of randomly
distributed inclusions on the contact conditions; (ii) the effect of the inlet oil layer thickness on the
response of the EHL problems in impact motion conditions; (iii) the flow fields of various non-Newtonian
lubricants in impact motion conditions.
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Fig. 14. Dynamic response dependence on the initial drop height: a central pressure, b central film thickness, c central
temperature, d minimum film thickness, e maximum subsurface von Mises stress, and f ball velocity and hydrodynamic
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Appendix
With Hooke’s law and stress superposition considered, the stresses in the equivalent homogeneous inclusions

satisfy [24]

Cψ
ijklC

−1
klmq(σ

0
mq + σp

mq + σ∗
mq) − σ0

ij − σp
ij − σ∗

ij + Cψ
ijklε

∗
kl = 0,

(ψ = 1, 2, . . . , n1; i, j, k, l, m, q = 1, 3)within Ωψ (A1)

where σ0
ij is the eigenstress at a point within an inclusion caused by all the initial eigenstrains ε0ij , σ∗

ij the
eigenstress caused by all eigenstrains ε∗

ij within the equivalent inclusions, and σp
ij the stress caused by surface

pressure.
According to Zhou et al. [24], the discretization expressions for σ0

ij , σ∗
ij , and σp

ij can be obtained with the
assistance of the influence coefficients Bα0−ξ,β0−ζ,γ0,ϕ and Mα0−ξ,β0−ζ,γ0 . Bα0−ξ,β0−ζ,γ0,ϕ relates the eigen-
stresses σ0

α0,β0,γ0 and σ∗
α0,β0,γ0 at the observation point in the cuboid [α0, β0, γ0] to the initial eigenstrains

ε0ξ,ζ,ϕ and ε∗
ξ,ζ,ϕ in the cuboid [ξ, ζ, ϕ], while Mα0−ξ,β0−ζ,γ0 relates to the surface pressure pξ,ζ . Therefore, the

governing equation can then be written as

(
Cα0,β0,γ0C−1 − I

)
⎡

⎣
NZ−1∑

ϕ=0

NY −1∑

ς=0

NX−1∑

ξ=0

Bα0−ξ,β0−ζ,γ0,ϕ

(
εP

ξ,ζ,ϕ + ε∗
ξ,ζ,ϕ

)

+

NY −1∑

ς=0

NX−1∑

ξ=0

Mα0−ξ,β0−ζ,γ0pξ,ζ

⎤

⎦ + Cα0,β0,γ0ε∗
ξ,ζ,ϕ = 0

(0 ≤ α0 ≤ Nx − 1, 0 ≤ β0 ≤ Ny − 1, 0 ≤ γ0 ≤ Nz − 1) within Ωψ (A2)

The unknown eigenstrains within the governing equation can be determined by a modified CGM with
achievable convergence. The FFT algorithm is applied to improve the computational efficiency of the summation
[24].

With the determined eigenstrains, the disturbed deformation U∗
α0,β0 at the patch [α0, β0] can be obtained

by

U∗
α0,β0 =

NZ−1∑

ϕ=0

NY −1∑

ς=0

NX−1∑

ξ=0

Sα0−ξ,β0−ζ,ϕ

(
ε0ξ,ς,ϕ + ε∗

ξ,ζ,ϕ

)

(0 ≤ α0 ≤ Nx − 1, 0 ≤ β0 ≤ Ny − 1) (A3)

where Sα0−ξ,β0−ζ,γ0,ϕ relates the disturbed deformation U∗
α0,β0 due to the inclusions at point (xα0 , yβ0) to the

eigenstrains ε0ξ,ζ,ϕ and ε∗
ξ,ζ,ϕ at point (xξ, yζ , zϕ).
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