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ABSTRACT We study electric currents in a piezoelectric semiconductor fiber under a constant
voltage and time-dependent axial stresses applied locally. From a nonlinear numerical analysis
based on a one-dimensional phenomenological model using the commercial software COMSOL,
it is found that pulse electric currents can be produced by periodic or time-harmonic stresses.
The pulse currents can be tuned by the amplitude and frequency of the applied stress. The result
obtained provides a new approach for the mechanical control of electric currents in piezoelectric
semiconductor fibers and has potential applications in piezotronics.

KEY WORDS Piezoelectric semiconductor nanofiber, Tunable pulse electric current, Time-
dependent stress, Piezotronics

1. Introduction
Many new piezoelectric semiconductor nanostructures, e.g., ZnO fibers, belts, spirals, tubes and

films, have been synthesized in the last one to two decades [1–3]. They have been used to make various
electromechanical devices such as energy harvesters, mechanically-gated transistors, acoustic charge
transport devices, and physical as well as chemical sensors [4–8]. Piezoelectric semiconductors are also
used in quantum wells, dots and wires [9]. The research on piezoelectric semiconductor materials and
devices has been growing steadily [10]. It has formed a new research area called piezotronics and piezo-
phototronics [11–14]. In piezotronic devices, the motion of charge carriers is manipulated by mechanical
loads through the accompanying electric field due to piezoelectric coupling. Many piezotronic devices
are made from ZnO nanofibers with PN or MS junctions [14]. These fibers may be in extensional
[15–19] or bending [20–24] deformations, which affect the current–voltage relations (I–V curves) of the
junctions. Recently, it has been shown that local extensional/compressive stresses in a piezoelectric
semiconductor fiber produce electric potential barriers/wells [25, 26], which affects the I–V curves of
the fiber even without the presence of PN or MS junctions. This offers a new means for the mechanical
tuning of electrical behaviors of piezoelectric semiconductor fiber devices. The same effect also exists in
piezoelectric semiconductor fibers under a local temperature change [27]. In [25, 26], the local stresses
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are static. They act like a stress-dependent switch in a semiconductor fiber. Under a fixed voltage,
current can flow through the fiber when the stress is low, but not so under high stresses. In this paper,
we study the effects of time-dependent stresses applied locally in a piezoelectric semiconductor fiber. It
is shown that pulse electric currents can be produced and tuned by periodic or time-harmonic stresses.

2. Governing Equations
Consider a piezoelectric semiconductor fiber under a pair of equal and opposite forces F locally at

x = ± a (see Fig. 1). F is time-dependent. The fiber is made from a piezoelectric semiconductor crystal
of class (6 mm) such as ZnO. The c-axis of the fiber is along x3. The two ends of the fiber are under a
constant voltage V . The lateral surface is traction-free and is unelectroded. As an approximation, the
electric field in the free space is neglected.

Fig. 1. A piezoelectric semiconductor fiber under local stress

The current–voltage behavior of the fiber can be described by the macroscopic theory of piezoelectric
semiconductors, which consists of the classical theory of piezoelectricity [28] and the drift-diffusion
theory of semiconductors [29], coupled electrically by the charges in the semiconductor. Specifically, for
the extensional motion of a piezoelectric semiconductor fiber, the macroscopic theory can be reduced
to a one-dimensional model [15, 26], which is adequate for the purpose of this paper. For the one-
dimensional model, the relevant axial fields are denoted by

u3 = u(x, t), ϕ = ϕ(x, t),
p = p(x, t), n = n(x, t),
S = S3(x, t), E = E3(x, t),
T = T3(x, t), D = D3(x, t),

Jp = Jp
3 (x, t), Jn = Jn

3 (x, t) (1)

where u is the axial displacement, ϕ the electric potential, p the concentration of holes, n the concen-
tration of electrons, S the strain, T the stress, E the electric field, D the electric displacement, Jp the
hole current density, and Jn the electron current density. They are governed by [15, 26]

∂T

∂x
= ρü,

∂D

∂x
= q(p − n + N+

D − N−
A ),

q
∂p

∂t
= −∂Jp

∂x
,

q
∂n

∂t
=

∂Jn

∂x
(2)

where ρ is the mass density, q the elementary charge, N+
D and N−

A the concentrations of ionized donors
and accepters, respectively. The equations in (2) are Newton’s law, Gauss’s law for electrostatics, and
the continuity equations for holes and electrons, respectively. Equations describing material behaviors
are [15, 26]

T = cS − eE,
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D = eS + εE (3)

Jp = qpμpE − qDp ∂p

∂x
,

Jn = qnμnE + qDn ∂n

∂x
(4)

The mobility μ and the diffusion constants Dp and Dn for holes and electrons in (4) satisfy the following
Einstein relation [29]

μp

Dp
=

μn

Dn
=

q

kBΘ
(5)

Fig. 2. Current I in the fiber versus time t under F = F0 · sin(ωt): a F0 = 170 nN, ω = π; b effect of ω when F0 = 170 nN;
c effect of F0 when ω = π
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where kB is the Boltzmann constant and Θ the absolute temperature. The axial strain–displacement
relation and electric field-potential relation are

S =
∂u

∂x
, E = −∂ϕ

∂x
(6)

With successive substitutions from (3), (4) and (6), we can write (2) as four equations for u, φ, p and
n. The boundary conditions are shown in Fig. 1. The initial conditions are

u = 0, u̇ = 0,
n = n0, ϕ = 0 (7)

The above initial-boundary-value problem is solved using COMSOL, a commercial software for numer-
ically solving differential equations.

Fig. 3. Current I in the fiber versus time t under F = F0 · sin(ωt) + F1: a F1 = 150 nN, ω = π and F0 = 150 nN; b
F1 > 0, ω = π and F0 = 150 nN; c F1 < 0, ω = π and F0 = 150 nN
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3. Numerical Results and Discussion
Specifically, consider an n-type ZnO fiber with p ∼= 0. We denote n0 = N+

D and use n0 = 1021 m−3 in
our calculations below. L = 3000 nm. a = 60 nm. The circular cross-sectional area is A = 2.6×10−15m2

with a radius of R = 28.75 nm. V = 1.5 volt is used. The material constants of ZnO are the same as
those in [27].

Consider the simple case of F = F0 · sin(ωt) first. Figure 2 shows the current I = Jn· A in the fiber
versus time t. Figure 2a shows the most basic result of this paper, i.e., the time-harmonic F leads to
pulse currents in the fiber. This is not surprising in view of the result of [26] that a properly applied
F may act like a switch that can turn the current on and off. Figure 2b shows that the frequency of
the pulses is determined by ω, which is as expected. Figure 2c shows that as F0 increases, the pulses
become narrower and steeper. Numerical results also show that if F0 is below a certain value, it does
not produce pulse currents.

Fig. 4. Current I versus time t under F = F0 ·f(t), where f(t) is a rectangular pulse function: a pulse function generated
by COMSOL; b pulse currents when F0 = 150 nN; c effect of F0
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Next, we consider stresses described by F = F0 · sin(ωt) + F1, with a constant part described
by F1. The result is shown in Fig. 3. Again, Fig. 3a shows that pulse currents are produced, but the
number of pulses is about half of that in Fig. 2a during the same initial six seconds. This is because the
numerical values used for F1 and F0 are equal, and the local stress field produced by F has only three
peaks during six seconds. Figure 3b, c shows that the pulse currents are sensitive to the parameters.
For certain combinations of the parameters, F does not produce neat pulses.

The pulse currents in Figs. 2 and 3 are abrupt at the bottom and gradual at the top. This is related
to the trigonometric F used, which is gradual. To achieve square pulse currents, we try F = F0 · f(t),
where f(t) is a rectangular pulse function created by COMSOL numerically, as shown in Fig. 4a. Only
one period is shown in Fig. 4a, which is then extended periodically. In this case, Fig. 4b shows that
the currents are also square pulses. Figure 4c shows the effect of F0. It can be seen that the amplitude
of the pulse current can be tuned by F0.

4. Conclusions
It is shown through a one-dimensional macroscopic model and numerical analysis by COMSOL

that local time-harmonic or periodic stresses produce pulse currents in a piezoelectric semiconductor
fiber under a constant voltage. The pulse currents are sensitive to the parameters of the local stresses.
This offers a new approach for the mechanical manipulation of electrical behaviors of piezoelectric
semiconductor fibers and may be useful in piezotronic and piezo-phototronic devices.
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